首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The distribution of nerve growth factor (NGF), the prototypic neurotrophin, within the basal forebrain and hippocampal formation of young adult monkeys and aged humans was characterized with and affinity purified polyclonal β-NGF antibody raised against mouse β-NGF. In the basal forebrain of both primates, a granular NGF-like immunoreactive (ir) reaction product was observed within neurons of the medial septum, nucleus of the diagonal band, and nucleus basalis of Meynert. NGF-like immunoreactivity exclusively colocalized within p75 NGF receptor (NGFR) containing basal forebrain neurons. The intensity of NGF immunolabeling varied between cell bodies. Many NGF-ir perikarya were highly immunoreactive. In other basal forebrain neurons, NGF-like immunoreactivity was either undetectable or minimally expressed. In the hippocampus of both species, NGF-like immunoreactivity was mainly localized within the hilus of the dentate gyrus and within CA3 and CA2 hippocampal subfields. A marked diminution in NGF-like staining was seen in CA1. Within the hippocampal formation, NGF-like immunoreactivity was heaviest within the neuropil of stratum radiatum, intermediate in stratum oriens, and lightest in stratum pyramidal. NGF-like immunoreactivity was not found within the granule or pyramidal cells of the dentate gyrus and hippocampal formation, respectively. These findings demonstratre the presence of an NGF-like antigen in association with monkey and human magnocellular basal forebrain neurons and within their hippocampal target sites. This lends support to the hypothesis that NGF is internalized from sources located within target regions of the primate cholinergic basal forebrain neurons and is retrogradely transported to these cell bodies where the NGF trophic effect likely occurs.  相似文献   

2.
Abstract

Nerve growth factor (NGF) synthesis in cultured mouse L-M fibroblast and astroglial cells can be increased after the treatment with L-threo-3,4-dihydroxyphenylserine (DOPS). Since the increase of NGF is not blocked by the treatment with decarboxylase inhibitor, DOPS may have direct effect to increase the NGF content. NGF and its receptor (NGFR) are suggested to play an important role in the neuronal survival and regeneration under pathologic conditions. In this study, we studied a possible protective effect of DOPS against the hippocampal CA1 cell death after transient forebrain ischaemia in gerbils in relation to the change of NGFR immunoreactivity. We found that treatment with DOPS (300 mg kg–1) in combination with a decarboxylase inhibitor (benserazide, 10 mg kg–1) protected ischaemic hippocampal CA1 cell against delayed neuronal death (neuronal density = 125 ± 24 mm–1) as compared to the treatment with vehicle (49 ± 11 mm–1) (p < 0.01). The immunoreactivity for NGFR was scarcely present in the sham-control CA1 area but was induced from 1 h and markedly expressed at 7 days after recirculation in the vehicle group. However; it was slightly and transiently induced from 8 h to 2 days in the DOPS plus benserazide treated group. These data suggest that the protective role of DOPS on the ischaemic hippocampal CA1 cells may act through the NGF and its receptor system. [Neurol Res 1994; 16: 201–204]  相似文献   

3.
《中国神经再生研究》2016,(8):1254-1259
Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabo-lism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region in-creased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased signiifcantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunolfuorescence study using GLUT3 and gli-al-ifbrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfu-sion. In a double immunolfuorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgran-ular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.  相似文献   

