首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In man, CYP2C19, a liver enzyme, plays an important role in the metabolism of several drugs. Mutation of the CYP2C19 gene results in a poor metaboliser phenotype. S-Mephenytoin hydroxylation genetic polymorphism is due to two mutations of the CYP2C19 gene, namely CYP2C19*2, located in exon 5, and CYP2C19*3, located in exon 4. CYP2C18 is also polymorphically expressed. The mutant alleles of this enzyme are CYP2C18m1, located in exon 2 and CYP2C18m2, located in the 5'-flanking region. We have developed an allele-specific TaqMan polymerase chain reaction (PCR) assay with which to detect CYP2C18 mutant alleles. This assay combines hybridization of the TaqMan probe and allele-specific amplification primers to the target DNA. The TaqMan probe is labelled with 6-carboxyfluorescein at the 5' end and 6-carboxytetramethylrhodamine together with a phosphate at the 3' end. Genotypes are separated according to the different threshold cycles of the wild type and mutant primers. We applied this procedure to DNA extracted from the blood or saliva of 144 healthy Japanese volunteers. The wt/wt, wt/m1, wt/m2, m1/m1, m1/m2 and m2/m2 genotypes of the CYP2C18 alleles detected by the assay were consistent with the results obtained from restriction enzyme cleavage. In accordance with a previous report, the genotypes of CYP2C18m1 and CYP2C18m2 coincided with those of CYP2C19*3 and CYP2C19*2, respectively. Therefore, detection of CYP2C18 mutant alleles also allows that of CYP2C19 mutant alleles. Among 19 poor metabolisers, eight showed the homozygous CYP2C19*2/CYP2C19*2, two the homozygous CYP2C19*3/CYP2C19*3 and nine the compound heterozygous CYP2C19*2/CYP2C19*3 genotype. We found the allele-specific TaqMan PCR assay rapid, simple and cost-effective, as well as suitable for high-throughput applications in a routine laboratory. This assay allows the fast and reliable detection of inherited disorders that might influence diagnosis and treatment.  相似文献   

2.
AIMS: To determine CYP2C19 and CYP2D6 activity in patients with multiple sclerosis (MS) before and during interferon (IFN)-beta treatment. METHODS: CYP2C19 and CYP2D6 activities were assessed using the probe drugs mephenytoin and debrisoquine, respectively. Urinary mephenytoin (S/R) and debrisoquine (debrisoquine/hydroxy-debrisoquine) metabolic ratios (MR) were determined in 10 otherwise healthy Caucasian multiple sclerosis (MS) patients in the initial stage of the disease, prior to and 1 month after commencing treatment with IFN-beta (Avonex, Rebif or Betaferon). In addition, CYP2C19*2, CYP2C19*3, CYP2D6*3, CYP2D6*4, and CYP2D6*5 genotyping was performed. RESULTS: There was no significant difference in the (S)/(R) mephenytoin ratio (mean difference 0.04; 95% CI -0.03, 0.11) or the debrisoquine MR (mean difference 0.29; 95% CI -0.44, 1.02) before and during regular IFN-beta treatment in extensive metabolizers (EM) (P = 0.5 and P = 0.4 for the respective probe drugs; n = 9 subjects). There were also no differences between the different IFN-beta treatments (P = 0.6 for the (S)/(R) mephenytoin ratio and P = 0.7 for the debrisoquine MR; anova; n = 10). CONCLUSIONS: IFN-beta treatment did not affect the activity of CYP2C19 or CYP2D6. The results suggest that it is safe to administer CYP2C19 or CYP2D6 substrates, without dose adjustment, to patients treated with IFN-beta.  相似文献   

