首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury.  相似文献   

3.
MicroRNAs (miRNAs) are emerging as potential cancer therapeutics, but effective delivery mechanisms to tumor sites are a roadblock to utility. Here we show that systemically delivered, synthetic miRNA mimics in complex with a novel neutral lipid emulsion are preferentially targeted to lung tumors and show therapeutic benefit in mouse models of lung cancer. Therapeutic delivery was demonstrated using mimics of the tumor suppressors, microRNA-34a (miR-34a) and let-7, both of which are often down regulated or lost in lung cancer. Systemic treatment of a Kras-activated autochthonous mouse model of non-small cell lung cancer (NSCLC) led to a significant decrease in tumor burden. Specifically, mice treated with miR-34a displayed a 60% reduction in tumor area compared to mice treated with a miRNA control. Similar results were obtained with the let-7 mimic. These findings provide direct evidence that synthetic miRNA mimics can be systemically delivered to the mammalian lung and support the promise of miRNAs as a future targeted therapy for lung cancer.  相似文献   

4.
5.
6.
While microRNAs (miRNAs) clearly regulate multiple pathways integral to disease development and progression, the lack of safe and reliable means for specific delivery of miRNAs to target tissues represents a major obstacle to their broad therapeutic application. Our objective was to explore the use of nucleic acid aptamers as carriers for cell-targeted delivery of a miRNA with tumor suppressor function, let-7g. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase Axl (GL21.T), here we describe the development of aptamer-miRNA conjugates as multifunctional molecules that inhibit the growth of Axl-expressing tumors. We conjugated the let-7g miRNA to GL21.T and demonstrate selective delivery to target cells, processing by the RNA interference machinery, and silencing of let-7g target genes. Importantly, the multifunctional conjugate reduced tumor growth in a xenograft model of lung adenocarcinoma. Therefore, our data establish aptamer-miRNA conjugates as a novel tool for targeted delivery of miRNAs with therapeutic potential.  相似文献   

7.
8.
Recent studies have indicated that side population (SP) cells, which are an enriched source of cancer stem cells (CSCs), drive and maintain many types of human malignancies. SP cells have distinguishing biological characteristics and are thought to contribute to metastasis, therapy resistance, and tumor recurrence. In the present study, the miRNA expression profiles of SP cells and non-SP cells were compared using miRNA array analysis. Both let-7 and miR-31 were significantly down-regulated in SP cells compared to non-SP cells. The results were confirmed by real-time PCR. Engineered repression of miR-31 caused marked repression of both lung cancer SP cell and non-SP cell growth in vitro. In contrast, engineered repression of let-7 caused marked promotion of both lung cancer SP and non-SP cells growth in vitro. Cell cycle studies further revealed that reduced miR-31 could inhibit SP cell proliferation by a cell cycle arrest in the G0/G1 phase, whereas reduced let-7 induced SP cell proliferation by accelerating G1/S phase transition. Notably, reduced miR-31 prevented SP cell differentiation, whereas reduced let-7 promoted SP cell differentiation under differentiation conditions. These findings indicate that reduced miR-31 and let-7 are involved in maintaining the balance between differentiation and quiescence in SP cells.  相似文献   

9.
Vaccinia virus, once widely used for smallpox vaccine, has recently been engineered and used as an oncolytic virus for cancer virotherapy. Their replication has been restricted to tumors by disrupting viral genes and complementing them with products that are found specifically in tumor cells. Here, we show that microRNA (miRNA) regulation also enables tumor-specific viral replication by altering the expression of a targeted viral gene. Since the deletion of viral glycoprotein B5R not only decreases viral pathogenicity but also impairs the oncolytic activity of vaccinia virus, we used miRNA-based gene regulation to suppress B5R expression through let-7a, a miRNA that is downregulated in many tumors. The expression of B5R and the replication of miRNA-regulated vaccinia virus (MRVV) with target sequences complementary to let-7a in the 3′-untranslated region (UTR) of the B5R gene depended on the endogenous expression level of let-7a in the infected cells. Intratumoral administration of MRVV in mice with human cancer xenografts that expressed low levels of let-7a resulted in tumor-specific viral replication and significant tumor regression without side effects, which were observed in the control virus. These results demonstrate that miRNA-based gene regulation is a potentially novel and versatile platform for engineering vaccinia viruses for cancer virotherapy.  相似文献   

