首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
In this report, we demonstrate that the Src homology 2 domain-containing inositol-5-phosphatase (SHIP) plays a critical role in regulating both B cell development and responsiveness to antigen stimulation. SHIP(-/-) mice exhibit a transplantable alteration in B lymphoid development that results in reduced numbers of precursor B (fraction C) and immature B cells in the bone marrow. In vitro, purified SHIP(-/)- B cells exhibit enhanced proliferation in response to B cell receptor stimulation in both the presence and absence of Fcgamma receptor IIB coligation. This enhancement is associated with increased phosphorylation of both mitogen-activated protein kinase and Akt, as well as with increased survival and cell cycling. SHIP(-/)- mice manifest elevated serum immunoglobulin (Ig) levels and an exaggerated IgG response to the T cell-independent type 2 antigen trinitrophenyl Ficoll. However, only altered B cell development was apparent upon transplantation into nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice. The in vitro hyperresponsiveness, together with the in vivo findings, suggests that SHIP regulates B lymphoid development and antigen responsiveness by both intrinsic and extrinsic mechanisms.  相似文献   

2.
3.
The generation of a productive “in-frame” T cell receptor β (TCR β), immunoglobulin (Ig) heavy (H) or Ig light (L) chain variable region gene can result in the cessation of rearrangement of the alternate allele, a process referred to as allelic exclusion. This process ensures that most αβ T cells express a single TCR β chain and most B cells express single IgH and IgL chains. Assembly of TCR α and TCR γ chain variable region genes exhibit allelic inclusion and αβ and γδ T cells can express two TCR α or TCR γ chains, respectively. However, it was not known whether assembly of TCR δ variable regions genes is regulated in the context of allelic exclusion. To address this issue, we have analyzed TCR δ rearrangements in a panel of mouse splenic γδ T cell hybridomas. We find that, similar to TCR α and γ variable region genes, assembly of TCR δ variable region genes exhibits properties of allelic inclusion. These findings are discussed in the context of γδ T cell development and regulation of rearrangement of TCR δ genes.  相似文献   

4.
Paired immunoglobulin-like receptor (PIR)-A and PIR-B possess similar ectodomains with six immunoglobulin-like loops, but have distinct transmembrane and cytoplasmic domains. PIR-B bears immunoreceptor tyrosine-based inhibitory motif (ITIM) sequences in its cytoplasmic domain that recruit Src homology (SH)2 domain–containing tyrosine phosphatases SHP-1 and SHP-2, leading to inhibition of B and mast cell activation. In contrast, the PIR-A protein has a charged Arg residue in its transmembrane region and a short cytoplasmic domain that lacks ITIM sequences. Here we show that Fc receptor γ chain, containing an immunoreceptor tyrosine-based activation motif (ITAM), associates with PIR-A. Cross-linking of this PIR-A complex results in mast cell activation such as calcium mobilization in an ITAM-dependent manner. Thus, our data provide evidence for the existence of two opposite signaling pathways upon PIR aggregation. PIR-A induces the stimulatory signal by using ITAM in the associated γ chain, whereas PIR-B mediates the inhibitory signal through its ITIMs.  相似文献   

5.
6.
In contrast with the alphabeta T cell receptor (TCR), the pre-TCR spontaneously segregates to membrane rafts from where it signals in a cell-autonomous fashion. The disparate behaviors of these two receptors may stem either from differences inherent to the distinct developmental stages during which they are expressed, or from features intrinsic and unique to the receptor components themselves. Here, we express TCRalpha precisely at the pre-TCR checkpoint, at levels resembling those of endogenous pre-TCRalpha (pTalpha), and in the absence of endogenous pTalpha. Both in isolation and more dramatically when in competition with pTalpha, TCRalpha induced defective proliferation, survival, and differentiation of alphabeta T lymphocyte precursors, as well as impaired commitment to the alphabeta T lymphocyte lineage. Substitution of TCRalpha transmembrane and cytoplasmic domains with those of pTalpha generated a hybrid molecule possessing enhanced competitive abilities. We conclude that features intrinsic to the pre-TCR, which are absent in TCRalpha, are essential for its unique function.  相似文献   