4.
Hwang IK  Do SG  Yoo KY  Kim DS  Cho JH  Kwon YG  Lee JY  Oh YS  Kang TC  Won MH 《Brain research》2004,1016(1):119-128
In this study, we observed the chronological alterations of neurofilament 150 (NF-150) immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. NF-150 immunoreactivity in the sham-operated group was mainly detected in mossy fibers and in the hilar region of the dentate gyrus. NF-150 immunoreactivity and protein contents of NF-150 and RT 97 (polyphosphorylation epitopes of neurofilament) were significantly decreased at 15 min after ischemic insult. Between 30 min and 12 h after ischemic insult, NF-150 immunoreactivity and protein content were significantly increased as compared with the sham-operated group. Thereafter, NF-150 immunoreactivity and protein content started to decrease. At 12 h after ischemic insult, unlike dentate gyrus, NF-150 immunoreactivity increased in pyramidal cells of the CA1 region. Thereafter, NF-150 immunoreactivity in the CA1 region started to decrease, and 4 days after ischemic insult, NF-150 immunoreactivity nearly was similar to that of the sham-operated group. These biphasic patterns of NF-150 immunoreactivity in the hippocampus and dentate gyrus are reverse correlated with that of the intracellular calcium influx. For calcium detection in the CA1 region, we also conducted alizarin red staining. Alizarin red positive neurons were detected in some neurons at 15-30 min after ischemic insult. At 12 h after ischemia, alizarin red positive neurons were decreased. Thereafter, alizarin red positive neurons started to decrease, but alizarin positive neurons were significantly increased in dying neurons 4 days after ischemia. These results suggest that ischemia-related changes of NF-150 expression may be caused by the calcium following transient forebrain ischemia.  相似文献   

5.
Ca2+-ATPase is one of the most powerful modulators of intracellular calcium levels. In this study, we focused on chronological changes in the immunoreactivity and protein levels of Ca2+-ATPase in the hippocampus after 5 min of transient forebrain ischemia. Ca2+-ATPase immunoreactivity was significantly altered in the hippocampal CA1 region and in the dentate gyrus, but not in the CA2/3 region after ischemic insult. In the sham-operated group, Ca2+-ATPase immunoreactivity was detected in the hippocampus. Ca2+-ATPase immunoreactivity in the CA1 region and in the dentate gyrus, and its protein levels peaked 3 h after ischemic insult. At this time, CA1 pyramidal cells and dentate polymorphic cells showed strong Ca2+-ATPase immunoreactivity. Thereafter, Ca2+-ATPase immunoreactivity reduced in the CA1 region and in the dentate gyrus. One day after ischemic insult, Ca2+-ATPase immunoreactivity was observed in some CA1 non-pyramidal cells, and 4 days after ischemic insult, Ca2+-ATPase immunoreactivity was detected in astrocytes throughout the CA1 region, but Ca2+-ATPase immunoreactivity in the dentate gyrus had nearly disappeared. Our results suggest that Ca2+-ATPase changes may be associated with a response to ischemic damage in hippocampal CA1 pyramidal cells, and that increased Ca2+-ATPase immunoreactivity in the reactive astrocytes may be associated with the maintenance of intracellular calcium levels.  相似文献   

6.
Cerebral ischemia produces perturbation of signal transduction systems in neurons. In order to estimate the contribution of guanine nucleotide-binding protein (G-protein) to hippocampal neuronal death, the effect of pertussis toxin (PTX) on the CA1 pyramidal cell damage after transient forebrain ischemia in rats was examined. PTX was administered 3 days before 20 min of transient forebrain ischemia. PTX injection into the CA1 failed subfield to alter the number of ischemic-damaged CA1 pyramidal cells. In contrast, ventricular PTX injection exacerbated CA1 pyramidal cell damage. We also studied postischemic alteration of GTP binding sites in the hippocampal formation using quantitative in vitro autoradiography. Autoradiographic imaging demonstrated predominant distribution of GTP binding sites in synaptic areas in the hippocampus. No significant change of GTP binding activity was observed in the hippocampus until 2 days after recirculation. Seven days after ischemia, when the CA1 pyramidal cells were depleted, the GTP binding sites of the strata oriens and radiatum in the CA1 subfield had reduced by 32% and 31%, respectively. In contrast, GTP binding in the CA3 subfield and the dentate gyrus remained unaltered throughout the reperfusion period. These results suggest that the amount of G-proteins as estimated by GTP binding remained unaltered in the hippocampus during the early recirculation period, when the CA1 pyramidal cells were morphologically intact, and that signal transduction pathways mediated by Gi and Go do not play a major role in delayed death of the CA1 pyramidal cells.  相似文献   