10.
11.
12.
目的探讨mir-17-5p、mir-92a、let-7b表达水平与非小细胞肺癌顺铂耐药关系。 方法以人非小细胞肺癌细胞系A549及其耐药株A549/DDP为研究对象,采用RT-PCR法检测mir-17-5p、mir-92a及let-7b在细胞中的表达水平,采用cck8检测其细胞存活情况,采用细胞克隆平台方法,检测转染前后细胞的增殖情况,采用流式细胞仪检测转染前后细胞的凋亡情况。 结果(1) A549/DDP细胞mir-17-5p的表达水平是A549细胞的2.11±0.25倍(P<0.05);A549/DDP细胞mir-92a的表达水平是A549细胞的 7.40 ± 1.05 倍(P<0.05);而A549/DDP 细胞let-7b 的表达水平是A549 细胞的(26.54 ± 2.90)%(P<0.05);(2)A549 转染mir-17-5pmimic,mir-92a mimic 以及let-7b inhibitor 后对顺铂的敏感性下降(P<0.05);A549/ddp 转染mir-17-5p inhibitor, mir-92a inhibitor以及let-7b mimic后对顺铂的敏感性增加(P<0.05);(3)A549转染mir-17-5p mimic,mir-92a mimic以及let-7b inhibitor 后,细胞形成克隆集落数量数量多于对照组(P<0.05);而A549/ddp 转染mir-17-5p inhibitor,mir-92a inhibitor 以及 let-7b mimic 后,细胞形成克隆集落数量数量少于对照组(P<0.05);(4)A549 转染mir-17-5p mimic,mir-92a mimic 以及let-7b inhibitor后,细胞凋亡率明显低于对照组(P<0.05);而a549/ddp转染mir-17-5p inhibitor,mir-92a inhibitor以及let-7b mimic后, 细胞凋亡率明显高于对照组(P<0.05)。结论Mir-17-5p、mir-92a表达水平升高,let-7b表达水平下降,可以促进肺癌细胞增殖, 抑制其凋亡以及使肺癌细胞对顺铂敏感性下降。   相似文献   

13.
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion–induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

14.
15.
结直肠癌在我国乃至全球范围发生率和死亡率都居于前列,严重危害着人体的健康,虽然结直肠癌的诊断和治疗技术不断提高,但中晚期结直肠癌患者的生存期仍然不佳,因此需要深入理解结直肠癌的发生发展机制,竞争内源性RNA理论的提出加深了对肿瘤形成机制的理解。竞争内源性RNA理论认为假基因转录本、长链非编码RNA、环状RNA、mRNA能作为竞争性内源性RNA,它们拥有编码蛋白mRNA相同microRNA反应元件,能竞争结合microRNA的结合位点,影响功能蛋白的表达而发挥促癌或抑癌的作用。近来大量研究表明竞争性内源性RNA分子在结直肠癌恶性行为中发挥重要功能,因此有必要对这些研究进行归纳梳理,本文目的在于将这些在结直肠癌中研究的竞争性内源性RNA分子进行归类,并阐述这些分子在结直肠癌中的作用。   相似文献   

16.
Differential expression of microRNA (miRNA) is involved in many human diseases and could potentially be used as a biomarker for disease diagnosis, prognosis, and therapy. However, inconsistency has often been found among differentially expressed miRNAs identified in various studies when using miRNA arrays for a particular disease such as a cancer. Before broadly applying miRNA arrays in a clinical setting, it is critical to evaluate inconsistent discoveries in a rational way. Thus, using data sets from 2 types of cancers, our study shows that the differentially expressed miRNAs detected from multiple experiments for each cancer exhibit stable regulation direction. This result also indicates that miRNA arrays could be used to reliably capture the signals of the regulation direction of differentially expressed miRNAs in cancer. We then assumed that 2 differentially expressed miRNAs with the same regulation direction in a particular cancer play similar functional roles if they regulate the same set of cancer-associated genes. On the basis of this hypothesis, we proposed a score to assess the functional consistency between differentially expressed miRNAs separately extracted from multiple studies for a particular cancer. We showed although lists of differentially expressed miRNAs identified from different studies for each cancer were highly variable, they were rather consistent at the level of function. Thus, the detection of differentially expressed miRNAs in various experiments for a certain disease tends to be functionally reproducible and capture functionally related differential expression of miRNAs in the disease.  相似文献   