3.
AIMS: The goal of this study was to determine the frequencies of important allelic variants of CYP2C9, CYP2C19, CYP2E1 and DPYD in the Egyptian population and compare them with the frequencies in other ethnic populations. METHODS: Genotyping of CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), c2 variant of CYP2E1 and DPYD alleles (*2 A-*6 ) was carried out in a total of 247 unrelated Egyptian subjects. An allele-specific fluorogenic 5' nuclease chain reaction assay was applied for detection of CYP2C9 and CYP2C19 variants. Other variants of the CYP2E1 and DPYD genes were determined using polymerase chain reaction (PCR)-restriction fragment length polymorphism and allele-specific PCR based assays. RESULTS: CYP2C9 allele frequencies in 247 Egyptian subjects were 0.820 for CYP2C9*1, 0.120 for CYP2C9*2 and 0.060 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.888, 0.110 and 0.002, respectively. CYP2C19*3, which is considered an Asian mutation, was detected in one subject (0.40%) who was heterozygous (*1/*3). Two subjects (0.80%) were homozygous for *2/*2, while no compound heterozygotes (*2/*3) or homozygotes for *3 were detected. For CYP2E1, only four subjects (1.70%) had the rare c2 variant, expressed heterozygously, giving an allele frequency of 0.009. Five variants of DPYD were analysed, with no splice sites (*2 A) or DeltaC1897 (*3) found in this population. The frequencies of other variants were 0.028, 0.115 and 0.090 for *4, *5 and *6, respectively. CONCLUSIONS: Comparing our data with that obtained in several Caucasian, African-American and Asian populations, we found that Egyptians resemble Caucasians with regard to allelic frequencies of the tested variants of CYP2C9, CYP2C19, CYP2E1 and DPYD. Our results may help in better understanding the molecular basis underlying ethnic differences in drug response, and contribute to improved individualization of drug therapy in the Egyptian population.  相似文献   

4.
AIM: To establish a method suitable for diagnostic genotyping of CYP2D6 alleles by DNA sequencing. METHODS: Initial PCR reactions were performed to specifically amplify exons 3, 4, 5 and 6 of the CYP2D6 gene using primers previously published. New primers were used to identify *2, *3, *4, *6, *7, *8, *9 and *41 in 2 sequencing reactions. Additional primers were designed for reverse sequencing in samples with 1 or 3 b.p. deletions. Previously published assays were used to detect *5, *10 and *16 alleles to complete genotype assignment. RESULTS: We reliably detected the nonfunctional alleles, *3, *4, *6, *7 and *8, which are associated with the poor metabolizer phenotype, and 2 important alleles associated with decreased enzyme activity, *9 and *41. Observed allele frequencies were comparable to those found previously in Caucasian populations. CONCLUSION: CYP2D6 genotype has been shown in previous clinical studies to be a good predictor of CYP2D6 phenotype and, therefore, related to therapeutic response and the risk of drug toxicity. This genotyping method is simple and reliable, and, therefore, can be routinely performed on an isolated patient sample, providing a relatively quick turnaround time needed for clinical practice. In addition, the simultaneous drawing of blood with the commencement of drug therapy will allow dosage adjustment on the basis of the CYP2D6 genotype to reduce the risk of adverse drug reactions.  相似文献   

5.
AIMS: CYP2D6 and CYP2C19 are polymorphically expressed enzymes that show marked interindividual and interethnic variation. The aim of this study was to determine the frequency of the defective alleles in CYP2D6 and CYP2C19 in Africans and to test whether the genotype for CYP2C19 is better correlated with the proguanil/cylcoguanil ratio than the mephenytoin S/R ratio. METHODS: Two hundred and sixteen black Tanzanians were phenotyped for CYP2D6 with the use of sparteine, and for CYP2C19 with the use of mephenytoin and proguanil. Of these 196 subjects were also genotyped for CYP2D6 (including the CYP2D6*1, CYP2D6*3 and CYP2D6*4 alleles) and 195 were genotyped for CYP2C19 (including the CYP2C19*1, CYP2C19*2 and the CYP2C19*3 alleles). Furthermore 100 subjects were examined for the allele duplication in CYP2D6, leading to ultrarapid metabolism, with long PCR. RESULTS: The sparteine metabolic ratio (MR) was statistically significantly higher in the Tanzanian group of homozygous, extensive metabolizers compared to a historical control group of white Danish extensive metabolizers. Only one poor metabolizer for CYP2D6 (MR=124 and genotype CYP2D6*1/CYP2D6*4 ) was found. The gene frequencies were 0.96 for the CYP2D6*1 allele and 0.04 for the CYP2D6*4 allele. No CYP2D6*3 alleles were found. Nine subjects had an allele duplication in CYP2D6 (9%). For CYP2C19 there were seven subjects (3. 6%) who were phenotyped as poor metabolizers, but only three subjects (1.5%) had a genotype (CYP2C19*2/CYP2C19*2 ) indicative of poor metabolism. The gene frequencies were 0.90 for the CYP2C19*1 allele and 0.10 for the CYP2C19*2 allele. No CYP2C19*3 alleles were found. The mephenytoin S/R ratios were not bimodally distributed. CONCLUSIONS: Both the genotyping and phenotyping results show that there is a substantial difference between an African black population and a Caucasian population in the capacity to metabolize drugs via CYP2D6 and CYP2C19.  相似文献   

