首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4-1BB receptor is an inducible type I membrane protein and member of the tumor necrosis factor receptor (TNFR) superfamily that is rapidly expressed on the surface of CD4+ and CD8+ T cells after antigen- or mitogen-induced activation. Cross-linking of 4-1BB and the T cell receptor (TCR) on activated T cells has been shown to deliver a costimulatory signal to T cells. Here, we expand upon previously published studies by demonstrating that CD8+ T cells when compared with CD4+ T cells are preferentially responsive to both early activation events and proliferative signals provided via the TCR and 4-1BB. In comparison, CD28-mediated costimulatory signals appear to function in a reciprocal manner to those induced through 4-1BB costimulation. In vivo examination of the effects of anti-4-1BB monoclonal antibodies (mAbs) on antigen-induced T cell activation have shown that the administration of epitope-specific anti-4-1BB mAbs amplified the generation of H-2d–specific cytotoxic T cells in a murine model of acute graft versus host disease (GVHD) and enhanced the rapidity of cardiac allograft or skin transplant rejection in mice. Cytokine analysis of in vitro activated CD4+ and CD8+ Tcells revealed that anti-4-1BB costimulation markedly enhanced interferon-γ production by CD8+ T cells and that anti-4-1BB mediated proliferation of CD8+ T cells appears to be IL-2 independent. The results of these studies suggest that regulatory signals delivered by the 4-1BB receptor play an important role in the regulation of cytotoxic T cells in cellular immune responses to antigen.  相似文献   

2.
4-1BB (CD137), a member of the TNF receptor superfamily, is an activation-induced T-cell costimulatory molecule. Signaling via 4-1BB upregulates survival genes, enhances cell division, induces cytokine production, and prevents activation-induced cell death in T cells. The importance of the 4-1BB pathway has been underscored in a number of diseases, including cancer. Growing evidence indicates that anti-4-1BB monoclonal antibodies possess strong antitumor properties, which in turn are the result of their powerful CD8+ T-cell activating, IFN-γ producing, and cytolytic marker-inducing capabilities. In addition, combination therapy of anti-4-1BB with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Furthermore, the adoptive transfer of ex vivo anti-4-1BB-activated CD8+ T cells from previously tumor-treated animals efficiently inhibits progression of tumors in recipient mice that have been inoculated with fresh tumors. In addition, targeting of tumors with variants of 4-1BBL directed against 4-1BB also have potent antitumor effects. Currently, a humanized anti-4-1BB is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, and ovarian cancer, and so far seems to have a favorable toxicity profile. In this review, we discuss the basis of the therapeutic potential of targeting the 4-1BB-4-1BBL pathway in cancer treatment.  相似文献   

3.
In humans, at least two subsets of dendritic cells (DCs) are identified on the basis of differential surface expression of CD11c antigens. CD11c(+) and CD11c(-) cells are respectively of myeloid and lympholoid origin and functionally distinct, eliciting inflammatory and tolerant T cell responses. We investigated whether 4-1BB ligand (4-1BBL), a member of the tumor necrosis factor (TNF) family, is involved in the maturation process to mature myeloid DCs during in vitro DC differentiation from immature DCs derived from human umbilical cord blood (CB) CD34(+) progenitor cells. Enhanced levels of CD11c as well as immunostimulatory molecules such as CD86, MHC class II, and 4-1BBL were induced in response to 4-1BBL stimulation. These changes were accompanied by noticeable morphological transition from nonadherent to adherent myeloid-like DCs. Stimulation of 4-1BBL on DCs with 4-1BB-Fc or with 4-1BB-transfected Jurkat cells resulted in acquisition of capacity for the immature DCs to produce interleukin-12 (IL-12). This suggests that 4-1BBL may be an important mediator for maturation of CD11c(+) myeloid DCs, information of possible relevance for the design of DC-based vaccines with enhanced activity.  相似文献   

