首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To determine the potential value of distributional-phase T1-weighted ferumoxides-enhanced magnetic resonance (MR) imaging for tissue characterization of focal liver lesions.

Materials and Methods

Ferumoxides-enhanced MR imaging was performed using a 1.5-T system in 46 patients referred for evaluation of known or suspected hepatic malignancies. Seventy-three focal liver lesions (30 hepatocellular carcinomas [HCC], 12 metastases, 15 cysts, 13 hemangiomas, and three cholangiocarcinomas) were evaluated. MR imaging included T1-weighted double-echo gradient-echo (TR/TE: 150/4.2 and 2.1 msec), T2*-weighted gradient-echo (TR/TE: 180/12 msec), and T2-weighted turbo spin-echo MR imaging at 1.5 T before and after intravenous administration of ferumoxides (15 mmol/kg body weight). Postcontrast T1-weighted imaging was performed within eight minutes of infusion of the contrast medium (distributional phase). Both qualitative and quantitative analysis was performed.

Results

During the distributional phase after infusion of ferumoxides, unique enhancement patterns of focal liver lesions were observed for hemangiomas, metastases, and hepatocellular carcinomas. On T1-weighted GRE images obtained during the distributional phase, hemangiomas showed a typical positive enhancement pattern of increased signal; metastases showed ring enhancement; and hepatocellar carcinomas showed slight enhancement. Quantitatively, the signal-to-noise ratio of hemangiomas was much higher than that of other tumors (p < .05) and was similar to that of intrahepatic vessels. This finding permitted more effective differentiation between hemangiomas and other malignant tumors.

Conclusion

T1-weighted double-echo FLASH images obtained soon after the infusion of ferumoxides, show characteristic enhancement patterns and improved the differentiation of focal liver lesions.  相似文献   

2.
PURPOSE: To evaluate the different signal characteristics of focal hepatic lesions on ferumoxides-enhanced MR imaging, including T1-weighted spoiled gradient recalled echo (GRE) images using different echo times (TE) and T2- and T2*-weighted images. MATERIALS AND METHODS: Ferumoxides-enhanced MR imaging was performed using a 1.5-T system in 46 patients who were referred for evaluation of known or suspected hepatic malignancies. One hundred and seven lesions (42 hepatocellular carcinomas [HCC], 40 metastases, 13 cysts, eight hemangiomas, three focal nodular hyperplasias [FNHs], and one cholangiocarcinoma) were evaluated. Postcontrast MR imaging included 1) T2-weighted FSE; 2) T2*-weighted GRE; 3) T1-weighted spoiled GRE using moderate (TE = 4.2-4.4 msec) TE; and 4) minimum (TE = 1.8-2.1 msec) TE. Signal intensities of the focal lesions were rated by two radiologists in conference as follows: hypointense, isointense or invisible, hyperintense, and markedly hyperintense. Lesion-to-liver contrast-to-noise ratio (C/N) was measured by one radiologist for a quantitative assessment. RESULTS: On ferumoxides-enhanced FSE images, 92% of cysts were "markedly hyperintense" and most of the other lesions were "hyperintense", and the mean C/N of cysts was significantly higher than that of other focal lesions. T2*-weighted GRE images showed most lesions with similar hyperintensities and the mean C/N was not significantly different between any two types of lesion. T1-weighted GRE images using moderate TE showed all FNHsand hemangiomas, 29 (69%) HCCs and eight (20%) metastases as "hyperintense". On T1-weighted GRE images using minimum TE, however, all HCCs and metastasis except one were iso- or hypointense, while all of the FNHs and hemangiomas were hyperintense. Ring enhancement was highly suggestive of malignant lesions, and was more commonly seen on the minimum TE images than on the moderate TE images. CONCLUSION: Addition of T1-weighted GRE images using minimum and moderate TE is helpful for characterizing focal lesions in ferumoxides-enhanced MR imaging.  相似文献   