6.
AIM: This study was performed in a sample of the Dutch population to estimate the prevalence of noncoding mutations of CYP2D6 and CYP2C19 as obtained by genotyping. In addition, the predictability of the genotyping strategy was assessed. METHODS: The CYP2D6 and CYP2C19 status of 765 unrelated healthy volunteers was evaluated. Dextromethorphan and mephenytoin were used for determining the phenotypes. Genotyping was performed by PCR on the most common null alleles for CYP2D6 (except for CYP2D6*5) and CYP2C19. RESULTS: For CYP2D6, the most frequently observed null allele was CYP2D6*4, which accounted for 89% of all null alleles. The prevalence of poor metabolizers (PMs) in healthy volunteers was 5.5%, which was lower than that found previously by phenotyping (8.0%; chi2 test P = 0.009). For CYP2C19*2 and CYP2C19*3, the frequencies were 13.3% and 0.2%, respectively. The S:R ratio was significantly higher in heterozygous subjects (S:R ratio 0.22) than in homozygous wild type subjects (S:R ratio 0.11). Comparison of all subjects below 45 years showed a significantly higher S:R ratio in the female ones compared to the male ones, especially in heterozygous subjects (S:R ratio 0.39 vs. 0. 19; P < 0.001). CONCLUSIONS: The frequencies of CYP2D6 and CYP2C19 allelic variants were in accordance with other European populations. Assessment of *3, *4, *6, *7, and *8 alleles for CYP2D6, and *2 and *3 for CYP2C19, predicted the phenotype with an accuracy of over 98.6%. A gene-dose effect was found for CYP2C19. CYP2C19 heterozygous female subjects had a decreased CYP2C19 activity that may be at least partly due to the use of oral contraceptives.  相似文献   

7.
Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.  相似文献   

8.
目的对中国汉族、回族健康人群细胞色素P450(CYP)3A4、CYP2C9、CYP2C19及CYP2D6进行基因多态性分析,比较汉族和回族健康人群基因表型和基因频率分布。方法多聚酶链反应-限制性片段长度多态性(PCR-RFLP)法,对300名志愿者的几种基因进行分型。结果汉族、回族CYP3A4*5等位基因频率均为0,CYP3A4*18等位基因频率分别为0.18,0.19;汉族、回族CYP2C9*2等位基因频率分别为0.01,0.05;CYP2C9*13等位基因频率均为0;汉族、回族CYP2C19*2等位基因频率分别为0.39,0.50;CYP2C19*3等位基因频率分别为0.05,0.05;汉族、回族CYP2D6*10等位基因频率分别为0.57,0.39。结论汉族、回族健康人群的CYP3A4*18、CYP2C9*2、CYP2C19*2、CYP2C19*3均没有显著性差异;在汉族、回族健康人群中未发现CYP3A4*5和CYP2C9*13突变;汉族、回族CYP2D6*10等位基因频率有显著性差异(P<0.01);回族人群CYP2D6中速代谢型(*10/*10)频率为13.4%,明显低于汉族的33.1%(P<0.01)。  相似文献   

