首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine malignant hyperthermia (MH) is an autosomal recessive disorder resulting from a mutation in the skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release channel. The Ca2+ release properties of SR vesicles isolated from pigs heterozygous for the MH gene have been demonstrated previously to be intermediate to those of vesicles isolated from MH-susceptible (MHS) and normal pigs. The Ca2+ release channel is tetrameric, so the intermediate Ca2+ release properties of heterozygous pig SR preparations could result either from populations of MHS and normal homotetramers, or populations of heterotetrameric Ca2+ release channels with properties unique from those of the two types of homozygous channels. To discriminate between these possibilities, the single channel percent open time (Po) and channel dwell time distributions of SR Ca2+ release channels were analyzed. These data suggest that the heterozygous porcine Ca2+ release channel population must contain heterotetramers with properties distinct from those of either MHS or normal channels. The data also imply that the Ca2+ release channel population in MHS humans who are heterozygous for a dominant mutation in this protein also contains heterotetrameric channels.© 1995 John Wiley & Sons, Inc.  相似文献   

2.
Myopathies in critically ill patients are increasingly documented. Various animal models of chronic sepsis have been employed to investigate reduced membrane excitability or altered isometric contractility of skeletal muscle. In contrast, immediate changes occurring during acute sepsis are significantly under-characterised; L-type Ca2+ channel function or isotonic shortening are examples. We recorded slowly activating L-type Ca2+ currents (I Ca) in voltage-clamped single intact mouse skeletal muscle fibres and tested the effects of acute challenge with serum fractions from critical illness myopathy patients (CIM). Using a high-speed camera system, we simultaneously recorded unloaded fibre shortening during isotonic contractions with unprecedented temporal resolution (~1,600 frames/s). Time courses of fibre lengths and shortening velocity were determined from automated imaging algorithms. CIM fractions acutely induced depression of I Ca amplitudes with no shifts in I CaV-relations. Voltage-dependent inactivation was unaltered and I Ca activation and inactivation kinetics were prolonged compared to controls. Unexpectedly, maximum unloaded speed of shortening was slightly faster following CIM serum applications, suggesting a direct action of CIM serum on weak-binding-state cross-bridges. Our results are compatible with a model where CIM serum might acutely reduce a fraction of functional L-type Ca2+ channels and could account for reduced SR Ca2+ release and force production in CIM patients. Acute increase in isotonic shortening velocity might be an early diagnostic feature suitable for testing in clinical studies. The acute challenge model is also robust against atrophy or fibre type changes that ordinarily would have to be considered in chronic sepsis models.  相似文献   

3.
ABSTRACT: Introduction: Because impaired excitation‐contraction coupling and reduced sarcoplasmic reticulum (SR) Ca2+ release may contribute to the age‐associated decline in skeletal muscle strength, we investigated the effect of aging on regulation of the skeletal muscle isoform of the ryanodine receptor (RyR1) by physiological channel ligands. Methods: [3H]Ryanodine binding to membranes from 8‐ and 26‐month‐old Fischer 344 extensor digitorum longus (EDL) and soleus muscles was used to investigate the effects of age on RyR1 modulation by Ca2+ and calmodulin (CaM). Results: Aging reduced maximal Ca2+‐stimulated binding to EDL membranes. In 0.3 μM Ca2+, age reduced binding and CaM increased binding to EDL membranes. In 300 μM Ca2+, CaM reduced binding, but the age effect was not significant. Aging did not affect Ca2+ or CaM regulation of soleus RyR1. Discussion: In aged fast‐twitch muscle, impaired RyR1 Ca2+ regulation may contribute to lower SR Ca2+ release and reduced muscle function. Muscle Nerve 57 : 1022–1025, 2018  相似文献   

