首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Willis A  Jung EJ  Wakefield T  Chen X 《Oncogene》2004,23(13):2330-2338
Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer. A majority of these mutations are missense mutations in the DNA-binding domain. As a result, the mutated p53 gene encodes a full-length protein incapable of transactivating its target genes. In addition to this loss of function, mutant p53 can have a dominant negative effect over wild-type p53 and/or gain of function activity independently of the wild-type protein. To better understand the nature of the tumorigenic activity of mutant p53, we have investigated the mechanism by which mutant p53 can exert a dominant negative effect. We have established several stable cell lines capable of inducibly expressing a p53 mutant alone, wild-type p53 alone, or both proteins concurrently. In this context, we have used chromatin immunoprecipitation to determine the ability of wild-type p53 to bind to its endogenous target genes in the presence of various p53 mutants. We have found that p53 missense mutants markedly reduce the binding of wild-type p53 to the p53 responsive element in the target genes of p21, MDM2, and PIG3. These findings correlate with the reduced ability of wild-type p53 in inducing these and other endogenous target genes and growth suppression in the presence of mutant p53. We also showed that mutant p53 suppresses the ability of wild-type p53 in inducing cell cycle arrest. This highlights the sensitivity and utility of the dual inducible expression system because in previous studies, p53-mediated cell cycle arrest is not affected by transiently overexpressed p53 mutants. Together, our data showed that mutant p53 exerts its dominant negative activity by abrogating the DNA binding, and subsequently the growth suppression, functions of wild-type p53.  相似文献   

2.
Transcription regulation by mutant p53   总被引:5,自引:0,他引:5  
Weisz L  Oren M  Rotter V 《Oncogene》2007,26(15):2202-2211
  相似文献   

3.
4.

Background:

p53 is the most commonly mutated tumour-suppressor gene in human cancers. Unlike other tumour-suppressor genes, most p53 cancer mutations are missense mutations within the core domain, leading to the expression of a full-length mutant p53 protein. Accumulating evidence has indicated that p53 cancer mutants not only lose tumour suppression activity but also gain new oncogenic activities to promote tumourigenesis.

Methods:

The endogenous mutant p53 function in human breast cancer cells was studied using RNA interference (RNAi). Gene knockdown was confirmed by quantitative PCR and western blotting. Apoptosis was evaluated by morphological changes of cells, their PARP cleavage and annexin V staining.

Results:

We show that cancer-associated p53 missense mutants are required for the survival of breast cancer cells. Inhibition of endogenous mutant p53 by RNAi led to massive apoptosis in two mutant p53-expressing cell lines, T47D and MDA-MB-468, but not in the wild-type p53-expressing cells, MCF-7 and MCF-10A. Reconstitution of an RNAi-insensitive mutant p53 in MDA-MB-468 cells completely abolished the apoptotic effects after silencing of endogenous mutant p53, suggesting the specific survival effects of mutant p53. The apoptotic effect induced by mutant p53 ablation, however, is independent of p63 or p73 function.

Conclusion:

These findings provide clear evidence of a pro-survival ‘gain-of-function'' property of a subset of p53 cancer mutants in breast cancer cells.  相似文献   

5.
6.
目的:探索p53蛋白及其突变体对RhoE基因转录调控的影响。方法:构建pEGFP-wt-p53质粒,利用基因定点突变PCR技术构建p53单点和双点突变体质粒,构建pGL3-RhoE-promotor-Luc质粒。以P21基因的启动子序列(P21-promoter-luc)为阳性对照,EGFP-N1空载体为阴性对照,将野生型和突变型p53质粒瞬时转染PC3(p53-null)细胞,利用双荧光素酶报告基因和Westernblot方法检测p53蛋白及其突变体蛋白在转录水平和蛋白水平对RhoE基因表达的影响。结果:电泳及测序表明以上质粒均构建成功。双荧光素酶报告基因检测显示野生型p53蛋白可调控RhoE基因转录,但其突变体丧失对RhoE的转录调控作用(P0.05),且不同位点的p53突变体蛋白之间对RhoE转录调控作用的差别无统计学意义(P0.05)。Western blot结果与基因转录结果一致。结论:RhoE是受p53蛋白调控的基因之一,而p53突变体失去了在转录水平调控RhoE表达的作用。  相似文献   