3.
Serial turboFLASH (fast low-angle shot) images with and without diffusion-perfusion (DP) gradients were used for the evaluation of and differentiation between hemangiomas and hepatocellular carcinomas (HCCs) of the liver. Twenty-six patients with 27 hemangiomas, and 19 patients with 21 HCCs were studied. T1- and T2-weighted spin-echo images, serial turboFLASH images with and without DP gradients (b = 294.8 and 0 sec/mm2, respectively) were obtained, and the apparent diffusion coefficient (ADC) was calculated for all lesions. Hemangiomas were detected as well-defined areas of decreased signal intensity on turboFLASH images obtained with DP gradients; HCCs showed slight or no obvious decrease in signal intensity on serial turboFLASH images obtained with DP gradients compared with turboFLASH images obtained without DP gradients, while a considerable percentage (76.5%) of nodular HCCs showed an obvious decrease in signal intensity at the margins. Hemangiomas had large ADC values compared with HCCs. Both ADC and T2 values were significantly different between hemangiomas and HCCs (P < 0.01). However, there was no obvious correlation between ADC and T2 values for either hemangiomas or HCCs (r = 0.18 and 0.48, respectively). On the basis of these results, the calculated ADC should be helpful for distinguishing hemangiomas from HCCs, and the ADC values may be useful even when T2 values are not helpful for making the distinction.  相似文献   

4.
The purpose of the study was to evaluate the MR contrast agents gadolinium benzyloxypropionictetro-acetate (Gd-BOPTA) and Mangafodipir for liver enhancement and the lesion-liver contrast on T1W spin-echo (SE) and gradient-recalled-echo (GRE) images. Fifty-one patients (three groups of 17 patients each) with known or suspected liver lesions were evaluated with T1W SE (300/12) and GRE (77-80/2.3-2.5/80°) images before and after intravenous (IV) Gd-BOPTA (0.1 or 0.05 mmol/kg) or Mangafodipir (5 μmol/kg) in phase II to III clinical trials. Quantitative analysis by calculating liver signal-to-noise ratio (SNR), lesion-liver contrast-to-noise ratio (CNR), and spleen-liver CNR was performed. Liver SNR and spleen-liver CNR were always significantly increased postcontrast. SNR was highest after application of 0.1 mmol/kg Gd-BOPTA (51.3 ± 3.6, P < .05). CNR was highest after Mangafodipir (?22.6 ± 2.7), but this was not significantly different from others (P = .07). Overall, GRE images were superior to SE images for SNR and CNR. Mangafodipir and Gd-BOPTA (0.1 mmol/kg) provide equal liver enhancement and lesion conspicuity postcontrast. By all criteria, contrast-enhanced T1-weighted GRE were comparable to SE images.  相似文献   

5.
The authors studied the utility of non-contrast-agent-enhanced magnetic resonance (MR) imaging for differentiating cysts and cavernous hemangiomas of the liver. Nineteen patients with hemangiomas (51 lesions) and 16 with cysts (30 lesions) were studied with a 1.5-T MR imager. T2 values were calculated with the two-point method to evaluate the efficacy of T2 values in the differentiation between hemangiomas and cysts of the liver. For lesions larger than 1 cm, the mean T2 value of cysts (306 msec ± 156) was significantly longer than that of hemangiomas (113 msec ± 15) (P < .0001); there was no overlap of the ranges for T2 values of hemangiomas and cysts. All cysts larger than 1 cm could be differentiated from hemangiomas by using a threshold T2 value of 140 msec. This study suggests that calculated T2 values permit differentiation between hemangiomas and cysts larger than 1 cm at 1.5 T.  相似文献   

6.
This study was devoted to tumor differentiation in liver MR T1-weighted imaging with superparamagnetic iron oxide (SPIO). Twenty-one patients with 40 liver lesions were studied at 1.5 T. Before and at least 45 minutes after SPIO administration, turbo-field-echo (TFE) T1-weighted, TFE T1 × T2*-weighted (MXT), and fat-suppressed turbo-spin-echo T2-weighted images were acquired. A quantitative analysis was performed blindly. On TFE T1-weighted images, the signal enhancement was ?33% ± 12 for the liver, ?24% ± 2 for adenomas and focal nodular hyperplasia, +60% ± 33 for the hemangiomas; metastases and cyst enhancement were not significant. After SPIO on TFE T1-weighted images, the hemangioma-to-liver signal ratio (149% ± 18) was definitely higher than the mean metastasis-to-liver signal ratio (90% ± 16). This T1-related differentiation ability lacked dramatically on TFE MXT images and, in one case, was reduced on post-SPIO TFE T1-weighted images by a long imaging delay after SPIO administration (2 hours).  相似文献   