7.
The role of nerve growth factor (NGF) as a target derived neurotrophic agent for specific cell populations in the peripheral nervous system has been well documented and much evidence suggests that NGF may serve a similar neurotrophic role in the CNS supporting the cholinergic neurons of the basal forebrain. Previous attempts to localize NGF by immunocytochemical methods, however, have not yielded evidence confirming the regional distribution expected based upon reported levels of extractable NGF. In the present study, affinity purified polyclonal antibodies to beta-NGF and a modified immunohistochemical protocol were used to demonstrate specific NGF-like immunoreactivity in the adult rat hippocampal formation and basal forebrain. In the hippocampal formation, NGF-like immunoreactivity was localized primarily within the hilus of the dentate gyrus and within stratum lucidum of the CA3 and CA2 hippocampal subfields. Staining appeared to be associated with cell processes and was similar to the reported distribution of mossy fibers suggesting that granule cells may either serve as a primary source of hippocampal NGF or that mossy fibers selectively accumulate NGF produced by other cell populations. In the basal forebrain, NGF-like immunoreactivity was localized within neuronal cell bodies of the medial septum, diagonal band, and nucleus basalis of Meynert and was further demonstrated to colocalize exclusively with LNGF-R positive neurons. These findings demonstrate the presence of an NGF-like antigen in association with cholinergic neurons of the basal forebrain and strongly support the hypothesis that NGF may serve as an endogenous trophic factor for this adult neuronal population.  相似文献   

8.
We investigated the expression, activation, and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38s) and extracellular signal-regulated kinases (ERKs) using Western blotting and immunohistochemistry in gerbil hippocampus after transient forebrain ischemia to clarify the role of these kinases in delayed neuronal death (DND) in the CA1 subfield. Immunoblot analysis demonstrated that activities of JNK, p38, and ERK in whole hippocampus were increased after 5 min of global ischemia. We used an immunohistochemical study to elucidate the temporal and spatial expression of these kinases after transient global ischemia. The immunohistochemical study showed that active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and then gradually reduced and disappeared in the hippocampal CA1 region. On the other hand, in CA3 neurons, active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and peaked at 6 hr of reperfusion and then gradually reduced but was continuously detected 72 hr after ischemia. Active ERK immunoreactivity was observed transiently in CA3 fibers and dentate gyrus. Pretreatment with SB203580, a p38 inhibitor, but not with PD98059, an ERK kinase 1/2 inhibitor, reduced ischemic cell death in the CA1 region after transient global ischemia by inhibiting the activity of p38. These findings indicate that the p38 pathway may play an important role in DND during brain ischemia in gerbil. Components of the pathway are important target molecules for clarifying the mechanism of neuronal death.  相似文献   

9.
Lee TH  Kato H  Chen ST  Kogure K  Itoyama Y 《Neuroreport》2002,13(17):2271-2275
We studied the spatial and temporal expression of BDNF immunoreactivity and mRNA in the hippocampal formation after transient forebrain ischemia in gerbils. Our study demonstrated that in the vulnerable CA1 neurons, there was a prolonged expression disparity between BDNF immunoreactivity and mRNA and the BDNF level was reduced, in contrast to the ischemia-resistant dentate gyrus neurons that showed transient expression disparity and maintained the BDNF level. This expression disparity of the neurotrophic factor may be related to delayed neuronal death. Double immunostaining showed that reactive astroglia and microglia could express BDNF, suggesting a possible involvement of these cells in the mechanism of neuronal survival after ischemia.  相似文献   