17.
Silicosis is a serious occupational disease characterized by pulmonary chronic inflammation and progressive fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells plays a vital role in silicosis. Recent studies discovered a variety of microRNAs (miRNAs) participating in fibrotic diseases. Here, we aimed to explore the function and mechanism of miRNA let-7d in the EMT process in silica-induced alveolar epithelial cells. To detect whether let-7d and its target HMGA2 were involved in silica-induced EMT, we established a silicosis mouse model and found that let-7d was down-regulated and HMGA2 was up-regulated in the silica-treated group. Then we applied an in vitro co-culture system to imitate the EMT process in A549 cells after silica treatment. The down-regulation of let-7d and up-regulation of HMGA2 were also observed in vitro. The knockdown of HMGA2 significantly inhibited the silica-induced EMT. Furthermore, we found that overexpression of let-7d could reduce the expression of HMGA2 and consequently inhibited the silica-induced EMT, whereas inhibition of let-7d increased the expression of HMGA2 and promoted the silica-induced EMT. In conclusion, let-7d negatively regulated silica-induced EMT and inhibited silica-induced pulmonary fibrosis, which might be partially realized by directly binding to HMGA2. Our data suggested that miRNA let-7d might have a potential protective effect in the fibrotic process and become a new therapeutic target for silicosis or other fibrotic diseases.

Silicosis is a serious occupational disease characterized by pulmonary chronic inflammation and progressive fibrosis.  相似文献   

18.
BackgroundMicroRNAs are believed to influence breast cancer cell tumorgenicity by interacting with the production of tumor associated macrophages. At this stage, this hypothesis lacks sufficient empirical evidence. Our study is an investigation of the effects of let-7a on the function of human breast cancer cell lines that had undergone chemokine ligand 18 (CCL18) stimulation.MethodsTwo breast cancer cell lines MDA-MB-231 and MCF-7 were transfected with let-7a mimics with or without CCL18 simulation. The expression level of let-7a was evaluated with qRT-PCR. Our study examined cell proliferation, migration and cell cycles following let-7a treatment. The predicted target of let-7a was identified and confirmed in vitro by a dual luciferase reporter system. The associations between let-7a, CCL18 and target gene expression were evaluated using RT-PCR and the Western blotting method.ResultsThe downregulated expression level of let-7a was observed in both breast cancer cell lines. When compared to the control and CCL18 stimulation groups, cell proliferation and migration in MDA-MB-231 and MCF-7 cells were significantly inhibited by let-7a. Furthermore, the cell cycle was dramatically blocked at the G2/M phase. The luciferase reporter identified Lin28 as the direct binding target of let-7a in both breast cancer cell lines.ConclusionUpregulation of let-7a carries the potential to reverse CCL18 induced cell proliferation and migration alteration in breast cancer cells by regulating Lin28 expression. Our results provided evidence which suggests the use of let-7a as a therapeutic agent in the treatment of breast cancer.  相似文献   

19.
INTRODUCTION: MicroRNAs (miRNAs), a class of small, regulatory and non-coding RNA molecules, display aberrant expression patterns and functional abnormalities in all kinds of human diseases including cancers. As important emerging modulators in cellular pathways, miRNAs play a key role in tumorigenesis. Correcting these miRNA deficiencies by either up-regulating or down-regulating miRNA function may provide a therapeutic benefit. AREAS COVERED: We herein provide a brief review of miRNA in the following aspects: their possible role of miRNA as oncogenes or tumor suppressors in the pathogenesis of cancer, the abnormally expressed miRNAs in various types of human common cancers, novel drug targets and therapeutic tools for diagnosis, prognosis and treatments of human cancers was also discussed. Finally, we comment on the difficulties and challenges of miRNAs in clinical practice, and the bright perspective for future application. EXPERT OPINION: Targeting of these ectopically miRNAs could provide an important diagnostic or therapeutic strategy for human cancer in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号