7.
The half-Fourier acquisition single-shot turbo-spinecho (HASTE) sequence allows for heavily T2-weighted images, and the inversion recovery (IR)-HASTE sequence represents the T1 value of the tissue in a very short time. This study was undertaken to determine whether characterizing focal liver lesions can be made by combination with these very fast sequences. Seventy-four patients (33 cysts, 28 hemangiomas, and 33 malignant solid liver masses [15 metastatic tumors, 14 hepatocellular carcinomas, and 4 cholangiocarcinomasl]) underwent dynamic CT and breath-hold abdominal MRI using turbo-spin-echo (TSE), HASTE, and IR-HASTE sequences with variable TI values on a 1.5-T MR unit. The imaging time for each slice was 2 seconds for HASTE imaging and 2 to 4 seconds for IR-HASTE imaging. Lesion detection and qualitative characterization were evaluated. Quantitative analysis was performed by measuring the contrast-to-noise ratios (CNRs) as well as visual analysis. The inversion time (TI) nulling values were also statistically analyzed. All cystic lesions were detected on both TSE and HASTE imagings. For solid lesions, TSE failed to detect one small solid lesion and HASTE sequence failed to detect three lesions. With HASTE sequences, all cysts and hemangiomas were markedly hyperintense in comparison with malignant solid masses. CNRs of hemangiomas or cysts were significantly higher than those of malignant solid masses (P < .01), and there was no overlap. The TI nulling value was 1,100 ± 100 msec for hemangiomas, 1,900 ± 110 msec for cysts, and 740 ± 140 msec for malignant solid masses. There was no overlap between the TI nulling values of hemangiomas and cysts (P < .01). By combining the CNR from the HASTE sequence and the TI nulling value from the IR-HASTE sequence, complete discrimination among malignant solid masses, hemangiomas, and cysts of the liver could be made. Application of HASTE (representing T2 values) and IR-HASTE (representing T1 values) sequences provided a rapid and reliable imaging method for characterizing focal liver lesions without the use of contrast medium.  相似文献   

8.
The purpose of this study is to describe a subset of atypical hepatic hemangiomas that enhance rapidly and diffusely and to determine whether heavily T2-weighted images could distinguish between atypically enhancing liver hemangiomas and hypervascular malignancies. A retrospective search of MR records identified seven patients with liver hemangiomas that demonstrated diffuse early enhancement and 23 patients with biopsy-proven malignant liver lesions that were hypervascular on dynamic gadolinium-enhanced MR images. Quantitative analysis of signal intensity measurements was performed on the T2-weighted images, heavily T2-weighted (TE < 140), and dynamic gadolinium-enhanced images. Blinded reader comparison of the T2-weighted images and gadolinium-enhanced images was performed. Hypervascular hemangiomas enhanced to a greater degree than hypervascular malignant liver lesions on the early phase gadolinium-enhanced images. Perilesional parenchymal enhancement was demonstrated in five cases of rapidly enhancing hemangiomas. Signal intensity and contrast-to-noise ratios on the heavily T2-weighted images of the hemangiomas were significantly greater than that of the hypervascular malignant lesions (P < .05). Hemangiomas were differentiated from the hypervascular malignant liver lesions with high accuracy (97–100%) by three blinded readers based on the T2-weighted images. A subset of hemangiomas have atypical rapid diffuse enhancement on dynamic gadolinium-enhanced images. These atypical hemangiomas can be distinguished from hypervascular malignant liver lesions on T2-weighted MR images.  相似文献   