4.
K46J B lymphomas express a T cell costimulatory activity that is not inhibited by CTLA-4Ig, anti-B7-1, anti-B7-2, anti-intercellular adhesion molecule 1 or antibodies to heat stable antigen. In this paper we report that this costimulatory activity is mediated at least in part by 4-1BB ligand, a member of the tumor necrosis factor (TNF) gene family that binds to 4-1BB, a T cell activation antigen with homology to the TNF/nerve growth factor receptor family. A fusion protein between 4-1BB and alkaline phosphatase (4-1BB-AP) blocks T cell activation by K46J lymphomas in both an antigen-specific system and with polyclonally (anti-CD3) activated T cells. 4-1BB-AP also blocks antigen presentation by normal spleen cells. When the antigen- presenting cells express B7 molecules as well as 4-1BB ligand, we find that B7 molecules and 4-1BB-AP both contribute to T cell activation. These data suggest that 4-1BB ligand plays an important role in costimulation of IL-2 production and proliferation by T cells. The B lymphoma M12 expresses low levels of 4-1BB-L but can be induced to express higher levels by treatment of the B cells with cAMP, which also induces B7-1 and B7-2 in these cells. Thus cAMP appears to coordinately induce several costimulatory molecules on B cells.  相似文献   

5.
Costimulation is an essential step in T-cell activation and hence, represents an important aspect in cancer immunotherapy. 4-1BB, a member of the tumor necrosis factor receptor family, has gained particular interest as a costimulatory molecule. Here, we investigated the potential of a targeted activation of 4-1BB-mediated costimulation at the tumor site by generating a recombinant antibody-cytokine fusion protein composed of a single-chain antibody fragment (scFv36) specific for the tumor stromal antigen fibroblast activation protein (FAP) and the extracellular domain of the 4-1BB ligand (4-1BBL). The scFv36-4-1BBL fusion protein is a homotrimeric molecule that binds specifically to FAP and the receptor 4-1BB. T-cell costimulation was demonstrated by interferon-gamma release of peripheral blood mononuclear cells cocultured with FAP-expressing HT1080 cells upon T-cell receptor triggering by monoclonal anti-CD3 antibody. Costimulatory activity of the scFv36-4-1BBL fusion protein was concentration dependent, ligand-specific, and substantially constrained to FAP-expressing target cell binding. Furthermore, scFv36-4-1BBL enhanced T-cell activation when the bispecific antibody scDb33CD3 (specific for FAP and CD3) was used as primary stimulus. Thus, target cell-dependent costimulation with scFv36-4-1BBL constitutes a new option to enhance T-cell activation by bispecific antibodies or antigen-dependent T-cell receptor triggering and should be useful to improve T cell-mediated antitumor responses.  相似文献   

6.
Xu DP  Sauter BV  Huang TG  Meseck M  Woo SL  Chen SH 《Gene therapy》2005,12(20):1526-1533
We have previously shown that the local-membrane bound 4-1BB ligand and IL-12 gene transfer induced a significant antitumor response in a mouse colon carcinoma model. However, a high viral dose was required in order to achieve the best efficacy. In this study, we hypothesize that the systemic administration of soluble Ig-4-1BB ligand can give rise to better T-cell immune activation than local gene delivery. With potential clinical applications in mind, we further compare whether the natural 4-1BB ligand fused to mouse IgG2a (Ig-4-1BBL) would be as effective as the agonistic anti-4-1BB antibody. The dimeric form of Ig-4-1BBL was purified from HeLa cells transduced with a recombinant adenovirus (ADV/Ig-4-1BBL) expressing Ig-4-1BBL. Functional activity was confirmed by the ligand's ability to bind to activated splenic T cells or bone marrow (BM)-derived dendritic cells (DCs) that express 4-1BB receptor. The soluble Ig-4-1BBL efficiently costimulated CD3-activated T-cell proliferation in vitro. More importantly, it induced tumor-specific CTLs as effectively as the agonistic anti-4-1BB antibody. When combined with IL-12 gene transfer, systemic administration of the Ig-4-1BBL proved to be more potent than local gene delivery. In addition, the Ig-4-1BBL is as potent as the agonistic anti-4-1BB antibody for the treatment of hepatic MCA26 colon carcinoma, resulting in 50% complete tumor regression and long-term survival. In long-term surviving mice, both treatment modalities induced persistent tumor-specific CTL activity. In summary, these results suggest that the systemic delivery of Ig-4-1BBL can generate a better antitumor response than local gene delivery. Ig-4-1BBL had equivalent biological functions when compared to the agonistic anti-4-1BB antibody. Thus, soluble 4-1BBL dimmer can be developed as a promising agent for cancer therapy in humans.  相似文献   

