首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by selective and progressive degeneration, as well as loss of dopaminergic neurons in the substantia nigra. In PD, approximately 60-70% of nigrostriatal neurons are degenerated and 80% of content of the striatal dopamine is reduced before the diagnosis can be established according to widely accepted clinical diagnostic criteria. This condition describes a stage of disease called "prodromal", where non-motor symptoms, such as olfactory dysfunction, constipation, rapid eye movement behaviour disorder, depression, precede motor sign of PD. Detection of prodromal phase of PD is becoming an important goal for determining the prognosis and choosing a suitable treatment strategy. In this review, we present some non-invasive instrumental approaches that could be useful to identify patients in the prodromal phase of PD or in an early clinical phase, when the first motor symptoms begin to be apparent. Conventional magnetic resonance imaging (MRI) and advanced MRI techniques, such as magnetic resonance spectroscopy imaging, diffusion-weighted and diffusion tensor imaging and functional MRI, are useful to differentiate early PD with initial motor symptoms from atypical parkinsonian disorders, thus, making easier early diagnosis. Functional MRI and diffusion tensor imaging techniques can show abnormalities in the olfactory system in prodromal PD.  相似文献   

2.
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The risk of developing of PD increases with age, it is estimated that the prevalence rate is approximately 150/100,000 in Japan. Recently, non-motor symptoms such as anosmia, autonomic failure, sleep disorders, sensory problems, depression, anxiety, cognitive disorders (including dementia), and psychosis are interested in the pathogenetic process of PD. According to the Braak's hypothesis, these non-motor symptoms precede the onset of the classic motor symptoms of PD. Many studies have shown that the number of neurons in the substantia nigra is decreased to approximately -40 to -60% in number when the motorsymptoms of PD are developed. In this article, review of special references regarding the natural history of PD shows that non-motor symptoms are the prodromal signs of PD. If disease modification therapy and/or disease prevention therapy is approved in the future, an early and accurate diagnosis of PD is needed. Accurate early diagnostic biomarkers including symptoms, some compounds, and radiological markers need to be identified.  相似文献   

3.
Increasing recognition that Parkinson's disease (PD) may start outside of the substantia nigra has led to a rapidly expanding effort to define prodromal stages of PD, before motor signs permit classical diagnosis. Many of these efforts center around the identification of clinical non-motor symptoms and signs of disease. There is now direct evidence that olfaction, rapid eye movement (REM) sleep behavior disorder (RBD), constipation, and depression can be present in prodromal PD. In addition, there is suggestive evidence that visual changes, other autonomic symptoms, and subtle cognitive changes may also be present at prodromal stages. A critical issue in utility of these prodromal markers will be assessment of sensitivity, specificity, and positive and negative predictive values. Although these have yet to be fully defined, olfactory deficits, some visual changes, and autonomic symptoms occur in the majority of PD patients at diagnosis, suggesting good potential sensitivity. However, with the exception of RBD and perhaps some specific autonomic measures, specificity, and positive predictive value of these markers may be insufficient to be used alone as identifiers of prodromal disease. The evidence for the utility of olfaction, RBD, autonomic markers, visual changes, mood disorders, and cognitive loss as markers of prodromal PD and the potential sensitivity and specificity of these markers are summarized.  相似文献   

4.
帕金森病是渐进性黑质致密部多巴胺能神经元退行性变导致的疾病,康复治疗可以延缓病情进展,改善运动症状和非运动症状,提高患者日常生活活动能力。康复训练改善帕金森病症状的机制复杂,涉及多种分子学机制,本文系统阐述康复训练对帕金森病症状的改善作用,以及神经递质、营养因子、突触可塑性和免疫系统等方面的分子学机制。  相似文献   

5.
Parkinson's disease (PD) is the second most common neurodegenerative disorder, ranking only behind Alzheimer's disease and affecting 2% of the population over the age of 65. Pathophysiologically, PD is characterized by selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and striatal dopamine depletion. Patients may also exhibit mild-to-severe degeneration of other central and peripheral nervous tissues. The most dramatic symptoms of the disease are profound dopamine-responsive motor disturbances, including bradykinesia, akinesia, rigidity, resting tremor, and postural instability. PD patients commonly present with debilitating non-motor symptoms, including cognitive impairment, autonomic nervous system dysfunction, and sleep disturbance. Of these, sleep disturbance is the most consistently reported, and likely represents a disorder integrative of PD-related motor impairment, autonomic nervous system dysfunction, iatrogenic insult, and central neurodegeneration. The pathophysiology of PD may also indirectly disrupt sleep by increasing susceptibility to sleep disorders, including sleep disordered breathing, periodic limb movements, and REM behavior disorder. In this review, we will discuss these systems representing a multifactorial etiology in PD sleep disturbance.  相似文献   