4.
In porcine malignant hyperthermia-susceptible (MHS) skeletal muscles, calcium release is abnormal and resting calcium may be elevated. Thus MHS muscles may have prolonged twitch relaxation and lower fusion frequencies, which would be augmented by inhibition of sarcoplasmic reticulum (SR) Ca2+ adenosine triphosphatase (ATPase) activity; bundles of intact muscle cells from MHS and normal pigs were used to investigate this possibility. Cooling and low-frequency stimulation, in combination, enhanced twitch fusion and prolonged twitch relaxation significantly more in MHS than in normal muscles (e.g., 34 ± 4% versus 16 ± 4% fusion, and 82.4 ± 9.4 ms versus 43.2 ± 7.8 ms half-relaxation time, for MHS and normal muscles, respectively). Similarly, inhibition of the SR Ca2+ ATPase by cyclopiazonic acid resulted in significantly greater twitch fusion in MHS muscles. These results were consistent with predicted effects of enhanced SR Ca2+ release and/or elevated resting calcium in MHS muscles and indicate that cooling during a malignant hyperthermia crisis could actually increase the force of muscle contractures. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:361–366, 1998.  相似文献   

5.
Intramyofiber accumulation of β‐amyloid fragments (Aβ) is a pathologic hallmark of inclusion‐body myositis (IBM), a progressive skeletal muscle disorder. We investigated the temporal pattern of alterations in the resting cytoplasmic [Ca2+] ([Ca2+]i) as well as the depolarization‐evoked Ca2+ release from the sarcoplasmic reticulum in skeletal muscle from transgenic mice expressing human βAPP (MCK‐βAPP). MCK‐βAPP mice show an age‐dependent increase in [Ca2+]i along with a reduction in depolarization‐evoked Ca2+ release, which appear well before the other reported aspects of IBM, such as inclusion formation, inflammation, centralized nuclei, atrophy, and skeletal muscle weakness. In the young MCK‐βAPP animals the increase in resting [Ca2+]i can be attributed largely to Ca2+ influx through nifedipine‐sensitive Ca2+ channels. In the adult MCK‐βAPP mice, in addition to the nifedipine‐sensitive pathway, there is also a substantial contribution by the intracellular compartments to the increase in [Ca2+]i. These results suggest that β‐amyloid‐induced disuption of Ca2+ handling may represent an early event in the pathogenesis of IBM. Muscle Nerve, 2010  相似文献   

6.
Introduction:Fatigue disrupts muscle force summation and is associated with a decrease in cytoplasmic Ca2+ concentration. The purpose of this study was to compare summation during fatigue and recovery with summation during dantrolene‐induced inhibition of Ca2+ release.Methods:Rat medial gastrocnemius muscles were evaluated before and after fatigue, or during exposure to dantrolene. Summation was quantified by the ratio of the force transient associated with the final activation in a train of stimuli (Twf), obtained by subtraction of the force with one less stimulus, and the force of the twitch (Tw).Results:This ratio (Twf/Tw) decreased from 2.46 ± 0.11 (mean ± SEM) to 0.8 ± 0.1 during intermittent contractions, but was still significantly different from non‐fatigued muscle after 10 min of recovery. Dantrolene altered summation, as Twf/Tw was 1.7 ± 0.2 and 1.27 ± 0.15 at a low dose and a high dose, respectively.Conclusions:Inhibition of Ca2+ release alters summation, but repetitive stimulation leading to fatigue changes it more substantially. Muscle Nerve 44: 410–417, 2011  相似文献   

7.
In skeletal muscle fiber, excitation-contraction coupling corresponds to the sequence of events occurring from action potential firing to initiation of contraction by an increase in cytosolic Ca2+. These events are elicited in response to excitation of the motor neuron which induces trains of action potentials in the muscle cell that spread along the sarcolemma and in depth along the T-tubule membrane. Depolarization of the T-tubule membrane induces a conformational change in a protein complex, called the dihydropyridine receptor, which opens a calcium channel anchored in the membrane of the sarcoplasmic reticulum, called the ryanodine receptor, in charge of release of Ca2+ ions that activate contractile proteins. Ryanodine receptors shut upon return of the T-tubule membrane potential to its resting value and muscle cell relaxation results from the removal of cytosolic Ca2+ that is pumped back into the SR lumen through the sarcoplasmic reticulum Ca2+ ATPase. Mutations in genes encoding either plasma membrane ion channels, the main subunit of the dihydropyridine receptor, ryanodine receptor, sarcoplasmic reticulum Ca2+ ATPase or proteins interfering with trans-sarcolemmal Ca2+ influx or sarcoplasmic reticulum Ca2+ efflux lead to clinical disorders that manifest as myotonia, muscle weakness, paralysis or muscle wasting.  相似文献   