10.
We used monoclonal antibodies to examine the immunohistochemical distribution of the three major Ca(2+)-dependent protein kinase C (PKC) isozymes (I, II, and III) in ischemic gerbil hippocampus. Groups of four animals were sacrificed at 15 min, 4 h, 1 day, 2 days, 3 days, and 7 days after a 10-min episode of global forebrain ischemia. In control animals, PKC-I immunoreactivity was greater in CA1 neurons than in CA3-4. Terminal-like staining was not evident. PKC-II immunoreactivity was observed in all CA fields and in the outer molecular layer of the dentate gyrus. PKC-III staining was present in the CA fields, the inner molecular layer of the dentate gyrus and the subiculum. Dentate granule cells and mossy fibers were not stained with any of the PKC antibodies. Fifteen minutes and 4 h after ischemia, PCK-I, -II and -III immunoreactivity were all increased in CA1 neurons and PKC-III immunoreactivity alone was visualized in granule cells and mossy fibers. Staining patterns returned to baseline one day after ischemia. PKC-II and -III terminal-like staining were preserved in the stratum lacunosum-moleculare for 3 days and 2 days after ischemia respectively and then disappeared. The altered patterns of PKC staining in the hippocampus may reflect activation and/or down-regulation of PKC isozymes. Ca(2+)-dependent PKC isozymes may, therefore, potentially play a role in the pathogenesis of delayed ischemic neuronal death.  相似文献   

11.
We investigated the effect of trimethyltin (TMT), a well-known neurotoxicant, on murine hippocampal neurons and glial cells. Three days following intraperitoneal (i.p.) injection of TMT into 1-month-old Balb/c mice at a dose of 2.5 mg/kg body weight we detected damage of the dentate gyrus granular neurons. The dying cells displayed chromatin condensation and internucleosomal DNA fragmentation, which are the most characteristic features of apoptosis. To study, if prolyl oligopeptidase is engaged in neuronal apoptosis following TMT administration, we pretreated mice with the specific inhibitor--Fmoc-Pro-ProCN in doses of 5 and 10 mg/kg body weight (i.p. injection). Three days following injection we did not observe any attenuation of neurotoxic damage, regardless of inhibitor dose, indicating the lack of prolyl oligopeptidase contribution to neuronal injury caused by TMT. The neurodegeneration was associated with reactive astrogliosis in whole hippocampus, but particularly in injured dentate gyrus. The reactive astrocytes showed an increased nerve growth factor (NGF) expression in ventral as well as dorsal hippocampal parts. NGF immunoreactivity was also augmented in neurons of CA3/CA4 areas, which were almost totally spared after TMT intoxication. It suggested a role for this neurotrophin in protection of pyramidal cells from loss of connection between CA3/CA4 and dentate gyrus fields. The granule neurons' death was accompanied by increased histochemical staining with isolectin B4, a marker of microglia, in the region of neurodegeneration. The microglial cells displayed ramified and ameboid morphology, characteristic of their reactive forms. Activated microglia were the main source of interleukin 1beta (IL-1beta). It is possible that this cytokine may participate in neurodegeneration of granule cells. Alternatively, IL-1beta elaborated by microglia could play a role in increasing NGF expression, both in astroglia and in CA3/CA4 neurons.  相似文献   

12.
Changes in the binding of [3H]cyclic AMP as an indicator of particulate cyclic AMP-dependent protein kinase (AMP-DPK) binding activity following transient forebrain ischemia were studied in the gerbil using in vitro autoradiography. [3H]Cyclic AMP binding in the strata pyramidale and lacunosum-moleculare of the hippocampal CA1, the stratum pyramidale of the CA3, and the dentate gyrus decreased transiently in the early postischemic phase but then recovered. However, [3H]cyclic AMP binding in the strata pyramidale and radiatum of the CA1, the granular layer of the dentate gyrus, and the upper layer of the cortex decreased again 7 days after ischemia. In the CA4 subfield and the lower layer of the cortex, the binding showed no significant alterations after ischemia. Administration of pentobarbital prior to the induction of ischemia prevented the decrease in [3H]cyclic AMP binding in the CA1 subfield 6 h and 7 days after ischemia, and showed protective effects against neuronal death of the CA1 pyramidal cells 7 days after ischemia. These results indicate that marked alteration of intracellular signal transduction precedes neuronal damage in the hippocampal CA1 subfield. Furthermore, postischemic reduction of [3H]cyclic AMP binding in the histologically intact cerebral cortex, CA3, and dentate gyrus may be the reflection of cellular dysfunction after energy failure.  相似文献   