6.
Parkinson’s disease (PD) is the most common age-related movement disorder and characterized by slowly progressive neurodegeneration resulting in motor symptoms, such as bradykinesia, rigidity, tremor and postural instability. Moreover, non-motor symptoms, such as hyposmia, anxiety and depression reduce the quality of life in PD. Motor symptoms are associated with a distinct striatal dopaminergic deficit resulting from axonal dysfunction and neuronal loss in the substantia nigra (SN). Recent progress in stem cell technology allows the optimization of cellular transplantation strategies in order to alleviate the motor deficit, which potentially leads to a reactivation of this therapeutic strategy. Besides neurodegenerative processes impaired adult neurogenesis and consequentially reduced endogenous cellular plasticity may play an important role in PD. This article discusses the notion that non-motor symptoms in PD may partly be explained by reduced adult neurogenesis in the olfactory bulb and hippocampus.  相似文献   

7.
Parkinson's disease (PD) has for decades been considered a pure motor disorder and its cardinal motor symptoms have been attributed to the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and to nigral Lewy body pathology. However, there has more recently been a shift in the conceptualization of the disease, and its pathological features have now been recognized as involving several other areas of the brain and indeed even outside the central nervous system. There are a corresponding variety of intrinsic non-motor symptoms such as autonomic dysfunction, cognitive impairment, sleep disturbances and neuropsychiatric problems, which cannot be explained exclusively by nigral pathology. In this review, we will focus on cognitive impairment and affective symptoms in PD, and we will consider whether, and how, these deficits can best be modelled in rodent models of the disorder. As only a few of the non-motor symptoms respond to standard DA replacement therapies, the quest for a broader therapeutic approach remains a major research effort, and success in this area in particular will be strongly dependent on appropriate rodent models. In addition, better understanding of the different models, as well as the advantages and disadvantages of the available behavioural tasks, will result in better tools for evaluating new treatment strategies for PD patients suffering from these neuropsychological symptoms.  相似文献   

8.
IntroductionParkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterised by selective loss of dopaminergic neurons in the substantia nigra pars compacta, which results in dopamine depletion, leading to a number of motor and non-motor symptoms.DevelopmentIn recent years, the development of new animal models using nuclease-based genome-editing technology (ZFN, TALEN, and CRISPR/Cas9 nucleases) has enabled the introduction of custom-made modifications into the genome to replicate key features of PD, leading to significant advances in our understanding of the pathophysiology of the disease.ConclusionsWe review the most recent studies on this new generation of in vitro and in vivo PD models, which replicate the most relevant symptoms of the disease and enable better understanding of the aetiology and mechanisms of PD. This may be helpful in the future development of effective treatments to halt or slow disease progression.  相似文献   

9.
Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder mainly characterized by degeneration of dopaminergic neurons in the substantia nigra and the ventral tegmental area, in combination with a varying loss of central noradrenergic (locus coeruleus), cholinergic (nucleus basalis of Meynert) and serotonergic (dorsal raphe nuclei) integrity, leading to a multitude of motor and non-motor behavioral disturbances. Apart from the clinical motor hallmarks, in the early stages of disease, subtle cognitive dysfunction might be seen comprising mainly executive dysfunction, with secondary visuospatial and mnemonic disturbances. In about 20-40% of patients, these problems may eventually proceed to dementia, which constitutes an important risk factor for caregiver distress, decreased quality of life and nursing home placement. Dementia in PD is typically characterized by a progressive dysexecutive syndrome with attentional deficits and fluctuating cognition, often accompanied by psychotic symptoms. It is thought to be the result of a combination of both subcortical and cortical changes. PD-related dopaminergic deficiency in the nucleus caudatus and mesocortical areas (due to degeneration of projections from the substantia nigra and ventral tegmental area) and cholinergic deficiency in the cortex (due to degeneration of ascending projections from the nucleus basalis of Meynert), combined with additional Alzheimer-pathology and cortical Lewy bodies, may greatly contribute to dementia.Current treatment of dementia in PD is based on compensation of the profound cholinergic deficiency. Recent studies with the cholinesterase inhibitors galantamine, donepezil and rivastigmine show promising results in improving cognition and ameliorating psychotic symptoms, which must further be confirmed in randomized controlled trials.  相似文献   

