首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation was conducted to detect Fcγ receptors (FcγR) on cytokine-stimulated human endothelial cells (EC) by measuring anti-FcγR MoAb binding with an ELISA. TNF-α and IFN-γ significantly increased the expression of FcγR type II (FcγRII) and type III (FcγRIII) on aortic EC. Simultaneous treatment with both cytokines had a synergistic effect and pretreatment of EC with IFN-γ augmented the effect of TNF-α. The greatest effect was the increase (up to four-to-six-fold) in expression of FcγRII found by the simultaneous treatment of aortic EC with both cytokines. The receptors were expressed on the cell surface and showed receptor capping after incubation at 37°C. This study showed that the inflammatory cytokines TNF-α and IFN-γ enhanced low-affinity FcγR expression on human EC in vitro. The expression of FcγR may contribute to the specific localization of circulating immune complexes on blood vessels in areas of vasculitis.  相似文献   

2.
Background: Macrophages and T lymphocytes have been identified in the regressing corpus luteum, and they are thought to participate in structural luteolysis (destruction and removal of luteal cells). Since these cells produce cytokines such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), we investigated the effects of these two cytokines on death of luteal cells in vitro. Methods: Mouse luteal cells were cultured in serum-free medium with TNF-α at 0,500,1,000,3,000, or 5,000 U/ml in the presence or absence of IFN-γ at 1,000 U/ml for 3 or 6 days. Then, for estimation of the actions of these cytokines on induction of luteal cell death, we determined the number of viable cells, the percentage of fragmented DNA in total DNA extracted from cultured cells, and the percentage of cells with fragmented DNA in their nuclei by the trypan blue exclusion test, the sensitive micromethod for DNA assay, and the in situ DNA 3′ end labeling method, respectively. DNA fragmentation was also analysed by agarose gel electrophoresis, and cultured cells were examined by electron microscopy. Results:On day 3 of culture, IFN-γ alone at 1,000 U/ml or TNF-α alone at 500–5,000 U/ml did not decrease the number of viable cells, but a combination of IFN-γ (1,000 U/ml) and TNF-α (5,000 U/ml) did. On day 6, IFN-γ alone at 1,000 U/ml or TNF-α alone at 500, 1,000 and 3,000 U/ml did not decrease the number of viable cells, whereas TNF-α alone at 5,000 U/ml did, and combinations of IFN-γ and TNF-α at 1,000, 3,000, and 5,000 U/ml decreased the number of viable cells in proportion to the concentration of TNF-α. On days 3–6 of culture, combinations of IFN-γ and TNF-α that decreased the number of viable cells also increased the percentages of fragmented DNA in total DNA of cultured luteal cells and the percentages of luteal cells with fragmented DNA in their nuclei. Agarose gel electrophoresis of fragmented DNA showed a ladder-like pattern, and electron microscopic examination showed luteal cells with the characteristics of apoptosis. Conclusions: The presence of IFN-γ modulates the ability of TNF-α to induce a reduction in the number of viable cells, although TNF-α alone at high concentrations can induce a reduction in the number of viable cells. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Interferon-γ (IFN-γ) is a potent immune regulatory cytokine and is, in addition, involved in the induction of antiparasitic effector mechanisms in different cell types. The first step of IFN-γ action is its binding to a specific receptor. Furthermore, it has been shown that IFN-γ binds with a great affinity to the heparin-like structure of heparan sulfate, which is localized in basement membranes and on cell surfaces. In this study, we analyze the effect of heparin and heparan sulfate on three different IFN-γ-mediated activities inducible in human glioblastoma cells (87HG31 and 86HG39). We find firstly that heparin is able to inhibit IFN-γ-mediated induction of major histocompatibility complex (MHC) class II antigen expression on 87HG31 cells, an effect which can be abrogated by protamine. Secondly, we show that heparin inhibits the IFN-γ-induced toxoplasmostasis within 86HG39 cells in a dose-dependent fashion, and thirdly that heparin inhibits the IFN-γ-mediated induction of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase. In contrast to IFN-γ-induced effects, the activity of other cytokines, such as interleukin (IL)-1, IL-2 and IL-6, is not influenced by heparin. The possible mechanism of heparin-induced inhibition of IFN-γ is discussed.  相似文献   