7.
Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti-4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4(+) T cells and OX40L was expressed on CD11c(+) dendritic cells in the popliteal lymph nodes of L. major-infected BALB/c mice. In vitro stimulation of these CD4(+) T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti-L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40-OX40L interaction in Th2 development in vivo.  相似文献   

8.
CD137 (4-1BB) is a TNFR superfamily member that mediates the costimulatory signal resulting in T cells and NK cells proliferation and cytokines production, but the effects of CD137 signaling on CD3+CD56+ cell subpopulation have not been well-documented. The aim of this study was to investigate the effects of CD137 signaling on regulation of CD3+CD56+ cell function. Anti-CD137 mAb or mouse IgG1 isotype control was added to CIK cell culture to determine the effects of proliferation and anti-tumor effects on CD3+CD56+ cells. We observed that anti-CD137 mAb could dramatically promote proliferation of CIK cells. And CD137–CIK cells and CD3+CD56+ cell subpopulation within them possessed higher ability to kill tumor cell line A549. The SCID mice engrafted with A549 cells and treated with CD137–CIK cells have prolonged survival. Further studies revealed that the percentages of CD3+CD56+ cells were elevated significantly in CD137–CIK cells. The expression of NKG2D was up-regulated on CD3+CD56+ cells from CD137–CIK cells. The expression of IFN-γ, IL-2 and TNF-α increased significantly whereas the production of TGF-β1, IL-4 and IL-10 decreased in CD3+CD56+ cells from CD137–CIK cells. In addition, anti-CD137 mAb can elevate the capacity of CD3+CD56+ cells to induce CD4+ Th1 responses. We further showed that the anti-CD137 mAb also had the same effects on CD3+CD56+ cells expanded from the PBMCs of patients with NSCLC. We concluded that CD137 signaling could enhance the abilities of CIK cells to kill tumor cells in vitro and in vivo via increasing the proportion of CD3+CD56+ cells and their cytotoxicity. Furthermore, CD137 signaling can elevate the capacity of CD3+CD56+ cells to induce CD4+ Th1 responses which may enhance their anti-tumor activity indirectly. Taken together, our studies could be considered as valuable in CIK cells-based cancer immunotherapy.  相似文献   

9.
Tumor necrosis factor receptor (TNFR)–associated factor 2 (TRAF2) and TRAF1 were found as components of the TNFR2 signaling complex, which exerts multiple biological effects on cells such as cell proliferation, cytokine production, and cell death. In the TNFR2-mediated signaling pathways, TRAF2 works as a mediator for activation signals such as NF-κB, but the role of TRAF1 has not been previously determined. Here we show in transgenic mice that TRAF1 overexpression inhibits antigen-induced apoptosis of CD8+ T lymphocytes. Our results demonstrate a biological role for TRAF1 as a regulator of apoptotic signals and also support the hypothesis that the combination of TRAF proteins in a given cell type determines distinct biological effects triggered by members of the TNF receptor superfamily.  相似文献   

10.
The effects of recombinant IFN-alpha on the production of IL-5 by human CD4+ T cells were first analyzed on resting CD4+ T cells purified from normal PBMC and stimulated either with a combination of PMA and anti-CD28 mAb or anti-CD3 mAb cross-linked on B7-1/CD32-transfected mouse fibroblasts. We found that IFN-alpha profoundly inhibited in a dose-dependent manner IL-5 production by resting CD4+ T cells whereas IL-10 was upregulated in both systems. The addition of a neutralizing anti-IL-10 mAb to PMA and anti-CD28 mAb upregulated IL-5 production by resting CD4+ T cells but did not prevent IFN-alpha-induced IL-5 inhibition. We then analyzed the effect of IFN-alpha on the production of cytokines by differentiated type 2 helper (Th2) CD4+CD3- cells isolated from peripheral blood of two patients with the hypereosinophilic syndrome. In both cases, IFN-alpha markedly inhibited IL-5 production while it induced mild upregulation of IL-4 and IL-10. Finally, the inhibitory effect of IFN-alpha on IL-5 production was confirmed on a panel of Th2 and Th0 clones generated in vitro. In 2 out of 6 clones, IL-5 inhibition was associated with upregulation of IL-4 and IL-10. We conclude that IFN-alpha selectively downregulates IL-5 synthesis by human CD4+ T cells.  相似文献   