9.
The aim of this study was to evaluate the pharmacogenetic variability in the disposition of carvedilol in the Japanese population. Five or 10 mg of carvedilol was orally administered to 54 healthy Japanese subjects (22-44 years old), and blood samples were taken at 2 and 6 h after dosing. We determined the polymorphic alleles of CYP2D6, CYP2C9, CYP2C19, CYP3A5, UGT2B7, and MDR1 in each subject. The whole blood concentration of R- and S-carvedilol was measured by an HPLC method. The pharmacokinetic parameters in individual subjects were estimated by the Bayesian method using the nonlinear mixed effects model (NONMEM) program. We then examined the effect of the genetic polymorphisms on the variability in the pharmacokinetics of carvedilol using a multiple regression analysis. The oral clearance (CL/F) and also apparent volume of distribution (V/F) of both enantiomers were significantly lower in the subjects with the CYP2D6*10 allele than those with the CYP2D6*1/*1, *1/*2, or *2/*2 genotype, confirming our previous finding that the bioavailability (F) and systemic clearance (CL) of R- and S-carvedilol in the liver is significantly altered in Japanese with the CYP2D6*10 allele. On the other hand, CYP2C9*3, CYP2C19*2, CYP2C19*3, CYP3A5*3, UGT2B7*2, and MDR1 C3435T did not significantly affect the pharmacokinetics of carvedilol in Japanese subjects.  相似文献   

10.
Drug lag, recently discussed extensively in Japan, can be divided into two phases: clinical development time and application review time. The former factor is still an important problem that might be improved by promoting multi-regional clinical trials and considering the results from other similar populations with Japanese, such as Koreans and Chinese. In this review, we compare the allelic or genotype frequencies of 30 relatively common functional alleles mainly between Eastern Asians and Europeans as well as among 3 major populations in Eastern Asian countries, Japan, Korea, and China, in 12 pharmacokinetics (PK)/pharmacodynamics (PD)-related genes; CYP2C9 (*2 and *3), CYP2C19 (*2, *3 and *17), 13 CYP2D6 haplotypes including *4, *5 and *10, CYP3A5 (*3), UGT1A1 (*28 and *6), NAT2 (*5, *6 and *7), GSTM1 and GSTT1 null genotypes, SLCO1B1 521T>C, ABCG2 421C>A, and HLA-A*31:01 and HLA-B*58:01. In this review, differences in allele frequencies (AFs) or genotype frequencies (GFs) less than 0.1 (in the cases of highest AF (GF) ≥0.1) or less than 0.05 (in the cases of lowest AF (GF) <0.1) were regarded as similar. Between Eastern Asians and Europeans, AFs (or GFs) are regarded as being different for many alleles such as CYP2C9 (*2), CYP2C19 (*2, *3 and *17), CYP2D6 (*4 and *10), CYP3A5 (*3), UGT1A1 (*28 and *6), NAT2 (*5*7), GSTT1 null and ABCG2 421C>A. Among the 3 Eastern Asian populations, however, only AFs of CYP2C19*3, CYP2D6*10, HLA-A*31:01 and HLA-B*58:01 are regarded as dissimilar. For CYP2C19*3, the total functional impact on CYP2C19 could be small if the frequencies of the two null alleles CYP2C19*2 and *3 are combined. Regarding CYP2D6*10, frequency difference over 0.1 is observed only between Japanese and Chinese (0.147). Although environmental factors should be considered for PK/PD differences, we could propose that among Japan, Korea, and China, genetic differences are very small for the analyzed common PK-related gene polymorphisms. On the other hand, AFs of the two HLA alleles important for cutaneous adverse drug reactions are diverse even among Eastern Asians and thus should be taken into account.  相似文献   