13.
In the normal developing hippocampus of the gerbil, parvalbumin-immunoreactive neurons first appear in the stratum pyramidale of CA3 at postnatal day 15 (P15), and in CA2 and hilus of the dentate gyrus from P21 onwards. Immunoreactive terminals also follow the same sequence from CA3 to CA1 to reach adult patterns by the end of the 1st month. Calbindin D-28k immunoreactivity is seen in the external part of the upper blade of the dentate gyrus at P5, and progresses to the granule cell and molecular layers of the whole gyrus by P15, except for a thin band of immature cells located at the base of the granule cell layer which are calbindin negative. Calbindin immunoreactivity in mossy fibers progresses from the external to the hilar region of CA3 during the same period. A few immunoreactive cells are also found in the stratum radiatum/lacunare of the CA3, but no calbindin-immunoreactive cells are observed in the CA1 and CA2 subfields. The adult pattern of calbindin immunoreactivity is reached at P21. Vulnerability following transient forebrain ischemia for 20 min was examined in the hippocampal formation of gerbils during postnatal development. No cellular damage was seen in animals aged 7 days. Dying cells were observed at the base of the granule cell layer of the dentate gyrus in animals aged 15, 21 and 30 days. Pyramidal cells in the CA3 subfield were also sensitive to ischemia in gerbils aged 15 days, and less frequently in animals aged 21 days. The adult pattern of cellular damage, characterized by selective vulnerability of the CA1 subfield, was seen from day 30 onwards. These findings show that the pattern of selective vulnerability following transient forebrain ischemia is different in young and adult gerbils, and suggest that little, if any, correlation exists between resistance to delayed cellular damage and parvalbumin and calbindin D-28k content in the hippocampus of young gerbils.Supported in part by grant FIS 93-131 and a grant from the Fundacio Pi i Synyer (to A.T.)  相似文献   

14.
The influence of transient forebrain ischemia on the temporal alteration of glutamate receptors in the hippocampal formation was analyzed by means of in vitro quantitative receptor autoradiography. We compared the binding of N-methyl-D-aspartate (NMDA) receptors using [3H]3-[+/-)2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), noncompetitive NMDA antagonist binding sites using [3H]N-(1-(2-thienyl)-cyclohexyl)-3,4-piperidine (TCP), and kainate (KA) receptors. In the CA1 subfield of the hippocampus, the number of NMDA receptors and noncompetitive NMDA antagonist binding sites remained constant during the early stage of recirculation when the CA1 pyramidal cells remained histologically intact. A significant reduction of these receptor densities was observed 7 days following ischemia, when NMDA receptors and noncompetitive NMDA antagonist binding sites lost 64 and 29% of their binding sites in the stratum radiatum of the CA1, respectively. The KA receptor density in the CA1 subfield decreased by 44% 7 days after ischemia. Marked loss of the above-mentioned receptors in the CA1 after selective depletion of the CA1 pyramidal cells indicated that NMDA receptors, noncompetitive NMDA antagonist binding sites, and KA receptors in the CA1 are predominantly localized on the CA1 pyramidal cells. NMDA receptor density in the CA3 gradually decreased during the recirculation period. The stratum moleculare of the dentate gyrus, whose structure was histologically intact after ischemic insult, also showed a reduction of NMDA receptors 7 days following ischemia. [3H]KA receptor density in the stratum lucidum of the CA3 and in the hilus also decreased during recirculation. These  相似文献   