10.
Parkinson's disease is characterized and diagnosed by bradykinetic motor symptoms caused by the loss of dopamine neurons in the substantia nigra. The pathological and non-motor behavioral changes that occur prior to degeneration are less well characterized, although changes in gait, olfaction and cognition have been recognized in familial Parkinson's disease subjects. Gene mutations associated familial Parkinson's disease give rise to mitochondrial changes, altered energy homeostasis and intracellular trafficking deficits, and these can be modeled in transgenic mice. Here we discuss the recent finding of prodromal behavioral disturbances in a PINK1 deficient mouse that manifest prior to dopaminergic cell death and correlate to 5-HT fiber losses and mitochondrial morphological changes. We discuss the representation of the PINK1 deficient mouse and other genetic models to accurately recapitulate early Parkinson's disease. Prodromal symptoms and underlying pathology modeled in mice and cell lines from human subjects may have wide implications for earlier diagnosis. Current and emerging therapies need to be tailored to target both early cognitive and late stage motor symptoms.  相似文献   

11.

Background:

Before the occurrence of motor symptoms permits the clinical diagnosis of Parkinson's disease (PD), about or even more than 50% of the dopaminergic neurons of the substantia nigra have degenerated. This time be called the prodromal phase of PD.

Objective:

To evaluate the time span from onset of first prodromal symptoms to the initial diagnosis of PD as well as the order of symptom occurrence.

Methods:

Retrospective study of 93 consecutively interviewed PD patients without dementia and 93 sex and age matched controls free of neurodegenerative disorders. A standardized in‐house telephone worksheet assessing 19 nonmotor and six early motor signs was used.

Results:

A total of 98.8% of all patients interviewed reported to have experienced prodromal symptoms prior to receiving the initial diagnosis of PD. Patients noticed an average of 7.6 different symptoms during this time interval. The mean time span between the recalled onset of any one symptom and PD diagnosis was 10.2 years. In both groups, the course of prodromal sign onset was associated with early neuropathological disease stages proposed by Braak.

Outlook:

These retrospectively gathered data confirm the existence of a long prodromal phase for PD that is consistent with neuropathological staging. A standardized questionnaire assessing such early symptoms may be helpful in identifying subjects at high risk for PD while they are still in the prodromal phase of the disorder. © 2011 Movement Disorder Society  相似文献   

12.
Parkinson’s disease (PD) is a common neurodegenerative disorder that is characterized by the degeneration of dopaminergic neurons in the substantia nigra and dopamine depletion in the striatum. Although the motor symptoms are still regarded as the main problem, non-motor symptoms in PD also markedly impair the quality of life. Several non-motor symptoms, such as sleep disturbances and depression, are suggested to be implicated in the alteration in circadian clock function. In this study, we investigated circadian disruption and the mechanism in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP-treated mice exhibited altered 24-h rhythms in body temperature and locomotor activity. In addition, MPTP treatment also affected the circadian clock system at the genetic level. The exposure of human neuroblastoma cells (SH-SY5Y) to 1-metyl-4-phenylpyridinium (MPP+) increased or decreased the mRNA levels of several clock genes in a dose-dependent manner. MPP+-induced changes in clock genes expression were reversed by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Most importantly, addition of ATP to the drinking water of MPTP-treated mice attenuated neurodegeneration in dopaminergic neurons, suppressed AMPK activation and prevented circadian disruption. The present findings suggest that the activation of AMPK caused circadian dysfunction, and ATP may be a novel therapeutic strategy based on the molecular clock in PD.  相似文献   