9.
PURPOSE: To investigate the usefulness of early and delayed hepatic MRI after mangafodipir trisodium (Mn-DPDP) administration for the detection and characterization of focal hepatic lesions. MATERIALS AND METHODS: Forty-five patients (31 males and 14 females, mean age = 61 years) with a total of 113 hepatic lesions (mean size = 3.5 cm) were included in this study (15 with hepatocellular carcinoma (HCC, N = 35), 20 with hepatic metastasis (N = 63), five with hemangioma (N = 10), three with cholangiocarcinoma (CC, N = 3), and two with liver abscess (N = 2)). T1-weighted gradient-echo MR images were obtained before and after Mn-DPDP administration, with a mean 18-hour delayed imaging. A qualitative analysis (including the size and signal intensity (SI)) and quantitative analysis (including enhancement and lesion-liver contrast-to-noise ratio (CNR)) were performed on pre- and postcontrast early and delayed MR images. RESULTS: Compared to postcontrast early imaging, 17 (48.6%) of 35 HCCs showed higher SI, 16 (45.7%) showed no SI change, and two (5.7%) showed lower SI on delayed imaging. All 63 metastases, 10 hemangiomas, three CCs, and two abscesses showed no SI change. On delayed imaging, ring enhancement was noted in 53 metastases (84.1%), three hemangiomas (30.0%), and one abscess (50.0%), but was not seen in HCCs or CCs. Eight metastases (12.7%) also showed ring enhancement on postcontrast early imaging. No newly detected hepatic lesions were revealed on postcontrast delayed MR images compared to postcontrast early images. Regarding CNR, the HCCs showed a significant increase in CNR from postcontrast early to delayed images after administration of Mn-DPDP (P < 0.01). However, none of the metastases, hemangiomas, CCs, and abscesses showed a significant increase of CNR from postcontrast early to delayed images. CONCLUSION: Postcontrast delayed MR images after Mn-DPDP administration were helpful in distinguishing hepatocellular from nonhepatocellular lesions, but were not useful for lesion detection and had limited utility for lesion characterization, since benign and malignant hepatic lesions looked the same.  相似文献   

10.
To determine whether gadobenate dimeglumine (BOPTA) will adequately enhance cirrhotic liver parenchyma, and to document the enhancement patterns in cirrhosis, 14 cirrhotic and 20 non-cirrhotic patients were evaluated before and 60–120 minutes after gadolinium-BOPTA. Proof of liver cirrhosis was biopsy (6), surgical resection (3), and clinical follow-up (5). Enhancement effects were compared quantitatively by determining the liver signal-to-noise ratio (SNR) and signal enhancement in both populations. Qualitatively assessment of the liver enhancement was performed and classified as homogeneous or heterogeneous. Quantitative analysis: cirrhotic liver parenchyma presented a higher increase in SNR values, relative to noncirrhotic liver parenchyma, on postcontrast images. Likewise the signal enhancement of cirrhotic liver parenchyma was superior to non-cirrhotic liver on T1-weighted SE images (P = .02) and in-phase GRE images (P < .001). There was no statistical difference on out-of-phase GRE images. Qualitative analysis: on T1-weighted SE postcontrast images, cirrhotic liver parenchyma showed a homogeneous enhancement in 7 patients and heterogeneous in 7. Whereas on GRE images, cirrhotic parenchyma showed heterogeneous enhancement in 9 patients and homogeneous in 5 patients. The heterogeneous enhancement was due to the presence of hypointense nodules in 7 patients and hyperintense nodules in 2 patients. In conclusion, our study has shown that the hepatobiliary contrast agent Gd-BOPTA is effective in the cirrhotic liver, demonstrating an increased liver enhancement compared with non-cirrhotic patients.  相似文献   