7.
8.
9.
10.
11.
12.
Most undifferentiated thyroid carcinomas express p53 mutants and thereafter, are very resistant to chemotherapy. p53 reactivation and induction of massive apoptosis (Prima-1) is a compound restoring the tumor-suppressor activity of p53 mutants. We tested the effect of Prima-1 in thyroid cancer cells harboring p53 mutations. Increasing doses of Prima-1 reduced viability of thyroid cancer cells at a variable extent (range 20-80%). Prima-1 up-regulated p53 target genes (p21(WAF1) , BCL2-associated X protein (Bax), and murine double minute 2 (MDM2)), in BC-PAP and Hth-74 cells (expressing D259Y/K286E and K286E p53 mutants) but had no effect in SW1736 (p53 null) and TPC-1 (expressing wild-type p53) thyroid cancer cells. Prima-1 also increased the cytotoxic effects of either doxorubicin or cisplatin in thyroid cancer cells, including the chemo-resistant 8305C, Hth-74 and BC-PAP cells. Moreover, real-time PCR and Western blot indicated that Prima-1 increases the mRNA of thyroid-specific differentiation markers in thyroid cancer cells. Fluorescence-activated cell sorting analysis revealed that Prima-1 effect on thyroid cancer cells occurs via the enhancement of both cell cycle arrest and apoptosis. Small interfering RNA experiments indicated that Prima-1 effect is mediated by p53 mutants but not by the p53 paralog p73. Moreover, in C-643 thyroid cancer cells, forced to ectopically express wild-type p53, Prima-1 prevented the dominant negative effect of double K248Q/K286E p53 mutant. Finally, co-IP experiments indicated that in Hth-74 cells Prima-1 prevents the ability of p53 mutants to sequestrate the p53 paralog TAp73. These in vitro studies imply that p53 mutant reactivation by small compounds may become a novel anticancer therapy in undifferentiated thyroid carcinomas.  相似文献   

13.
14.
15.
16.
CP-31398, a styrylquinazoline, emerged from a screen for therapeutic agents that restore a wild-type DNA-binding conformation of mutant p53 to suppress tumors in-vivo (Science 286, 2507, 1999). We investigated the growth inhibitory mechanism of CP-31398 using nine human cancer cell lines containing wild-type, mutant or no p53 expression. Six of nine cell lines underwent apoptosis after exposure to CP-31398, while two cell lines, DLD1 colon cancer and H460 lung cancer, underwent exclusively cell cycle arrest. Cell cycle arrest preceded the apoptosis in some cases. CP-31398 did not inhibit growth of the p53 non-expressing ovarian cancer cell line SKOV3. Interestingly, we found that wild-type p53 protein is stabilized upon CP-31398 exposure. p53 target genes such as p21WAF1/Cip1, and KILLER/DR5 were upregulated by CP-31398, but their expression did not correlate with arrest or apoptosis induction. Combination of CP-31398 and TRAIL or chemotherapeutic agents enhanced cancer cell killing effect possibly through upregulation of p53-regulated genes such as KILLER/DR5. Bax-/-, wild-type p53-expressing cells displayed reduced susceptibility to killing by CP-31398. An Affymetrix GeneChip Array screen revealed that CP-31398 alters expression of non-p53 target genes in addition to p53-responsive genes. Although our preliminary data suggest that CP-31398 does not alter wild-type p53:MDM2 interaction, further efforts are required to elucidate the mechanism of wild-type p53 stabilization by CP-31398. The results increase our understanding of CP-31398 action, and suggest strategies for improving its specificity, possibly through use of microarrays to screen related compounds with higher mutant p53-specificity.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号