13.
The destruction of the dopaminergic neurons in the substantia nigra (SN) and consequent depletion of striatal dopamine elicits the main movement deficits related to Parkinson's disease (PD). In the early stages of the illness, the motor symptoms are often exhibited asymmetrically. Thus, the onset of PD features starts on either the right or left side. The side of onset appears to determine the prognosis of the disorder and other features, such as right-side tremor dominance has a better prognosis in contrast to left-side dominant bradykinesia-rigidity. In addition, left-side onset of motor features is associated with cognitive decline. Therefore, an intricate relation appears to exist between the side of disease onset and progression/severity and other non-motor symptoms. Unilateral PD in turn corresponds to neuronal nigrostriatal degeneration in the contralateral hemisphere. Indeed positron emission tomography has demonstrated a positive correlation between symptom asymmetry and brain function (Hoorn et al. Parkinsonism Relat Disord 17:58-60, 2011), which corresponds to a unilateral pattern of degeneration. This phenomenon appears to be exclusive to PD. Additionally, the variation in motor symptom(s) dominance exhibited in the disorder conforms to the notion that PD is a spectrum disease with many sub-groups. Thus, clinical and post mortem studies on "lateralisation" may serve as a vital tool in understanding the mechanism(s) eliciting the characteristic destruction of the SN neurons. Additionally, it may be employed as a predictive indicator for the symptomology and prognosis of the illness thus allowing selective treatment strategies targeted at the pronounced hemispheric degeneration.  相似文献   

14.
Parkinson's disease (PD) is characterized by the death of dopaminergic neurons in the substantia nigra. This neuronal degeneration is associated with a strong microglial activation and iron accumulation in the affected brain structures. The increased iron content may result from an increased iron penetration into the brain parenchyma due to a higher expression of lactoferrin and lactoferrin receptors at the level of the blood vessels and dopaminergic neurons in the substantia nigra in PD. Iron may also accumulate in microglial cells after phagocytosis of dopaminergic neurons. These effects may be reinforced by a lack of up-regulation of the iron storage protein ferritin, as suggested by an absence of change in iron regulatory protein 1 (IRP-1) control of ferritin mRNA translation in PD. Thus, a dysregulation of the labile iron pool may participate in the degenerative process affecting dopaminergic neurons in PD.  相似文献   

15.
Parkinson’s disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.  相似文献   

16.
Parkinson's disease (PD) is primarily a sporadic condition which results mainly from the death of dopaminergic neurons in the substantia nigra. Its etiology remains enigmatic while its pathogenesis begins to be understood as a multifactorial cascade of deleterious factors. As of yet, most insights into PD pathogenesis are derived from toxic models of PD and show that the earlier cellular perturbations arising in dopaminergic neurons include oxidative stress and energy crisis. These alterations, rather than killing neurons, trigger subsequent death-related molecular pathways including elements of apoptosis. The fate of dopaminergic neurons in PD may also be influenced by additional factors such as excitotoxicity, emanating from the increased glutamatergic input from the subthalamic nucleus to the substantia nigra, and the glial response that arises in the striatum and the substantia nigra. In rare instances, PD can be familial, and those genetic forms have also provided clues to the pathogenesis of nigrostriatal dopaminergic neuron death including abnormalities in the mechanisms of protein folding and degradation as well as mitochondrial function. Although more remains to be elucidated about the pathogenic cascade in PD, the compilation of all of the aforementioned alterations starts to shed light on why and how nigral dopaminergic neurons may degenerate in this prominent disease, that is PD.  相似文献   

17.
Parkinson's disease (PD) is a common age-associated neurodegenerative disorder. Motor symptoms are the cardinal component of PD, but non-motor symptoms, such as dementia, depression, and autonomic dysfunction are being increasingly recognized. Motor symptoms are primarily caused by selective degeneration of substantia nigra dopamine (SNDA) neurons in the midbrain; non-motor symptoms may be referable to well-described pathology at multiple levels of the neuraxis. Development of symptomatic and disease-modifying therapies is dependent on an accurate and comprehensive understanding of the pathogenesis and pathophysiology of PD. Gene expression profiling has been recently employed to assess function on a broad level in the hopes of gaining greater knowledge concerning how individual mechanisms of disease fit together as a whole and to generate novel hypotheses concerning PD pathogenesis, diagnosis, and progression. So far, the majority of studies have been performed on postmortem brain samples from PD patients, but more recently, studies have targeted enriched populations of dopamine neurons and have begun to explore extra-nigral neurons and even peripheral tissues. This review will provide a brief synopsis of gene expression profiling in parkinsonism and its pitfalls to date and propose several potential future directions and uses for the technique. It will focus on the use of microarray experiments to stimulate hypotheses concerning mechanisms of neurodegeneration in PD, since the majority of studies thus far have addressed that complicated issue.  相似文献   