11.
The aim of this study was to compare unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT in the detection of hepatic colorectal metastases. Forty-four patients with hepatic colorectal metastases were examined with unenhanced and MnDPDP-enhanced MRI and with unenhanced and contrast-enhanced spiral CT. The MR examination protocol included baseline T1-weighted spin-echo (SE), T1-weighted gradient-recalled-echo (GRE), and T2-weighted fast-SE sequences; and T1-weighted SE and T1-weighted GRE sequences obtained 30–60 min after administration of 0.5 µmol/kg (0.5 ml/kg) mangafodipir trisodium (MnDPDP). Images were interpreted by three blinded readers. Findings at CT and MRI were compared with those at intraoperative US, which were used as term of reference. Intraoperative US detected 128 metastases. In a lesion-by-lesion analysis, the overall detection rate was 71% (91 of 128) for spiral CT, 72% (92 of 128) for unenhanced MRI, and 90% (115 of 128) for MnDPDP-enhanced MRI. MnDPDP-enhanced MRI was more sensitive than either unenhanced MRI (p<0.0001) or spiral CT (p=0.0007). In a patient-by-patient analysis, agreement with gold standard was higher for MnDPDP-enhanced MRI (33 of 44 cases) than for spiral CT (22 of 44 cases, p=0.0023) and unenhanced MRI (21 of 44 cases, p=0.0013). MnDPDP-enhanced MRI is superior to unenhanced MRI and spiral CT in the detection of hepatic colorectal metastases.  相似文献   

12.
The aim of this study was to assess the efficacy of a superparamagnetic iron oxide, ferumoxides, in the detection and characterization of focal nodular hyperplasia (FNH) on MR conventional spin-echo (SE), fast spin-echo (FSE) and gradient-echo (GRE) images. Fourteen adults with 27 FNHs were evaluated at 1.5 T before and after injection of ferumoxides. T1-weighted and T2-weighted SE, T2-weighted FSE and T2*-weighted GRE sequences were used and analysed qualitatively and quantitatively. One hundred percent of FNHs showed a significant postcontrast decrease in signal intensity on T2- and T2*-weighted images. Heavily T2-weighted SE images showed the maximum decrease in FNH signal-to-noise ratio (S/N). Postcontrast GRE T2*-weighted images improved the detection of the central scar and the delineation of FNHs and demonstrated the best lesion-to-liver contrast-to-noise ratio (C/N). Postcontrast T1-weighted SE images showed the least lesion-to-liver C/N. Ferumoxides-enhanced MR imaging can help detect and characterize FNH. Conventional pre- and postcontrast T2-weighted SE images and postcontrast GRE T2*-weighted images should be used preferentially. Received: 30 November 1998; Revised: 5 April 1999; Accepted: 6 April 1999  相似文献   

13.
We retrospectively investigated the appearance and frequency of atypically enhancing cavernous hemangiomas with high-spatial-resolution (512x224 matrix) gadolinium-enhanced triphasic dynamic gradient-recalled-echo (GRE) MR images. Images of 132 hepatic cavernous hemangiomas (ranging in size from 4 to 72 mm; mean size 17.2 mm) in 95 patients (42 men and 53 women; age range 25-85 years; mean age 54 years) were retrospectively reviewed by two independent radiologists. Forty (30%) of 132 lesions atypically enhanced. Smaller hemangiomas (< or =15 mm) more frequently (29%) showed early entire enhancement with or without arterio-portal shunting in the hepatic arterial-dominant phase ( p<0.001); most of them showed hyperintense complete fill-in in the equilibrium phase and were readily characterized. "Bright dot" or minimal peripheral enhancement in the equilibrium phase was seen in a small number of lesions (6% each). With T2-weighted images, 130 (98%) lesions showed moderately to very high signal intensity and only 2 (2%) with minimal peripheral enhancement showed hyperintensity of slight degree. The high-spatial-resolution dynamic GRE images clearly revealed minute enhancement characteristics of hemangiomas. Although moderately to very high signal intensity with T2-weighted MR images is informative for the diagnosis of most cavernous hemangiomas, when a lesion shows minimal peripheral enhancement in the equilibrium phase and hyperintensity of slight degree with T2-weighted images, further follow-up or biopsy may be warranted to discriminate hypovascular metastases.  相似文献   