7.
The formation of the pre-B cell receptor (BCR) corresponds to an important checkpoint in B cell development that selects pro-B (pre-BI) cells expressing a functionally rearranged immunoglobulin μ (Igμ) heavy chain protein to undergo the transition to the pre-B (pre-BII) cell stage. The pre-BCR contains, in addition to Igμ, the surrogate light chains λ5 and VpreB and the signal transducing proteins Igα and Igβ. The absence of one of these pre-BCR components is known to arrest B cell development at the pre-BI cell stage. Disruption of the Pax5 gene, which codes for the B cell–specific activator protein (BSAP), also blocks adult B lymphopoiesis at the pre-BI cell stage. Moreover, expression of the mb-1 (Igα) gene and VH-to-DHJH recombination at the IgH locus are reduced in Pax5-deficient B lymphocytes ∼10- and ∼50-fold, respectively. Here we demonstrate that complementation of these deficiencies in pre-BCR components by expression of functionally rearranged Igμ and chimeric Igμ-Igβ transgenes fails to advance B cell development to the pre-BII cell stage in Pax5 (−/−) mice in contrast to RAG2 (−/−) mice. Furthermore, the pre-BCR is stably expressed on cultured pre-BI cells from Igμ transgenic, Pax5-deficient bone marrow, but is unable to elicit its normal signaling responses. In addition, the early developmental block is unlikely to be caused by the absence of a survival signal, as it could not be rescued by expression of a bcl2 transgene in Pax5-deficient pre-BI cells. Together, these data demonstrate that the absence of Pax5 arrests adult B lymphopoiesis at an early developmental stage that is unresponsive to pre-BCR signaling.  相似文献   

8.
The T cell repertoire is shaped by positive and negative selection of thymocytes through the interaction of α/β-T cell receptors (TCR) with self-peptides bound to self-major histocompatibility complex (MHC) molecules. However, the involvement of specific TCR-peptide contacts in positive selection remains unclear. By fixing TCR-β chains with a single rearranged TCR-β irrelevant to the selecting ligand, we show here that T cells selected to mature on a single MHC–peptide complex express highly restricted TCR-α chains in terms of Vα usage and amino acid residue of their CDR3 loops, whereas such restriction was not observed with those selected by the same MHC with diverse sets of self-peptides including this peptide. Thus, we visualized the TCR structure required to survive positive selection directed by this single ligand. Our findings provide definitive evidence that specific recognition of self-peptides by TCR could be involved in positive selection of thymocytes.  相似文献   

9.
10.
The human homologue of Drosophila Toll (hToll) is a recently cloned receptor of the interleukin 1 receptor (IL-1R) superfamily, and has been implicated in the activation of adaptive immunity. Signaling by hToll is shown to occur through sequential recruitment of the adapter molecule MyD88 and the IL-1R–associated kinase. Tumor necrosis factor receptor–activated factor 6 (TRAF6) and the nuclear factor κB (NF-κB)–inducing kinase (NIK) are both involved in subsequent steps of NF-κB activation. Conversely, a dominant negative version of TRAF6 failed to block hToll-induced activation of stress-activated protein kinase/c-Jun NH2-terminal kinases, thus suggesting an early divergence of the two pathways.  相似文献   

11.
The ability of influenza virus to evade immune surveillance by neutralizing antibodies (Abs) directed against its variable surface antigens provides a challenge to the development of effective vaccines. CD8+ cytotoxic T lymphocytes (CTLs) restricted by class I major histocompatibility complex molecules are important in establishing immunity to influenza virus because they recognize internal viral proteins which are conserved between multiple viral strains. In contrast, protective Abs are strain-specific. However, the precise role of effector CD8+ CTLs in protection from influenza virus infection, critical for understanding disease pathogenesis, has not been well defined. In transgenic mice with a very high frequency of antiinfluenza CTL precursors, but without protective Abs, CD8+ CTLs conferred protection against low dose viral challenge, but exacerbated viral pathology and caused mortality at high viral dose. The data suggest a dual role for CD8+ CTLs against influenza, which may present a challenge to the development of effective CTL vaccines. Effector mechanisms used by CD8+ CTLs in orchestrating clearance of virus and recovery from experimental influenza infection, or potentiation of lethal pathology, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号