8.
Preparations of lysed synaptosomes exhibit a high affinity Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ accumulation activity, with aKm forCa2+ 0.5 μM, close to the cytosolic concentration of Ca2+. When these membrane suspensions were incubated with cholinergic agonists muscarine or oxotremorine (1–20 μM), both Ca2+/Mg2+ ATPase and ATP-dependent Ca2+ uptake were inhibited in a concentration-dependent fashion. Atropine alone (0.5–1.0 μM) had no effect on either enzyme or uptake activity, but significantly inhibited the actions of both muscarine and oxotremorine. No significant effects by cholinergic agonists or antagonists were seen on fast or slow phase voltage-dependent Ca2+ channels or Na+-Ca2+ exchange. These results suggest that activation of presynaptic muscarinic receptors produce inhibition of two processes required for the buffering of optimal free Ca2+ by the nerve terminal. Activation of presynaptic muscarinic receptors have been reported to reduce the release of ACh from nerve terminals. Alterations in intracellular free Ca2+ may contribute to a reduction in transmitter (ACh) release seen following activation of cholinergic receptors.  相似文献   

9.
We examined the mechanism(s) which allow terbutaline, a β2-adrenergic agonist, to increase isometric force in bundles of normal and denervated rat soleus fibers. Terbutaline (10 μmol/L) potentiated tetanic contractions during exposure to 1 mmol/L ouabain, 10 μmol/L nifedipine, or 0.5 mmol/L iodoacetate. Terbutafine induced equivalent increases in submaximal potassium (K+) contracture and tetanic force: these effects were mimicked by 2 mmol/L dibutyrl-cyclic AMP. Therefore, terbutaline increased force by a cyclic AMP-dependent mechanism other than enhancement of sodium-pump activity, dihydropyridine sensitive Ca2+ currents, glycolysis, or action potentials. Pretreatment with 1 mmol/L caffeine induced submaximal potentiation of peak tetanic force but prevented further potentiation by terbutaline. This suggested that terbutaline did not influence the myofilaments, but acted on the sarcoplasmic reticulum (SR) to increase the myoplasmic Ca2+ concentration and hence force production. We speculate that force is potentiated following β-adrenoceptor activation by a cyclic AMP-dependent phosphorylation of Ca2+ release channels to facilitate SR calcium release during tetanic stimulation. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
We compared the effectiveness of Ca2+ entering by Na+/Ca2+ exchange with that of Ca2+ entering by channels produced by membrane depolarization with K+ in inducing catecholamine release from bovine adrenal chromaffin cells. The Ca2+ influx through the Na+/Ca2+ exchanger was promoted by reversing the normal inward gradient of Na+ by preincubating the cells with ouabain to increase the intracellular Na+ and then removing Na+ from the external medium. In this way we were able to increase the cytosolic free Ca2+ concentration ([Ca2+]c) by Na+/Ca2+ exchange to 325 ± 14 nM, which was similar to the rise in [Ca2+]c observed upon depolarization with 35 mM K+ of cells not treated with ouabain. After incubating the cells with ouabain, K+ depolarization raised the [Ca2+]c to 398 ± 31 nM, and the recovery of [Ca2+]c to resting levels was significantly slower. Reversal of the Na+ gradient caused an −6-fold increase in the release of noradrenaline or adrenaline, whereas K+ depolarization induced a 12-fold increase in noradrenaline release but only a 9-fold increase in adrenaline release. The ratio of noradrenaline to adrenaline release was 1.24 ± 0.23 upon reversal of the Na+/Ca2+ exchange, whereas it was 1.83 ± 0.19 for K+ depolarization. Reversal of the Na+/Ca2+ exchange appeared to be as efficient as membrane depolarization in inducing adrenaline release, in that the relation of [Ca2+]c to adrenaline release was the same in both cases. In contrast, we found that for the same average [Ca2+]c, the Ca2+ influx through voltage-gated channels was much more efficient than the Ca2+ entering through the Na+/Ca2+ exchanger in inducing noradrenaline release from chromaffin ceils. This greater effectiveness of membrane depolarization in stimulating noradrenaline release suggests that there is a pool of noradrenaline vesicles which is more accessible to Ca2+ entering through voltage-gated Ca2+ channels than to Ca2+ entering through the Na+/Ca2+ exchanger, whereas the adrenaline vesicles do not distinguish between the source of Ca2+.  相似文献   