15.
Martí E  Ferrer I  Blasi J 《Brain research》1999,824(2):189-160
Synapsin-I is a vesicular phosphoprotein, which regulates neurotransmitter release, neurite development, and maturation of synaptic contacts during normal development and following various brain lesions in adulthood. In the present study, we have examined by immunohistochemistry possible modifications in the expression of synapsin-I in the hippocampus of Mongolian gerbils after transient forebrain ischemia. The animals were subjected to 5 min of transient forebrain ischemia through bilateral common carotid occlusion, and were examined at different time-points post-ischemia. Transient forebrain ischemia produces cell death of the majority of CA1 pyramidal neurons of the hippocampus and polymorphic hilar neurons of the dentate gyrus. This is followed by reactive changes, including synaptic reorganization and modifications in the expression of synaptic proteins, which provide the molecular bases of synaptic plasticity. Transient decrease of synapsin-I immunoreactivity was observed in the inner zone of the molecular layer of the dentate gyrus, thus suggesting denervation and posterior reinervation in this area. In addition, a strong increase in synapsin-I immunoreactivity was observed in the hilus of the dentate gyrus and in the mossy fiber layer of the hippocampus at 2, 4 and 7 days after ischemia. Parallel increases in synaptophysin immunoreactivity were not observed, thus suggesting a selective induction of synapsin-I after ischemia. The present results indicate that synapsin-I participates in the reactive response of granule cells to transient forebrain ischemia in the hippocampus of the gerbil, and suggest a role for this protein in the plastic adaptations of the hippocampus following injury.  相似文献   

16.
A quantitative autoradiographic study was made on the binding of the phosphatidylinositol system ligand [3H]inositol(1,4,5)-trisphosphate (IP3) to forebrain sections from rats decapitated various times after 10 min of forebrain ischemia. To investigate the effect of a deafferentation of the hippocampal CA1, kainic acid-induced CA3-lesioned rats with or without 10 min of cerebral ischemia, were also included. The highest binding was found in the hippocampal CA1. Ten min of cerebral ischemia did not change the binding significantly. Between 5 min and 1 h of recirculation there was a 25-35% binding decline in all regions. In the CA1, where the pyramidal cells became necrotic 6 days after ischemia, there was a further decline to 16% of control. In the cortex, where there is no necrosis in this model, binding did not return to control values until day 14. Four days after a selective CA3 lesion with kainic acid, there was a significant 25% decline in the cortex, dentate gyrus and CA1, whereas in the necrotic CA3 binding declined to 54% of control. Ten min of ischemia did not alter this binding significantly. This decrease in calcium mobilizing intracellular receptors after ischemia and seizures could be due to increased membrane degradation, or to a more specific down-regulation following increased intracellular concentration of calcium and IP3.  相似文献   

17.
Zou B  Li Y  Deng P  Xu ZC 《Brain research》2005,1033(1):78-89
CA1 pyramidal neurons in the hippocampus die 2-3 days following transient forebrain ischemia, whereas CA3 pyramidal neurons and granule cells in the dentate gyrus remain viable. Excitotoxicity is the major cause of ischemic cell death, and potassium currents play important roles in regulating the neuronal excitability. The present study compared the changes of potassium currents in acutely dissociated hippocampal neurons at different intervals after ischemia. In CA1 neurons, the amplitude of rapid inactivating potassium currents (I(A)) was significantly increased at 14 h and returned to control levels at 38 h after ischemia; the rising slope and decay time constant of I(A) were accordingly increased after ischemia. The activation curve of I(A) in CA1 neurons shifted to the depolarizing direction at 38 h after ischemia. In granule cells, the amplitude and rising slope of I(A) were significantly increased at 38 h after ischemia; the inactivation curves of I(A) shifted toward the depolarizing direction accordingly at 38 h after ischemia. The I(A) remained unchanged in CA3 neurons after ischemia. The amplitudes of delayed rectifier potassium currents (I(Kd)) in CA1 neurons were progressively increased after ischemia. No significant difference in I(Kd) was detected in CA3 and granule cells at any time points after reperfusion. These results indicated that the voltage dependent potassium currents in hippocampal neurons were differentially altered after cerebral ischemia. The up-regulation of I(A) in dentate granule cells might have protective effects. The increase of I(Kd) in CA1 neurons might be associated with the neuronal damage after ischemia.  相似文献   