11.
This study utilized cytochrome P450 2D6 (CYP2D6) genotypes to explain variability of desipramine pharmacokinetics in a cohort of non-poor metabolizer individuals. In an interaction study utilizing desipramine as a probe, genotyping for the CYP2D6*3, *4, *5 and *6 alleles was used to screen out CYP2D6 poor metabolizers. Individuals were categorized according to these and additional alleles (CYP2D6*2, *9, *10, *17, *41 and x2). Genotypes of individuals heterozygous for two or three of *2, *17 and *41 alleles were confirmed by molecular haplotyping. Pharmacokinetic parameters of desipramine were analysed according to CYP2D6 category. Molecular haplotyping was necessary to definitively categorize four of 16 individuals. A subject who had unusually high plasma elimination half-time, exposure and metabolic ratios carried an intermediate metabolizer (IM) *9 allele in combination with a non-functional allele. This combination has a population frequency of less than 1 : 200. Individuals with *1/*1, *1/*2 and *2/*2 genotypes had lower than average plasma elimination half-time, exposure and metabolic ratios. For desipramine, additional genotyping of CYP2D6 IM alleles helped define subgroups of the CYP2D6-positive cohort. This suggests that genotyping for IM alleles will aid in interpretation of clinical trials involving CYP2D6 substrates. Due to the diversity of IM alleles, molecular haplotyping may be necessary to fully characterize CYP2D6 genotype-phenotype relationships.  相似文献   

12.
Cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are major catalysts involved in the metabolism of xenobiotics. The sulfoxidation of the thioether pesticides, phorate, disulfoton, sulprofos, and methiocarb, was investigated. Using pooled human liver microsomes (HLMs), thioether compounds displayed similar affinities; however, phorate and disulfoton displayed higher intrinsic clearance rates than either sulprofos or methiocarb. The sulfoxidation of thioethers by HLMs was found to be predominantly P450-driven (85-90%) compared with FMO (10-15%). Among 16 cDNA-expressed human P450 isoforms and 3 human FMO isoforms examined, the following isoforms and their polymorphisms had the highest rates for sulfoxidation, as follows: phorate, CYP1A2, 3A4, 2B6, 2C9*1, 2C18, 2C19, 2D6*1, and FMO1; disulfoton, CYP1A2, 3A4, 2B6, 2C9*1, 2C9*2, 2C18, 2C19, 2D6*1, and FMO1; sulprofos, CYP1A1, 1A2, 3A4, 2C9*1, 2C9*2, 2C9*3, 2C18, 2C19, 2D6*1, and FMO1; methiocarb, CYP1A1, 1A2, 3A4, 2B6, 2C9*1, 2C19, 2D6*1, and FMO1. Among these isoforms, members of the CYP2C subfamily often had the highest affinities and clearance rates. Moreover, sulfaphenazole, a CYP2C9 competitive inhibitor, inhibited disulfoton sulfoxidation by CYP2C9 (IC50 0.84 microM) as well as in HLMs. Ticlopidine, a CYP2C19 mechanism-based inhibitor, inhibited disulfoton sulfoxidation by CYP2C19 (IC50 after coincubation, 43.5 microM; IC50 after preincubation, 4.3 microM) and also in HLMs. Our results indicate that current models of the substrate binding site of the CYP2C subfamily would not effectively predict thioether pesticide metabolism. Thus, the substrate specificity of CYP2Cs is more extensive than is currently believed, and some reevaluation of structure-activity relationships may be required.  相似文献   