11.
Primary cultures of gerbil mesencephalon were used for studying the modulation exerted by tachykinin NK3 receptor activation on the activity of dopamine (DA) neurons. Dopamine neurons were identified by their ability to take up [3H]DA in a nomifensine-dependent manner. Moreover, tyrosine hydroxylase immunohistochemistry revealed that these neurons accounted for 5–7% of the total cell population. The NK3 receptor agonists, senktide (EC50= 0.58 nM) and [MePhe7]neurokinin B (EC50= 3 nM), increased spontaneous [3H]DA release in a concentration-dependent manner. In contrast, tested at a supramaximal concentration (10-7 M), neither septide nor substance P were found to affect [3H]DA release. The senktide-evoked [3H]DA release was not observed when extracellular Ca2+ was chelated, but was unaffected by nomifensine. This indicates that this increase in [3H]DA outflow resulted more from an exocytotic process than from reversal of carrier-mediated DA uptake. Moreover, the senktide effect was unaffected by the Na+ channel blocker tetrodotoxin, a result suggesting a direct action of senktide on DA neurons. The non-peptide NK3 receptor antagonist, SR 142801, shifted or blocked (ICs0 = 0.89 nM) the senktide-evoked [3H]DA release, while its (-)-antipode, SR 142806, was 80-fold less potent, in agreement with binding data. Selective antagonists for NK, (SR 140333) or NK2 (SR 48968) receptors failed to reduce the senktide effect. Light scanning microscopic analysis of mesencephalic cells loaded with the Ca2+ sensitive dye, fluo-3, showed that senktide induced a rise in cytosolic Ca2+ in 8-10% of the cell population. The senktide-induced elevation in intracellular Ca2+ was rapid in onset and transient (at lo4 M) or more sustained with no further increase in fluorescence intensity (at 10-7 M). The proportion of senktide-responsive cells was not significantly modified when extracellular Ca2+ was chelated, but was reduced by 87% in the presence of SR 142801 and by 75% in cultures that were pre-treated with the DA neurotoxin l-methyl-4-phenylpyridinium. The present study shows that enhancement of spontaneous [3H]DA release and intracellular Ca2+ mobilization may be observed after NK3 receptor stimulation and that both biochemical events are likely to occur in DA neurons.  相似文献   

12.
Introduction: Experimental myotonia induced in rat muscle by ClC‐1 chloride channel‐inhibited has been shown to be related inversely to extracellular concentrations of Mg2+ and Ca2+ ([Mg2+]o and [Ca2+]o) within physiological ranges. Because this implicates a role for [Mg2+]o and [Ca2+]o in the variability of symptoms among myotonia congenita patients, we searched for similar effects of [Mg2+]o and [Ca2+]o on myotonia in human muscle. Methods: Bundles of muscle fibers were isolated from abdominal rectus in patients undergoing abdominal surgery. Myotonia was induced by ClC‐1 inhibition using 9‐anthracene carboxylic acid (9‐AC) and was assessed from integrals of force induced by 5‐Hz stimulation for 2 seconds. Results: Myotonia disappeared gradually when [Mg2+]o or [Ca2+]o were elevated throughout their physiological ranges. These effects of [Mg2+]o and [Ca2+]o were additive and interchangeable. Conclusions: These findings suggest that variations in symptoms in myotonia congenita patients may arise from physiological variations in serum Mg2+ and Ca2+. Muscle Nerve 51 : 65–71, 2015  相似文献   