11.
Activation via the T lymphocyte cell surface molecule CD28 provides a potent amplification signal for interleukin 2 (IL-2) production in several in vitro systems. The B lymphocyte activation antigen, B7/BB1, is a natural ligand for CD28. Here we investigate the role of CD28 and B7/BB1 in primary activation of CD4+ T lymphocytes stimulated with allogeneic B lymphoblastoid cell lines. A subset of peripheral CD4+ T cells that is unresponsive to crosslinking of CD3/T cell receptor (TCR) with CD3 monoclonal antibody (mAb) does proliferate in response to allogeneic B lymphoblasts. TCR binding to allogeneic major histocompatibility complex antigens was an absolute requirement for activation of these cells because mAbs to either CD3 or human histocompatibility leukocyte antigen (HLA) class II completely inhibited activation. CD28 and B7/BB1 antibodies inhibited T cell proliferation 90% and 84%, respectively. Similar results were obtained with the total CD4+ T lymphocyte population. Crosslinking of HLA-DR antigens on small, resting B cells induced rapid expression of B7/BB1, which peaked at 6 h and returned to baseline levels within 18 h. These data demonstrate that CD28-B7/BB1 binding provides an important early second signal for alloactivation of CD4+ T lymphocyte by B lymphoblasts. The results also suggest that T cells interacting with allogeneic resting B cells may induce B7/BB1 expression in the alloantigen-presenting cell as a consequence of interaction between the TCR and class II molecules.  相似文献   

12.
CD4(+)CD25(+) T cells have been identified as a population of immunoregulatory T cells, which mediate suppression of CD4(+)CD25(-) T cells by cell-cell contact and not secretion of suppressor cytokines. In this study, we demonstrated that CD4(+)CD25(+) T cells do produce high levels of transforming growth factor (TGF)-beta1 and interleukin (IL)-10 compared with CD4(+)CD25(-) T cells when stimulated by plate-bound anti-CD3 and soluble anti-CD28 and/or IL-2, and secretion of TGF-beta1 (but not other cytokines), is further enhanced by costimulation via cytotoxic T lymphocyte-associated antigen (CTLA)-4. As in prior studies, we found that CD4(+)CD25(+) T cells suppress proliferation of CD4(+)CD25(-) T cells; however, we observed here that such suppression is abolished by the presence of anti-TGF-beta. In addition, we found that CD4(+)CD25(+) T cells suppress B cell immunoglobulin production and that anti-TGF-beta again abolishes such suppression. Finally, we found that stimulated CD4(+)CD25(+) T cells but not CD4(+)CD25(-) T cells express high and persistent levels of TGF-beta1 on the cell surface. This, plus the fact that we could find no evidence that a soluble factor mediates suppression, strongly suggests that CD4(+)CD25(+) T cells exert immunosuppression by a cell-cell interaction involving cell surface TGF-beta1.  相似文献   

13.
To investigate the function of NF-κB RelA (p65), we generated mice deficient in this NF-κB family member by homologous recombination. Mice lacking RelA showed liver degeneration and died around embryonic day 14.5. To elucidate the role of RelA in lymphocyte development and function, we transplanted fetal liver cells of 13.5-day embryos from heterozygote matings into irradiated SCID mice. Within 4 weeks, both T and B cells had developed in the SCID mice receiving relA−/− fetal liver transplants, similar to the relA+/+ and +/− cases. T cells were found to mature to Thy-1+/TCRαβ+/CD3+/CD4+ or CD8+, while B cells had the ability to differentiate to IgM+/B220+ and to secrete immunoglobulins. However, the secretion of IgG1 and IgA was reduced in RelA-deficient B cells. Furthermore, both T and B cells lacking RelA showed marked reduction in proliferative responses to stimulation with Con A, anti-CD3, anti-CD3+anti-CD28, LPS, anti-IgM, and PMA+calcium ionophore. The results indicate that RelA plays a critical role in production of specific Ig isotypes and also in signal transduction pathways for lymphocyte proliferation.  相似文献   