4.
5.
Interleukin-10 (IL-10) has been reported to inhibit nitric oxide (NO) synthesis and microbicidal activity of interferon-γ (IFN-γ)-stimulated macrophages (MΦ) by preventing the secretion of tumor necrosis factor-α (TNF-α) which serves as an autocrine activating signal. We have examined the effects of recombinant IL-10 on the capacity of IFN-γ together with exogenous TNF-α to induce NO synthesis by bone marrow-derived MΦ. Under these conditions and in contrast to its reported deactivating potential, IL-10 strongly enhanced NO synthesis measured as nitrite (NO) release (half maximal stimulation at approximately 10 U/ml). IL-10 further increased NO production by MΦ stimulated in the presence of optimal concentrations of prostaglandin E2, a positive modulator of MΦ activation by IFN-γ/TNF-α. Increased steady state levels of NO synthase mRNA were observed in 4-h IFN-γ/TNF-α cultures and enhanced NO release was evident 24 h but not 48 h after stimulation. These results suggest that the effects of IL-10 on MΦ function are more complex than previously recognized.  相似文献   

6.
The effect of IFN-γ to stimulate formation of nitric oxide (NO) by normal murine peritoneal macrophages (Mϕ) has been found to be completely dependent on the ability of IFN-γ to activate secretion of TNF-α. The NO-stimulatory effect of IFN-γ was abolished by anti-TNF-α antibodies, the inhibitory intervention of which could be fully reversed by exogenously supplied TNF-α. Accordingly, the failure of Mϕ from C3H/HeJ mice to secrete TNF-α upon stimulation with IFN-γ was associated with their complete incapability to generate NO, unless they were simultaneously treated with IFN-γ + TNF-α. Collectively, the data document that similar to the NO up-regulatory action of other cytokines, the effect of IFN-γ is not independent, but depends on a synergistic cooperation with the self-produced TNF-α. The findings thus indicate that a widespread opinion claiming that IFN-γ per se is able to stimulate biosynthesis of NO needs revision.  相似文献   

7.
8.
In experimental allergic encephalomyelitis (EAE), T cells infiltrate the central nervous system (CNS) and induce inflammation. These CD4+ T cells secrete interferon (IFN)-γ, levels of which correlate with disease severity, and which is proposed to play a key role in disease induction. Many strains of mice are resistant to EAE. We have studied the effect of deletion of IFN-γ on the ability to induce EAE in resistant BALB/c-backcrossed mice. As expected, only 0–6 % of BALB/c or BALB/c-backcrossed mice developed EAE when immunized with myelin basic protein in adjuvant. Strikingly, abrogation of IFN-γ expression by targeted disruption of the IFN-γ gene (GKO mice) converted them to a susceptible phenotype. As many as 71 % of these IFN-γ-deficient mice developed EAE, a frequency comparable to that seen with the susceptible SJL/J strain. In addition, EAE was of unusually high severity in mice lacking IFN-γ. Immunological characteristics of disease in IFN-γ-deficient mice were comparable to those seen in susceptible (SJL/J) mice with EAE, including perivascular infiltration in the CNS and order-of-magnitude increases for both CD3 γ chain and TNF-α mRNA levels in the spinal cord. We thus demonstrate that lack of IFN-γ converts an otherwise EAE-resistant mouse strain to become susceptible to disease. Therefore, in BALB/c mice, IFN-γ confers resistance to EAE.  相似文献   

9.
10.
We have recently shown that human renal cell carcinoma (RCC) tumour lines express high-affinity IL-4 receptors. Binding of IL-4 to RCC cells induced a growth inhibition in the range of 20 68%. To enhance the growth inhibitory effect of IL-4. we have tested the effects of two additional cytokines capable of directly affecting tumour cell growth. IFN-γ caused a significant inhibition of RCC tumour cell growth (up to 70%) in a dose-dependent manner, whereas the effect of TNF-α was more limited (0 20% inhibition). The addition of IL-4 to IFN-γ on RCC cells sensitive to lL-4 induced a greater inhibition of cell growth than that seen with each cytokine alone. IL-4 and IFN-γ rendered RCC cells more responsive to the inhibitory effect mediated by TNF-α, The combination of TNF-Q with IL-4 and IFN-γ induced an optimal growth inhibition (up lo 90 98%) of RCC cells. In addition to a direct anti-proliferative effect, we have demonstrated that these cytokines can also enhance the expression of MHC antigens on the surface of RCC tumour cell lines which may render the cells more immunogenic, All RCC lines tested expressed class 1 antigens, but not class II antigens. IFN-γ induced class II expression and up-regulated the expression of class I antigens on RCC cells. Class II antigen expression was detectable following 48 h incubation, and greater after 72 h with IFN-7. lL-4 minimally affected class I expression, whereas TNF-(v up-regulated class I antigen expression. IL-4 or TNF-α did not induce class II expression. The combination of The three cytokines slightly augmented the up-regulation of class I and class II antigens observed with IFN-γ alone. These observations confirm the direct interaction of IL-4, IFN-γ and TNF-a with RCC tumour cells. both at the level of growth regulation and MHC antigen expression, and suggest a therapeutic potential of the combination of the three cytokines for renal ceil carcinoma.  相似文献   