13.
In the CA1 region of the hippocampus, ischemia or high-frequency stimulation of the glutamatergic input induces neuronal calcium uptake that is reflected as a decrease of the extracellular concentration of calcium ([Ca2+]ec. In this study, the effects of theophylline on these [Ca2+]ec shifts were examined in doses (20 mg/kg iv) where theophylline is mainly acting by blocking adenosine receptors. By using calcium-sensitive microelectrodes, [Ca2+]ec was concomitantly recorded in stratum pyramidale (SP) and stratum radiatum (SR) of the CA1 in adult Wistar rats, before, during, and for 6 h after transient forebrain ischemia. During ischemia (4-vessel occlusion, 20 min), the [Ca2+]ec decrease in SR preceded (by 11± 4 s; mean ± SEM) the [Ca2+]ec decrease in SP. Administration of theophylline prior to ischemia reduced the time from vessel-occlusion to the ischemic decrease in [Ca2+]ec (from 3.0±0.3 to 0.9±0.1 min; mean±SEM;p<0.01). During electrically evoked burst firing, the [Ca2+]ec shift was augmented by theophylline in nonischemic controls (by 29±4%; mean±SEM’p<0.05). After 6 h of reflow, i.e., at a time-point when the evoked calcium uptake is enhanced, theophylline had no effect on evoked [Ca2+]ec shifts. In summary, during ischemia the uptake of calcium into CA1 pyramidal cells started in the dendrites and preceded that in the cell bodies. Removal of adenosine inhibition by theophylline accelerated ischemic calcium uptake and enhanced electrically evoked calcium uptake in control animals. In contrast, in the postischemic phase adenosine inhibition was lost with a secondary enhancement of the evoked calcium uptake that may be one critical factor in the development of delayed neuronal death.  相似文献   

14.
Synaptic vesicle exocytosis is triggered by Ca2+ influx through several subtypes of voltage‐gated calcium channels in the presynaptic terminal. We previously reported that paired‐pulse stimulation at brief intervals increases Cav2.1 (P/Q‐type) channel‐mediated multivesicular release (MVR) at glutamatergic synapses between granule cells (GCs) and molecular layer interneurons (MLIs) in rat cerebellar slices. However, it has yet to be determined how Cav2 channel subtypes take part in MVR in single axon terminal. This study therefore aimed at examining the effects of roscovitine on different types of cerebellar synapses that make contacts with Purkinje cells (PCs), because this compound has been shown to enhance Cav2.1 channel‐mediated MVR at GC‐MLI synapses. Bath application of roscovitine profoundly increased the amplitude of excitatory postsynaptic currents (EPSCs) at GC‐PC synapses by a presynaptic mechanism as previously observed at GC‐MLI synapses, whereas it caused a marginal effect on climbing fiber‐mediated EPSCs in PCs. At MLI‐PC synapses, roscovitine increased both the amplitude and decay time of inhibitory postsynaptic currents (IPSCs) by enhancing multivesicular GABA release. When extracellular Ca2+ concentration ([Ca2+]e) decreased, roscovitine became less effective in increasing GC‐PC EPSCs. By contrast, roscovitine was able to augment MLI‐PC IPSCs in the low [Ca2+]e. The Cav2.1 channel blocker ω‐agatoxin IVA suppressed the roscovitine‐induced facilitatory actions on both GC‐PC EPSCs and MLI‐PC IPSCs. These results demonstrate that roscovitine enhances MVR at the GC‐PC excitatory synapses in a manner dependent on the driving force of Cav2.1 channel‐mediated Ca2+ influx into the nerve terminal, while it also facilitates MLI‐PC inhibitory transmission via Ca2+‐insensitive mechanisms.  相似文献   