13.
BACKGROUND: The cytochrome P450 isoenzymes CYP2C19 and CYP2D6 catalyze reactions involved in the metabolism of many widely used drugs. Their polymorphisms give rise to important interindividual and interethnic variability in the metabolism and disposition of several therapeutic agents and may cause differences in clinical response to some drugs. Individuals who carry two null alleles of either gene are known as poor metabolizers (PMs), while those who carry more than two copies of the functional CYP2D6 gene are ultrarapid metabolizers (UMs). AIM: The aim of the current study was to genotype Israelis from four different ethnic backgrounds with respect to CYP2C19 and CYP2D6. STUDY DESIGN: Polymorphisms of the CYP2C19 and CYP2D6 genes were determined by genotyping the four ethnic groups using PCR and/or restriction fragment length polymorphism (RFLP) analysis. The groups consisted of three Jewish communities, Yemenite Jews (n = 36), Sephardic Jews (n = 47), Ethiopian Jews (n = 28), and one Arabian population, Bedouins (n = 50). RESULTS: CYP2C19*2 allele frequencies ranged from 12.0 to 19.6% among the four ethnic groups. Within the study population, the CYP2C19*3 gene was only found in one Bedouin individual, in the heterozygous state (CYP2C19*1/*3). In each group, one individual was homozygous for CYP2C19*2, and were predicted to be PMs. The data revealed a high prevalence of CYP2D6*2, *4, *10, *41, and gene duplication, followed by *5 and *17, while *3 was very rare. The frequencies of the CYP2D6*4, *10, and *17 alleles and CYP2D6 gene duplication were significantly different among the four groups. However, the CYP2D6*2, *3, and *5 and *41 alleles showed similar frequencies in the four groups. Four (8.5%) Sephardic Jews and one (2.0%) Bedouin were found with the genotype CYP2D6*4/*4 (two null alleles), and were thus presumably PMs. A total of 15 individuals, distributed in all groups, were found with functional CYP2D6 gene duplications. The frequencies of predicted UMs (duplication of CYP2D6) were 17.8% (5/28) and 12.8% (6/47) in Ethiopian Jews and Sephardic Jews, respectively, which were higher than that of Yemenite Jews (5.6%, 2/36) and Bedouins (4.0%, 2/50). CONCLUSIONS: This is the first study of the CYP2D6 gene polymorphism in Israeli ethnic groups, either Jewish or Arab. Furthermore, this is also the first study of the CYP2C19 gene polymorphism in Jewish or Arab subgroups living in Israel. The frequencies of various alleles for the CYP2D6 gene are significantly different among the ethnic groups in Israel. These new findings may have important clinical implications in administrating drugs metabolized by CYP2D6 and for CYP2D6-related adverse drug reactions in the Israeli population.  相似文献   

14.
Cytochrome P450 2C9 (CYP4502C9) genotyping is useful in dosage adjustments for several critical drug therapies, including warfarin. Potential interference compromising these genotyping results could lead to inappropriate dose adjustments that may result in adverse drug reactions. During routine clinical CYP4502C9 genotyping using multiplex allele-specific primer extension, an ambiguous result was obtained for determination of the CYP2C9 430C>T substitution, which defines the CYP2C9*2 allele. In this one patient sample submitted for CYP2C9 genotyping, the ratio for the variant 430T allele signal to the total signal (C+T alleles) was 0.29. This is above the expected ratio to be classified as wild-type (<0.15) and below the minimum expected ratio (>0.3) when the genotype is heterozygous at the 430 position. The mean fluorescence intensity for the 430C allele was consistent with that observed in subjects who are heterozygous at this nucleotide position. However, the corresponding signal for the 430T allele indicated the absence of the CYP2C9*2 allele. This suggests the assay was not able to determine the correct nucleotide at position 430 for one of the two alleles in this patient. Subsequent sequencing to investigate the allele-specific primer extension failure revealed the presence of a rare C>T nucleotide substitution at position 429. We tested this subject's CYP2C9 genotype using AvaII restriction endonuclease digestion and found that this rare substitution causes false-positive identification of the CYP2C9*2 allele when using this method. We developed a DpnII endonuclease digestion assay to specifically detect the CYP2C9 429C>T substitution and tested 100 randomly selected samples obtained from unrelated individuals. The 429C>T polymorphism was not identified in this sample set, which indicates an allele frequency of less than 2.0% (95% confidence interval, 0.0-1.8%) in the general population. Despite the rarity of this polymorphism, it has important implications for the accuracy of assays using allele-specific primers and the Ava II restriction endonuclease, when it occurs, which are two common methods currently applied for detecting the presence of the CYP2C9*2 allele.  相似文献   