14.
The purpose of the study was to investigate retrospectively whether mangafodipir trisodium (MnDPDP) can enhance the liver metastases from endocrine tumors. Thirteen patients with endocrine tumors and liver metastases underwent T1-weighted spin-echo (SE) and turbo gradient-echo (GRE) MRI conducted before and 20 to 60 minutes after iv infusion of MnDPDP. Additional 24-hour-delay scans were performed in 8 of 13 patients. MR signal intensity (SI) was measured in liver parenchyma and metastases, which was then related to that of paraspinal muscle. A total of 30 lesions on precontrast and postcontrast images and 18 lesions on 24-hour-delay images were measured. An enhancement by 49% in SE and 40% in GRE images (P = .0001) was observed in tumor tissues after MnDPDP infusion. In 24-hour-delay images, the SI of the lesions remained relatively high, but in liver parenchyma, it decreased significantly, and the tumor-liver tissue contrast was reduced.  相似文献   

15.
B I Choi  M C Han  C W Kim 《Radiology》1990,176(1):103-106
Eighteen small hepatocellular carcinomas (HCCs) and 38 hemangiomas less than 5 cm in diameter were studied with magnetic resonance (MR) imaging at 2.0 T. Relatively T1-weighted spin-echo (SE) 500/30 (repetition time msec/echo time msec) images and proton-density 2,000/30 images showed nonspecific contrast-to-noise ratios (C/Ns) and intensity ratios in HCCs and hemangiomas. On T2-weighted 2,000/60, 90, 120, 150, and 180 images, hemangiomas had significantly greater C/N and intensity ratios than HCCs (P less than .05). The SE 2,000/180 sequence showed the greatest difference in tumor-liver intensity ratios between small HCCs and hemangiomas, followed by the SE 2,000/150 sequence, but there was no statistically significant difference between the two pulse sequences. However, the SE 2,000/180 sequence is limited in the number of sections obtainable for routine clinical liver imaging. The findings indicate that the SE 2,000/60 sequence is optimal for the detection of small HCCs and hemangiomas and that the SE 2,000/150 sequence is optimal for distinguishing small HCCs from hemangiomas at 2.0 T.  相似文献   

16.
It is assumed that hepatobiliary, cell-specific contrast agents will be adversely affected by the presence of diffuse liver disease. The diagnostic efficacy for tumor detection in the presence of fatty liver disease was experimentally studied at contrast-enhanced magnetic resonance (MR) imaging with manganese-DPDP (N,N′-dipyridoxylethylenediamine-N,N′-diacetate 5,5′-bis[phosphate]) and gadobenate dimeglumine (Gd-BOPTA/dimeg) and compared with conventional and chemical shift imaging. Carcinosarcoma was implanted into the liver of rats, and fatty liver was induced with L-ethionine. Without contrast agents, the tumor-fatty liver contrast-to-noise ratio (C/N) was increased on T1-weighted and decreased on T2-weighted MR images relative to tumor-bearing control rats without fatty liver. Chemical shift imaging (phase-contrast method) increased the tumor—fatty liver C/N from 2.3 ± 1.0 to 6.1 ± 1.7 (P <.001). Mn-DPDP and Gd-BOPTA/dimeg increased the tumor—fatty liver C/N from -5.4 ± 1.6 to -11.0 ± 1.9 and ?9.8 ± 3.4, respectively (P <.001). The hepatobiliary, cell-specific contrast agents were equally effective in both fatty and nonfatty liver and outperformed both chemical shift and conventional MR imaging in detecting liver tumors.  相似文献   

17.

Aims

To improve tumor conspicuity and delineation on contrast-enhanced T1-weighted MR images with and without magnetization transfer (MT) contrast as a strategy to improve the macroscopic boost volume definition in the planning process of radiosurgery in patients with high grade gliomas or metastatic brain lesions.

Patients and Methods

Thirty-two patients (mean age 47 years) with histologically proven or suspected high grade glioma (n=12) or metastatic brain lesions (n=20) were prospectively examined by MR imaging. After the administration of gadolinium dimeglumine (0.1 mmol/kg body weight) the lesions were imaged with a T1-weighted MT-fast low angle shot (FLASH) pulse sequence and with a conventional T1-weighted SE sequence without MT saturation.