15.
The expression of GABAB receptors in cultured mouse cerebellar granule cells was investigated in binding experiments using [3H](S, R)-baclofen as well as in functional assessment of the ability of (R)-baclofen to interact with depolarization (15–40 mM KCI) coupled changes in intracellular Ca2+ homeostasis and neurotransmitter release. In the latter case a possible functional coupling between GABAA and GABAB receptors was investigated. The binding studies showed that the granule cells express specific binding sites for (R)-baclofen. The number of binding sites could be increased by exposure of the cells to the GABAA receptor agonist THIP (4,5,6,7-tetrahy-droisoxazolo[5,4-c]pyridin-3-ol) during the culture period. Pretreatment of the neurons with pertussis toxin showed that the GABAB receptors are coupled to G-proteins. This coupling was, however, less pronounced when the cells had been cultured in the presence of THIP. When 45Ca2+ uptake was measured or the intracellular Ca2+ concentration ([Ca2+]i) determined using the fluorescent Ca2+ chelator Fluo-3 it could be demonstrated that culturing the neurons in THIP influences intracellular Ca2+ homeostasis. Moreover, this homeostasis was found to be functionally coupled to the GABAB receptors as (R)-baclofen inhibited depolarization-induced increases in 45Ca2+ uptake and [Ca2+]i. (R)-Baclofen also inhibited K+-induced transmitter release from the neurons as monitored by the use of [3H]D -aspartate which labels the neurotransmitter pool of glutamate. Using the selective GABAA receptor agonist isoguvacine it could be demonstrated that the GABAB receptors are functionally coupled to GABAA receptors in the neurons leading to a disinhibitory action of GABAB receptor agonists. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Effects of Ca2+ on [3H]5-hydroxytryptamine (5-HT) uptake into rat cortical synaptosomes were studied. The uptake was enhanced in the presence of Ca2+ in Krebs-Ringer medium and the uptake at 0.3–5 mM Ca2+ was 2.4–2.7 times greater than that observed in the absence of Ca2+. The maximal increase at the concentration of 1 mM Ca2+ was achieved after 2 min preincubation. Ca2+-dependent enhancement of the [3H]5-HT uptake reflected an increase in Vmax of the uptake process. However, Kd and Bmax values for [3H]paroxetine were not significantly changed in the presence of 1 mM Ca2+ compared with Ca2+-free condition. On the other hand, uptake was still enhanced after synaptosomes were washed with Ca2+-free medium after preincubation with 1 mM Ca2+. Staurosporine (a protein kinase C inhibitor) and wortmannin (a myosin light chain kinase inhibitor) did not affect Ca2+-dependent enhancement of the uptake, whereas 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-

-tyrosyl]-4-phenylpiperazine (KN-62, inhibitor of Ca2+/calmodulin-dependent kinase II) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, a calmodulin antagonist) significantly reduced it. Moreover, L-type, but not P- or N-type, voltage-dependent Ca2+-channel blockers suppressed enhancement of the uptake. These results indicate that Ca2+-dependent enhancement of [3H]5-HT uptake is mediated by activation of calmodulin-dependent protein kinases, suggesting a possibility of calmodulin-dependent regulation of in vivo 5-HT uptake.  相似文献   