11.
12.
Abstract

We investigated the effects of nicotinamide and 3-aminobenzamide, known as inhibitors of poly(ADP-ribose) synthetase, on the expression of interferon-γ (IFN-γ) -induced class I and II major histocompatibility complex (MHC) molecules on the surface of cultured human umbilical vein endothelial cells (HUVEC) and human dermal fibroblasts (HDF). Indirect immunofluorescent staining on HUVEC and HDF was performed using monoclonal antibodies against class I MHC (HLA-A, B, C) and class II MHC (HLA-DR, HLA-DP and HLA-DQ) molecules, and then the expression of these molecules was determined using a fluorescence flow cytometry. Human recombinant IFN-γ (100 U/ml) increased the expression of HLA-A, B, C molecules, and induced the expression of HLA-DR molecules and, to a lesser extent, of HLA-DP on both HUVEC and HDF. HLA-DQ molecules were not induced by IFN-γ on either cell type. Nicotinamide and 3-aminobenzamide in the concentration great-er than or equal to 1 mM reduced the IFN-γ -induced expression of HLA-DR and HLA-DP on both HUVEC and HDF, whereas neither agent in the concentration of up to 10 mM affected the IFN-γ -induced increase in HLA-A, B, C molecule expression. These data suggest that nicotinamide and 3-aminobenzamide suppress antigen presenting function of class II MHC positive endothelial cells and fibroblasts at the site of tissue inflammation.  相似文献   

13.
Toxoplasma gondii, an obligate intracellular parasite, is able to replicate in human brain cells. We recently showed that interferon (IFN)-γ-activated cells from glioblastoma line 86HG39 were able to restrict Toxoplasma growth. The effector mechanism responsible for this toxoplasmostatic effect was shown by us to be the IFN-γ-mediated activation of indolamine 2,3-dioxygenase (IDO), resulting in the degradation of the essential amino acid tryptophan. In contrast, glioblastoma 87HG31 was unable to restrict Toxoplasma growth after IFN-γ activation, and IFN-γ-mediated IDO activation was weak. We observed that tumor necrosis factor (TNF)-α alone is unable to activate IDO or to induce toxoplasmostasis in any glioblastoma cell line tested. Interestingly, we found that TNF-α and IFN-γ were synergistic in the activation of IDO in glioblastoma cells 87HG31, 86HG39 and U373MG and in native astrocytes. This was shown by the measurement of enzyme activity as well as by the detection of IDO mRNA in TNF-α + IFN-γ activated cells. This IDO activity results in a strong toxoplasmostatic effect mediated by glioblastoma cells activated simultaneously by both cytokines. Antibodies directed against TNF-α or IFN-γ were able to inhibit IDO activity as well as the induction of toxoplasmostasis in glioblastoma cells stimulated with both cytokines. Furthermore, it was found that the addition of L -tryptophan to the culture medium completely blocks the antiparasitic effect. We therefore conclude that both TNF-α and IFN-γ may be involved in the defense against cerebral toxoplasmosis by inducing IDO activity as an antiparasitic effector mechanism in brain cells.  相似文献   

14.
Skin biopsies from healthy human skin and non-lesional skin from patients with psoriasis were cultured for 24h and stimulated with interleukin-1β(IL-1β) and interferon-γ (IFN-γ) in a skin organ culture model and the induction of the psoriasiform regenerative epidermal phenotype was analysed using immunostaining. In the presence of IL-1β, the psoriasiform regenerative epidermal phenotype was clearly induced. This involved strong up-regulation of the expression of keratin 16, keratin 17, and keratinocyte transglutaminase (TGk) in the suprabasal layers, strong up-regulation and a shift of the expression of keratin 5 and integrin β1from the basal to suprabasal keratinocytes, and induction of the expression of ICAM-1 and HLA-DR on basal keratinocytes. The effects of IL-1β in the organ cultures of normal skin could be completely neutralized by anti-IL-1 polyclonal antibodies. The effects of IFN-γ in healthy and non-lesional psoriatic skin were qualitatively similar to those of IL-1β. The IFN-γ-induced epidermal expression of keratin 17 and TGk could be completely blocked by culturing the biopsies in the presence of IL-1ra or anti-IL-1 antibodies, while the induction of HLA-DR and ICAM-1 was not inhibited. The induction of the psoriasiform regenerative epidermal phenotype by IFN-γ is partially mediated via endogenous epidermal IL-1. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Interferon-γ inducing factor (IGIF) is a recently identified cytokine which stimulates the production of interferon-γ (IFN-γ) by T cells and enhances natural killer (NK) cell cytolytic activity. Protein fold recognition, structure prediction and comparative modeling have revealed that IGIF is a member of the interleukin (IL)-1 cytokine family and has prompted the designation IL-1γ. Here we report functional similarities between members of the IL-1 family by comparing the effects of IL-1α, IL-1β and IGIF on NK cell production of IFN-γ. All three IL-1 types enhanced NK cell production of IFN-γ when induced by IL-2 or IL-12, although at high concentrations (>10 ng/ml), IGIF was five- to tenfold more potent than IL-1α or IL-1β. This effect correlated with enhanced levels of mRNA for IFN-γ when NK cells were stimulated with IGIF plus IL-12. In contrast to IL-12 and IL-2, the ability of IGIF to stimulate NK cell production of IFN-γ was not increased by IL-1α or IL-1β. The ability of IGIF to enhance IFN-γ production was independent of the type I and type II IL-1 receptors or the IL-1R accessory protein. Together, these results identify IGIF as a potent stimulator of NK cell production of IFN-γ and demonstrate that the effect of IGIF on NK cell production of IFN-γ is similar to that of IL-1α and IL-1β but distinct from that of IL-12.  相似文献   