18.
The present study examined ischemia-related changes in tyrosine kinase A (trkA) immunoreactivity and its protein content in the dentate gyrus after 5 min of transient forebrain ischemia in gerbils. One day after ischemic insult, cresyl violet-positive polymorphic cells showed ischemic degeneration. The ischemia-induced changes in trkA immunoreactivity were found in the polymorphic layer (PL) and granule cell layer (GCL) of the dentate gyrus. In the sham-operated group, trkA immunoreactivity in the dentate gyrus was very weak. From 30 min after ischemia, trkA immunoreactivity was increased in the dentate gyrus and peaked in the dentate gyrus at 12 h after ischemia-reperfusion. Thereafter, trkA immunoreactivity was decreased time-dependently after ischemia-reperfusion. Four days after ischemic insult, trkA immunoreactivity was similar to that of the sham-operated group. In addition, it was found that ischemia-related changes in trkA protein content were similar to the immunohistochemical changes. These results suggest that the chronological changes of trkA in the dentate gyrus after transient forebrain ischemia may be associated with ischemic damage in polymorphic cells of the dentate gyrus.  相似文献   

19.
The present study examined ischemia-related changes in tyrosine kinase A (trkA) immunoreactivity and its protein content in the dentate gyrus after 5 min of transient forebrain ischemia in gerbils. One day after ischemic insult, cresyl violet-positive polymorphic cells showed ischemic degeneration. The ischemia-induced changes in trkA immunoreactivity were found in the polymorphic layer (PL) and granule cell layer (GCL) of the dentate gyrus. In the sham-operated group, trkA immunoreactivity in the dentate gyrus was very weak. From 30 min after ischemia, trkA immunoreactivity was increased in the dentate gyrus and peaked in the dentate gyrus at 12 h after ischemia-reperfusion. Thereafter, trkA immunoreactivity was decreased time-dependently after ischemia-reperfusion. Four days after ischemic insult, trkA immunoreactivity was similar to that of the sham-operated group. In addition, it was found that ischemia-related changes in trkA protein content were similar to the immunohistochemical changes. These results suggest that the chronological changes of trkA in the dentate gyrus after transient forebrain ischemia may be associated with ischemic damage in polymorphic cells of the dentate gyrus.  相似文献   

20.
Excitotoxic activation of glutamate receptors is thought to play a key role in delayed neuronal death (DND) of highly vulnerable hippocampal CA1 neurons after transient global ischemia. DND can be prevented by a short sublethal preconditioning (PC) stimulus. Recently, we demonstrated that ischemic PC, but not a single period of 5-min ischemia elicits a transient up-regulation of hippocampal [(3)H]muscimol binding to GABA(A) receptors. This indicates that activation of the GABAergic system may participate in the acquisition of neuroprotection. The present study was designed to test whether postischemic modulation of receptor binding also occurs in the ischemia-tolerant state, i.e., after a PC stimulus of 2.5-min ischemia and a subsequent normally lethal period of 5-min ischemia 4 days apart. Using receptor autoradiography, [(3)H]AMPA and [(3)H]muscimol binding to excitatory AMPA and inhibitory GABA(A) receptors was analyzed in hippocampal subfields CA1, CA3 and dentate gyrus at recirculation intervals of 30 min, 8, 24, 48, 96 h and 3 weeks. Postischemic hippocampal ligand binding to AMPA receptors remained unchanged at any time point investigated, but [(3)H]muscimol binding to GABA(A) receptors in CA1 neurons rendered tolerant to ischemia was up-regulated between 30 min and 48 h of recirculation. Our data suggest that a relative shift between excitatory and inhibitory neurotransmission may promote postischemic survival of CA1 neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号