15.
In this study, the authors investigated the relationship between the metabolism of clomipramine (C) and the genotypes of cytochrome P450 (CYP) CYP2C19 and CYP2D6. Fifty-one Japanese patients (18 men and 33 women) were administered 10 to 250 mg/day of C by mouth and maintained on the same daily dose of C for at least 2 weeks to obtain steady-state concentrations. Plasma levels of C and its metabolites N-desmethylclomipramine (DC), 8-hydroxyclomipramine, and 8-hydroxy-N-desmethylclomipramine (HDC) were determined by high-performance liquid chromatography. The allele frequencies of CYP2C19*2, CYP2C19*3, CYP2D6*5, and CYP2D6*10 were 27.5%, 12.8%, 2.9%, and 43.1%, respectively. Subjects who were homozygous for mutated alleles of CYP2C19 showed approximately 75% higher concentrations of C corrected by dose and body weight compared with those who were homozygous for wild-type alleles. Also, subjects who were homozygous for mutated alleles of CYP2C19 showed an approximately 68% higher value of C/DC compared with those who were homozygous for wild-type alleles. No significant difference in the ratio of DC/HDC was observed between subjects who were homozygous for mutated alleles of CYP2D6 and those who were homozygous for wild-type alleles. These results suggest that genotyping CYP2C19 is useful for grossly predicting the risk of getting high plasma concentrations of C and the low individual capacity to demethylate C because there is marked interindividual variability within each genotype. However, the genotyping of CYP2D6 is not useful for predicting the individual capacity to hydroxylate DC.  相似文献   

16.
AIM: A person with Type A personality is an 'aggressor' compared with the rarely harried Type B. Although debrisoquine hydroxylase (CYP2D6) capacity has been associated with personality, no study has specifically investigated its association with personality Type A and B. Therefore the aim of this research was to study the impact of CYP2D6 on Type A and B personality. METHODS: Type A and B personality questionnaires were administered to 48 healthy patients undergoing elective orthopaedic surgery. After obtaining informed consent, patients were genotyped for the various CYP2D6 alleles by allele-specific polymerase chain reaction. Based on the genotypes, patients were grouped as extensive metabolizer (EM)1 (normal) (CYP2D6*1/*1), EM2 (intermediate) (CYP2D6*1/*4, CYP2D6*1/*5, CYP2D6*1/*9 and CYP2D6*1/*10) and EM3 (slow) (CYP2D6*4/*10, CYP2D6*5/*10, CYP2D6*10/*10 and CYP2D6*10/*17). Chi(2) was used to determine the relationship between the groups and personality types. RESULTS: The percentages of patients who were of the EM1, EM2 and EM3 groups were 20.8%, 52.1% and 27.1%, respectively. There was a significant difference (P = 0.032) between the three groups in terms of personality type, in which EM1 showed a tendency to be of personality Type A while EM2 and EM3 tended to be of personality Type B. CONCLUSION: The study suggests that there is a relationship between CYP2D6 activity and Type A and B personality.  相似文献   

17.
目的:考察消癌平注射液等4种抗肿瘤中药注射剂对人肝微粒体CYP450酶7种亚型CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4/5的体外抑制作用。方法:消癌平注射液等4种抗肿瘤中药注射剂分别与7种CYP450酶亚型对应的混合探针药物在人肝微粒体中共同孵育,采用液相色谱-串联质谱(LC—MS/MS)法同时测定这7种探针药物的代谢产物:对乙酰氨基酚、羟基安非他酮、去甲阿莫地喹、4-羟基双氯芬酸、4-羟基美芬妥英、右啡烷和1-羟基咪达唑仑的浓度,分别代表CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4/5的活性,其对CYP450酶亚型的抑制程度以IC50值表示。结果:在体外人肝微粒体孵育体系中,消癌平注射液对CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19和CYP3A4/5的IC50值分别为0.51%、1.34%、1.42%、0.939/6、1.09%和0.75%,艾迪注射液对CYP2C8的IC50值为0.21%;消癌平注射液对CYP2D6的IC10值为2.58%,艾迪注射液对CYP2B6、CYP2C9、CYP2C19和CYP3A4/5的IC50值分别为13.24%、16.31%、4.27%和3.73%,华蟾素注射液对CYP1A2、CYP2B6、CYP2C8和CYP2D6的IC50值分别为3.50%、28.01%、20.32%和32.59%,康艾注射液对CYP1A2、CYP2B6、CYP2C8、CYP2D6和CYP3A4/5的IC50值分别为2.55%、15.32%、1.44%、1.72%和3.99%,均高于各自的日用药量浓度;在测定浓度范围内,艾迪注射液对CYP1A2和CYP2D6,华蟾素注射液对CYP2C9、CYP2C19和CYP3A4/5,康艾注射液对CYP2C9和CYP2C19的活性抑制率均小于50%。结论:在体外,正常剂量下,消癌平注射液对人CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19和CYP3A4/5,艾迪注射液体对人CYP2C8均有明显抑制作用;消癌平注射液对CYP2D6,艾迪注射液对CYP2B6、CYP2C9、CYP2C19和CYP3A4/5,华蟾素注射液对CYP1A2、CYP2B6、CYP2C8和CYP2D6,康艾注射液对CYP1A2、CYP2B6、CYP2C8、CYP2D6和CYP3A4/5,均无明显抑制作用;艾迪注射液对CYP1A2和CYP2D6,华蟾素注射液对CYP2C9、CYP2C19和CYP3A4/5,康艾注射液对CYP2C9和CYP2C19,均无抑制作用。  相似文献   