17.
This study investigates the alterations in the spatiotemporal distribution pattern of the free intracellular Ca2+ concentration ([Ca2+]i) during axotomy and throughout the recovery process of cultured Aplysia neurons, and correlates these alterations with changes in the neurons input resistance and trans-membrane potential. For the experiments, the axons were transected while imaging the changes in [Ca2+]i with fura-2, and monitoring the neurons’resting potential and input resistance (Ri) with an intracellular microelectrode inserted into the cell body. The alterations in the spatiotemporal distribution pattern of [Ca2+]i were essentially the same in the proximal and the distal segments, and occurred in two distinct steps: concomitantly with the rupturing of the axolemma, as evidenced by membrane depolarization and a decrease in the input resistance, [Ca2+]i increased from resting levels of 0.05 – 0.1 μM to 1 – 1.5 μM along the entire axon. This is followed by a slower process in which a [Ca2+]i front propagates at a rate of 11 – 16 μm/s from the point of transection towards the intact ends, elevating [Ca2+]i to 3 – 18 μM. Following the resealing of the cut end 0.5 – 2 min post-axotomy, [Ca2+]i recovers in a typical pattern of a retreating front, travelling from the intact ends towards the cut regions. The [Ca2+]i recovers to the control level 7 – 10 min post-axotomy. In Ca2+-free artificial sea water (2.5 mM EGTA) axotomy does not lead to increased [Ca2+]i and a membrane seal is not formed over the cut end. Upon reperfusion with normal artificial sea water, [Ca2+]i is elevated at the tip of the cut axon and a membrane seal is formed. This experiment, together with the observations that injections of Ca2+, Mg2+ and Na+ into intact axons do not induce the release of Ca2+ from intracellular stores, indicates that Ca2+ influx through voltage gated Ca2+ channels and through the cut end are the primary sources of [Ca2+]i following axotomy. However, examination of the spatiotemporal distribution pattern of [Ca2+]i following axotomy and during the recovery process indicates that diffusion is not the dominating process in shaping the [Ca2+]i gradients. Other Ca2+ regulatory mechanisms seem to be very effective in limiting these gradients, thus enabling the neuron to survive the injury.  相似文献   

18.
High-affinity binding of [3H]ryanodine has been characterized in rat brain microsomal fractions. Membrane fractions from 4 brain regions (cerebral cortex, cerebellum, hippocampus and brainstem) have been isolated using sucrose density gradient purification. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed the presence of a high-molecular weight protein (Mr 320kDa), similar to that of ryanodine receptor from muscle sarcoplasmic reticulum (SR). In the presence of high salt (1 M KCl), [3H]ryanodine binds to low density (0.8 M sucrose) cortical microsomal fraction with high affinity (Kd 1.5nM), and with the highest capacity (Bmax 330fmol/mg protein). Kinetic analysis of the binding suggests multiple available binding sites for ryanodine. Binding of ryanodine is Ca2+ dependent (ED50 1 μM) and inhibited by Mg2+ and Ruthenium red. Adenine nucleotides have a biphasic effect on the binding of [3H]ryanodine. At low Ca2+ concentration caffeine and daunorubicin enhance the binding of [3H]ryanodine. The inositol 1,4,5-trisphosphate (IP3) binding inhibitor, heparin, has no effect on ryanodine binding, and ryanodine and caffeine do not influence the binding of [3H]IP3, which is enriched in the cerebellar fractions. These data demonstrate significant quantitative differences in the pharmacology of brain and muscle receptors and raise the question as to the physiological role of ryanodine binding proteins in the central nervous system and whether it is coupled to an endoplasmatic reticulum (ER) Ca2+ release channel.  相似文献   