18.
Parkinson's disease (PD) is a progressive neurological disorder in which there is abnormal degeneration of dopaminergic neurons in the substantia nigra and the ventral tegmental area combined with a varying degree of deterioration of the cholinergic, serotonergic and noradrenergic system, leading to a variety of motor and non-motor abnormalities. Dopamine (DA) depletion in nigrostriatal projections manifests with abnormal spontaneous motor behavior and (subtle) cognitive deficits, whereas more overt cognitive impairment may develop with concomitant DA-deficiency related mesocorticolimbic denervation. In combination with a progressive dysfunction of the ascending neocortical cholinergic (and serotonergic and noradrenergic) projections, mainly due to a loss of cholinergic neurons in the nucleus basalis of Meynert (NbM), these cognitive deficits may proceed into dementia sometimes in combination with psychotic behavior, which might also be associated with dopaminomimetic and/or anticholinergic treatment as well as with cholinergic deficit or dopaminomimetic induced REM sleep disturbances. As these psychiatric symptoms have a substantial negative effect on the patient's quality of life, contribute to caregiver distress and are predictive of nursing home placement, identification and adequate treatment is of great importance. Recent evidence supports a possible role for cholinomimetic therapy in alleviating cognitive dysfunction and psychotic symptoms in PD.  相似文献   

19.
Parkinson's disease (PD) is the second most common neurodegenerative disorder that is characterized by two major neuropathological hallmarks: the degeneration of dopaminergic neurons in the substantia nigra (SN) and the presence of Lewy bodies in the surviving SN neurons, as well as other regions of the central and peripheral nervous system. Animal models have been invaluable tools for investigating the underlying mechanisms of the pathogenesis of PD and testing new potential symptomatic, neuroprotective and neurorestorative therapies. However, the usefulness of these models is dependent on how precisely they replicate the features of clinical PD with some studies now employing combined gene–environment models to replicate more of the affected pathways. The rotenone model of PD has become of great interest following the seminal paper by the Greenamyre group in 2000 (Betarbet et al., 2000). This paper reported for the first time that systemic rotenone was able to reproduce the two pathological hallmarks of PD as well as certain parkinsonian motor deficits. Since 2000, many research groups have actively used the rotenone model worldwide. This paper will review rotenone models, focusing upon their ability to reproduce the two pathological hallmarks of PD, motor deficits, extranigral pathology and non-motor symptoms. We will also summarize the recent advances in neuroprotective therapies, focusing on those that investigated non-motor symptoms and review rotenone models used in combination with PD genetic models to investigate gene–environment interactions.  相似文献   

20.
Parkinson's disease (PD) is a chronic, neurodegenerative disease with degeneration of the central dopaminergic neurons in the substantia nigra, leading to a depletion of dopamine (DA) in the striatum. This depletion causes the clinical hallmarks of this disease: bradykinesia, hypokinesia, rigidity, tremor and postural instability. Besides these well known motor symptoms, non-motor symptoms may develop, such as hyposmia, sleep disorders, autonomic disturbances, depression, cognitive impairment and psychosis. Pathophysiological mechanisms underlying these symptoms not only comprise Lewy body pathology in the central dopaminergic system, but also in the noradrenergic, serotinergic and cholinergic transmittersystems. Indeed, in Parkinson's disease, about 30-40% of the patients suffers fluctuating psychotic symptoms, mainly paranoid delusions and/or visual or acoustic hallucinations, symptoms considered to represent major contributors to patient and caregiver distress and nursing home placement. Endogenous (related to the disease process itself) as well as exogenous (related to therapeutical interventions) psychotogenic factors may contribute to the development of psychotic symptoms in PD. Therapeutical strategies, therefore, are aimed to reduce both endogenous and exogenous factors. To reduce endogenous psychotogenic factors, cholinesterase inhibitors, suggested to reduce cognitive deterioration, now seem to be the drugs of choice. In exogenously induced psychotic symptoms, atypical antipsychotics are considered the most effective. However, as psychotic symptoms in PD are often influenced by both endogenous and exogenous factors, a combination of both strategies may be preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号