18.
Genetic variability in cytochrome P-450 (CYP) has the potential to modify pharmacological and toxicological responses to many chemicals. Both CYP2B6 and CYP2C19 are pharmacologically and toxicologically relevant due to their ability to metabolize multiple drugs and environmental contaminants, including the organophosphorus (OP) pesticide chlorpyrifos. The aim of this study was to determine the prevalence of CYP2B6 and CYP2C19 variants in an indigenous Egyptian population (n = 120) that was shown to be occupationally exposed to chlorpyrifos. Further, the genotyping data was compared for Egyptians with previously studied populations to determine between population differences. Allelic frequencies were CYP2B6 1459C > T (3.8%), CYP2B6 785A > G (30.4%), CYP2B6 516G > T (28.8%), CYP2C19 681G > A (3.8%), and CYP2C19 431G > A (0%). The most prevalent CYP2B6 genotype combinations were CYP2B6 *1/*1 (44%), *1/*6 (38%), *6/*6 (8%), and *1/*5 (6%). The frequency of the CYP2C19 genotype combinations were CYP2C19 *1/*1 (93%), *1/*2 (6%), and *2/*2 (1%). The frequency of the CYP2B6 516G > T and CYP2B6 785A > G polymorphisms in this Egyptian cohort is similar to that found North American and European populations but significantly different from that reported for West African populations, while that of CYP2B6 1459C > T is similar to that found in Africans and African Americans. The observed frequency of CYP2C19 681G > A in Egyptians is similar to that of African pygmies but significantly different from other world populations, while CYP2C19 431 G > A was significantly different from that of African pygmies but similar to other world populations.  相似文献   

19.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

20.
Cytochromes P450 (CYP450) plays an extremely vital role in oxidation, reduction, and peroxidation of numerous endogenous and exogenous compounds, like drugs and procarcinogens. Mainly, expression occurs in the liver, in varying polymorphic forms. Therefore, proposed as biomarkers of susceptibility to carcinogenicity and toxicity. The objective of this study was to find the allelic frequencies of CYP3A5*2,*3,*4,*5,*6,*7, CYP3A4*1B, CYP3A7*1C and CYP1A2*1C, *1D, *1E, *1F enzymes in Jordanians, and to compare them with other ethnic groups. We used polymerase chain reaction-restriction fragment length (PCR-RFLP) to genotype alleles, and we calculated frequencies using Hardy Weinberg's equation (HWE). Allelic frequencies results were: CYP3A5*2 (0.2%), CYP3A5*3 (86.6%), CYP3A5*6 (1.7%), CYP*3A5*4,*5*7 not detected, CYP3A4*1B (11.7%), CYP3A7*1C (1.7%). Finally 6.5%, 18.2%, 6.0%, 67.3% were the results of CYP1A2*1C, 1D, 1E and 1F, respectively. In conclusion, genotyping method and results of this study can be adopted or used in pharmacotherapy, toxicity and carcinogenic studies in Jordan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号