19.
In this work we examined the effects of Pb2+ and Cd2+ on (a) [3H]ACh release and voltage-sensitive Ca2+ channels in rat brain synaptosomes, and (b)45Ca2+ binding to isolated brain mitochondria and microsomes, and synaptic vesicles isolated from Torpedo electric organs. Pb2+ (Ki ≈ 1.1 μM) and Cd2+ (Ki ≈ 2.2) competitively block the K+-evoked influx of45Ca2+ through the ‘fast’ calcium channels in synaptosomes. The Kis obtained with synaptosomes are in good agreement with the Ki values obtained from electrophysiological experiments at the frog neuromuscular junction (KPb:0.99 μM, KCd: 1.7 μM)7. The Ki for the inhibition of ACh release from synaptosomes by Cd2+ is 4.5 μM. Pb2+ is a less effective inhibitor of transmitter release (Ki ≈ 16 μM) because it secondarily augments spontaneous transmitter efflux. Cd2+ has no effect on spontaneous release at concentrations ≤ 100 μM. The enhancing effect of Pb2+ on spontaneous release is (a) not abolished by omission of Ca2+ from the bathing medium, (b) is delayed by 1–2 min after the beginning of Pb2+ exposure, (c) is reversed upon the removal of Pb2+. In the presence of physiological concentrations of ATP (1 mM), Mg2+ (1 mM) and Pi (2 mM), 1–10 μM Pb2+ inhibits calcium uptake but Pb2+ > 10μM causes a several-fold stimulation of passive binding of calcium to the organelles. This effect is associated with Pb2+-induced enhancement of Pi uptake. Cd2+ inhibits Ca2+ binding at all concentrations tested (1–50 μM) and reduces the Pb2+-induced Ca2+-binding to organelles. Neither Pb2+ nor Cd2+ have any discernible effects on spontaneous loss of calcium from mitochondria or microsomes preloaded with45Ca. In summary, these data are consistent with the notion that Pb2+ and Cd2+ are potent blockers of presynaptic voltage-sensitive Ca2+ channels and the evoked release of transmitter which is contingent on Ca2+ influx through these channels. Our results are not consistent with the hypothesis that Pb2+ augments spontaneous release by interfering with intraterminal Ca2+-buffering by mitochondria, endoplasmic reticulum, or synaptic vesicles.  相似文献   

20.
Bradykinin (BK) induced [3H]norepinephrine ([3H]NE) release and phosphatidylinositol turnover were investigated in PC12 cells. Induction of [3H]NE release by BK is mediated by activation of BK-B2-receptors, as determined using type specific BK receptor antagonists. BK induces [3H]NE release with a half maximal effective concentration of30 ± 0.5nM, and reaches maximal net fractional release of9.0 ± 1% with 200 nM BK. The BK-induced release is Ca2+ dependent, reaching maximal release at 1.0 mM Ca2+, is pertussis toxin insensitive (1 μg/ml), slightly increased by a dibutyryl cAMP (1 mM) and not affected by inhibitors of the cyclooxygenase or lipoxygenase pathways. Voltage-sensitive Ca2+ channel blockers, verapamil (10 μM), nifedipine (10 μM), and ω-conotoxin (CgTx 10 nM), do not block the BK-induced release. However, a considerable inhibitory effect was obtained by divalent cations Co2+ (ED50 = 0.2mM) and Ni2+ (ED502+ = 1mM). These results indicate the involvement of a Ca2+ channel in the BK-mediated release which is different from the L- or N-type voltage sensitive calcium channels. Whereas [Ca2+]ex is essential for the BK-induction of catecholamine release, the rise in level of InsP's induced by BK in the presence or in the absence of [Ca2+]ex is similar up to concentration of 1 μM. This indicates that the rise in InsP's induced by BK is not sufficient to cause neurotransmitter release. Moreover, subsequent addition of Ca2+ to BK-stimulated cells in Ca2+-free medium yields no release. Hence, no activity triggered by BK alone could be further stimulated by Ca2+ for induction of release. Protein kinase C inhibitors polymyxin B, K252a, sangivamicin, and Ara-A, do not affect release induced by BK, indicating that also the diacylglycerol pathway activated by phospholipase C is not involved in the BK-mediated release. Since (a) the receptor-mediated release is absolutely calcium-dependent, with no release detected when Ca2+ is omitted from the extracellular medium, and (b) the receptor-triggered release of Ca2+ from intracellular stores is independent of [Ca2+]ex7, it appears that calcium influx, and not Ca2+ released from intracellular stores, is the signal for stimulating release. Therefore, it is suggested that the primary signal stimulating release is Ca2+ influx via a specific calcium channel, and that the BK receptor may be coupled to this channel, which could be classified as a receptor-operated channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号