14.
We have shown that interleukin-12 (IL-12) generated a strong, albeit transient, anti-tumor response, mostly mediated by natural killer (NK) cell. T cell participation, in addition to NK cells, was essential for persistence of the anti-tumor response. Ligation of 4-1BB, a co-stimulatory receptor expressed on activated T cells, is known to amplify T cell-mediated immunity. In this study, we compared the effect of a systemically delivered agonistic anti-4-1BB monoclonal antibody (anti-4-1BB mAb) with intra-tumoral adenoviral-mediated gene transfer of the 4-1BB ligand (ADV/4-1BBL) to liver metastases in a syngeneic animal model of breast cancer. Both treatments induced a dramatic regression of pre-established tumor. When combined with intra-tumoral delivery of the IL-12 gene, both anti-4-1BB mAb and ADV/4-1BBL were synergistic and led to survival rates of 87% and 78%, respectively. The anti-tumor immunity is mainly mediated by CD4+ T cells in IL-12 plus 4-1BB ligand-treated animals, and CD8+ T cells in IL-12 plus anti-4-1BB mAb-treated animals. However, only long-term survivors after treatment with IL-12 and 4-1BBL genes have showed significantly potent, systemic, and tumor-specific T cell-mediated immunity.  相似文献   

15.
Classical studies have demonstrated that in vitro priming of naive CD4 T cells to become T helper (Th)2 cells is strikingly dependent on interleukin (IL)-4, whereas priming for interferon (IFN)gamma production is IL-12/IFNgamma-dependent. Therefore, it was quite surprising when we noted that priming of naive C57BL/6 CD4(+) cells to become IL-4 producers was substantially inhibited by the addition of anti-IFNgamma antibodies. This was true using immobilized anti-CD3 and anti-CD28 antibodies or soluble anti-CD3/anti-CD28 and antigen-presenting cells in the presence or absence of added IL-4. Priming of CD4 T cells from IFNgamma(-/-) C57BL/6 mice with immobilized anti-CD3 and anti-CD28 resulted in limited production of IL-4, even with the addition of 1,000 U/ml of IL-4. Titrating IFNgamma into such cultures showed a striking increase in the proportion of T cells that secreted IL-4 upon challenge; this effect was completely IL-4-dependent in that it was blocked with anti-IL-4 antibody. Thus, IFNgamma plays an unanticipated but substantial role in Th2 priming, although it is an important Th1 cytokine, and under certain circumstances a Th1 inducer.  相似文献   

16.
17.
The adoptive transfer of naive CD4+ T cell receptor (TCR) transgenic T cells was used to investigate the mechanisms by which the adjuvant lipopolysaccharide (LPS) enhance T cell clonal expansion in vivo. Subcutaneous administration of soluble antigen (Ag) resulted in rapid and transient accumulation of the Ag-specific T cells in the draining lymph nodes (LNs), which was preceded by the production of interleukin (IL)-2. CD28-deficient, Ag-specific T cells produced only small amounts of IL-2 in response to soluble Ag and did not accumulate in the LN to the same extent as wild-type T cells. Injection of Ag and LPS, a natural immunological adjuvant, enhanced IL-2 production and LN accumulation of wild-type, Ag-specific T cells but had no significant effect on CD28-deficient, Ag-specific T cells. Therefore, CD28 is critical for Ag-driven IL-2 production and T cell proliferation in vivo, and is essential for the LPS-mediated enhancement of these events. However, enhancement of IL-2 production could not explain the LPS-dependent increase of T cell accumulation because IL-2–deficient, Ag-specific T cells accumulated to a greater extent in the LN than wild-type T cells in response to Ag plus LPS. These results indicate that adjuvants improve T cell proliferation in vivo via a CD28-dependent signal that can operate in the absence of IL-2.  相似文献   