Results

The mean CNR of enhancing lesions on T1-weighted MT-FLASH was 15±5 compared to 14±4 on SE images, representing a significant (p<.01) improvement. The mean tumor diameter of malignant gliomas was significantly (p<.01) larger measured on T1-weighted MT-FLASH images compared to those obtained from T1-weighted SE images and were comparable for metastatic lesions. Lesion conspicuity and delineation were improved in 50% of patients with high grade gliomas and in 35% of patients with brain metastases. Lesion conspicuity was markedly improved in the posterior fossa. Additional contrast enhancing lesions were detected in 10% of patients with metastases on MT-FLASH images.

Conclusions

It is concluded that contrast-enhanced MT-FLASH images may improve lesion detection and delineation in the planning process of radiosurgery in patients with intracranial high grade gliomas or metastases or even alter the treatment approach.  相似文献   

18.
To identify changes induced by chemotherapy in hepatic metastases, 34 patients with metastases underwent magnetic resonance (MR) imaging before the start of systemic chemotherapy and monthly thereafter. The number, size, and morphologic patterns of the lesions and changes in quantitative parameters (signal-to-noise ratio [S/N], contrast-to-noise ratio, and signal intensity ratio) were evaluated and correlated with response to treatment and prognosis. After treatment, seven patients showed a partial response, 18 had stable disease, and nine had progressive disease. No relevant changes in the patterns of the lesions were observed. Quantitative data showed that patients with a good prognosis had an increase in S/N on T1-weighted images and a relative decrease on T2-weighted images; patients with a poor prognosis showed a decrease in S/N on T1-weighted images and an increase on T2-weighted images. The differences between patient groups were significant for both T1- and T2- weighted images. This study demonstrates the value of MR imaging in follow-up of liver metastases and suggests the usefulness of quantitative MR imaging data.  相似文献   

19.

Purpose:

To compare the use of heavily T2‐weighted images obtained before and after administration of gadoxetic acid in differentiating hemangiomas from malignant solid hepatic lesions.

Materials and Methods:

Heavily T2‐weighted images (TE = 150 msec) were obtained for 70 patients (42 men and 28 women) with 74 focal hepatic lesions (25 hepatocellular carcinomas [HCC], 22 metastases, and 27 hemangiomas) ≤3 cm in diameter before and after gadoxetic acid‐enhanced dynamic magnetic resonance imaging (MRI). Quantitative analysis was performed using receiver operating characteristic (ROC) curves with lesion‐to‐liver signal intensity difference‐to‐noise ratio (SDNR) on precontrast and postcontrast images. Qualitative analysis was also performed by two blinded reviewers.

Results:

The SDNR of the solid lesions was significantly higher on the postcontrast (1.66 ± 1.18) than on the precontrast (1.38 ± 1.07) images (P = 0.0012), while the SDNR of hemangiomas was comparable for pre‐ and postcontrast images (P = 0.8164). The best SDNR cutoff values for distinguishing solid lesions from hemangiomas were ≤1.85 (Az = 0.948) for precontrast and ≤2.58 (Az = 0.901) for postcontrast images (P = 0.057). Reader performances for distinguishing hemangiomas from solid lesions were comparable between the precontrast (Az = 0.975 and 0.970 for readers 1 and 2) and postcontrast (Az = 0.977 and 0.972) images (P = 0.899 and 0.946).

Conclusion:

Heavily T2‐weighted images obtained after administration of gadoxetic acid have a diagnostic capability comparable to precontrast images for differentiating between small hemangiomas and malignant solid lesions of the liver. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Our purpose was to compare prospectively the sensitivity of contrast-enhanced magnetisation transfer (MT) MRI and gradient-echo (GE) T1-weighted images in metastatic disease of the brain. We studied 52 patients with brain metastases, using conventional T1-weighted GE and MT spin-echo (SE) images after the same standard dose of gadolinium. Axial 5-mm reconstructions of GE data were compared with 5-mm MT images in the same plane. Metastases were counted independently by two neuroradiologists. In 12 patients (23 %) MT imaging showed more metastases than GE images (P = 0.03). We detected 68 more metastases with the former technique. Received: 27 July 1997 Accepted: 22 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号