16.
An inflammatory bowel disease (IBD) comparable to human ulcerative colitis is induced upon transfer of T cell-depleted wild-type (F1) bone marrow into syngeneic T cell-deficient (tgε26) mice (F1 → tgε26). Previously we have shown that activated CD4+ T cells predominate in transplanted tgε26 mice, and adoptive transfer experiments verified the potential of these cells to cause disease in immunodeficient recipient mice. Using flow cytometry for the detection of intracellular cytokine expression, we demonstrate in the present study that large numbers of CD4+ and CD8+ TCRαβ+ T cells from the intraepithelial region and lamina propria of the colon of diseased, but not from disease-free mice, produced interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Large numbers of T cells from peripheral lymphoid tissues of these animals also expressed IFN-α and TNF-α, but few expressed interleukin-4, demonstrating g strong bias towards Th1-type T cell responses in these animals. TCRγδ+ T cells, typically minor constituents of the inflammatory infiltrate of the colon in F1 → tgε26 mice, also expressed IFN-γ at a high frequency upon CD3 stimulation. In light of these findings we examined the potential involvement of TCRγδ+ T cells by testing their ability to induce colitis in tgε26 mice. We report here that tgε26 mice transplanted with T cell-depleted bone marrow from TCRαnull and TCRβnull animals developed IBD. Furthermore, disease in these mice correlated with the development of peripheral and colonic TCRαδ+ T cells capable of IFN-γ production. These results suggest that IFN-γ may be a common mediator of IBD utilized by pathogenic T cells of distinct phenotype.  相似文献   

17.
18.
19.
20.
Several cytokines, in particular tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), have been shown to be responsible for pathological reactions which may lead to shock and death observed in infection with Gram-negative bacteria and in response to endotoxins (lipopolysaccharides, LPS). Priming of mice with the avirulent Bacille Calmette Guérin (BCG) vaccine strain of Mycobacterium bovis increases the sensitivity of mice to the lethal effect of LPS and results in an efficient priming for cytokine production. In response to low doses (1 γg/mouse) of LPS, BCG-primed mice produce interleukin-12 (IL-12) which controls IFN-γ production, as demonstrated by the ability of neutralizing anti-IL-12 antibodies to suppress IFN-γ production. However, the concentration of the biologically active IL-12 p70 heterodimer is similar in the serum of both BCG-primed or unprimed mice, reaching levels of 1–3 ng/ml at 3–6 h after LPS injection, whereas IFN-γ production was observed only in BCG-primed mice. The priming effect of BCG on IFN-γ production appears to be mostly due to its ability to increase TNF-α production, which acts as cofactor with LPS-induced IL-12 in inducing IFN-γ production, as shown by the ability of injection of TNF-α and LPS (1 γg/mouse), but not LPS alone, to induce IFN-γ production. However, in addition to TNF-α, other LPS-induced cofactor(s) are required in cooperation with IL-12 to induce optimal IFN-γ production, because co-injection of TNF-α and IL-12, sufficient to induce serum concentrations of both cytokines higher and more persistent than those obtained by injection of LPS, was not sufficient to induce IFN-γ production in vivo. Neutralizing anti-IL-12 antibodies, in addition to inhibiting the in vivo LPS-induced IFN-γ production, also completely protect BCG-primed mice injected with up to 10 μg of LPS from shock-induced death. Thus, IL-12 is required for IFN-γ production and lethality in an endotoxic shock model in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号