18.
The signaling adaptor TNFR-associated factor 1 (TRAF1) is specifically lost from virus-specific CD8 T cells during the chronic phase of infection with HIV in humans or lymphocytic choriomeningitis virus (LCMV) clone 13 in mice. In contrast, TRAF1 is maintained at higher levels in virus-specific T cells of HIV controllers or after acute LCMV infection. TRAF1 expression negatively correlates with programmed death 1 expression and HIV load and knockdown of TRAF1 in CD8 T cells from viral controllers results in decreased HIV suppression ex vivo. Consistent with the desensitization of the TRAF1-binding co-stimulatory receptor 4-1BB, 4-1BBL-deficient mice have defects in viral control early, but not late, in chronic infection. TGFβ induces the posttranslational loss of TRAF1, whereas IL-7 restores TRAF1 levels. A combination treatment with IL-7 and agonist anti-4-1BB antibody at 3 wk after LCMV clone 13 infection expands T cells and reduces viral load in a TRAF1-dependent manner. Moreover, transfer of TRAF1(+) but not TRAF1(-) memory T cells at the chronic stage of infection reduces viral load. These findings identify TRAF1 as a potential biomarker of HIV-specific CD8 T cell fitness during the chronic phase of disease and a target for therapy.  相似文献   

19.
Apoptosis of peripheral blood T cells has been suggested to play an important role in the pathogenesis of human immunodeficiency virus (HIV) infection. Spontaneous, Fas (CD95)–induced and activation-induced T cell apoptosis have all been described in peripheral blood mononuclear cell cultures of HIV-infected individuals. We have previously shown that activation-induced T cell apoptosis is Fas independent in peripheral blood T cells from HIV+ individuals. In this study, we extend and confirm these observations by using an inhibitor of interleukin-1β converting enzyme (ICE) homologues. We show that z-VAD-fmk, a tripeptide inhibitor of ICE homologues, can inhibit Fas-induced apoptosis of peripheral blood CD4+ and CD8+ T cells from asymptomatic HIV+ individuals. z-VAD-fmk also inhibited activation (anti-CD3)– induced CD4+ and CD8+ T cell apoptosis (AICD) in some but not all asymptomatic HIV+ individuals. Apoptosis was measured by multiparameter flow cytometry. The z-VAD-fmk inhibitor also enhanced survival of T cells in anti-Fas or anti-CD3 antibody-treated cultures and inhibited DNA fragmentation. AICD that could be inhibited by z-VAD-fmk was Fas independent and could be inhibited with a blocking monoclonal antibody to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), a recently described member of the TNF/nerve growth factor ligand family. The above findings show that Fas-induced T cell apoptosis is ICE dependent in HIV infection. AICD can be blocked by ICE inhibitors in some patients, and this AICD is mediated by TRAIL. These results show that TRAIL can be a mediator of AICD in T cells. These different mechanisms of peripheral blood T cell apoptosis may play different roles in the pathogenesis of HIV infection.  相似文献   

20.
T cells respond to peptide antigen in association with MHC products on antigen-presenting cells (APCs). A number of accessory or costimulatory molecules have been identified that also contribute to T cell activation. Several of the known accessory molecules are expressed by freshly isolated dendritic cells, a distinctive leukocyte that is the most potent APC for the initiation of primary T cell responses. These include ICAM-1 (CD54), LFA-3 (CD58), and class I and II MHC products. Dendritic cells also constitutively express the accessory ligand for CD28, B7/BB1, which has not been previously identified on circulating leukocytes freshly isolated from peripheral blood. Dendritic cell expression of both B7/BB1 and ICAM-1 (CD54) increases after binding to allogeneic T cells. Individual mAbs against several of the respective accessory T cell receptors, e.g., anti-CD2, anti-CD4, anti-CD11a, and anti-CD28, inhibit T cell proliferation in the dendritic cell-stimulated allogeneic mixed leukocyte reaction (MLR) by 40-70%. Combinations of these mAbs are synergistic in achieving near total inhibition. Other T cell-reactive mAbs, e.g., anti-CD5 and anti-CD45, are not inhibitory. Lymphokine secretion and blast transformation are similarly reduced when active accessory ligand-receptor interactions are blocked in the dendritic cell-stimulated allogeneic MLR. Dendritic cells are unusual in their comparably higher expression of accessory ligands, among which B7/BB1 can now be included. These are pertinent to the efficiency with which dendritic cells in small numbers elicit strong primary T cell proliferative and effector responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号