首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loss of heterozygosity (LOH) affecting the long arm of chromosome 6 has been found repeatedly in human cancers. Recently, our group reported that del(6)(q21-22→qter) was the most consistent structural cytogenetic abnormality in gastric carcinomas. To determine more precisely the deleted region, we studied 51 tumors with 9 polymorphic markers on this chromosome arm. LOH of one or more markers was found in 39% of the tumors. LOH at region 6q22.3 was detected in 50% of informative tumors and at 6q26-q27 in 37% of informative tumors. By comparative analysis of LOH regions, we identified two separate regions of overlapped deletions at 6q, one between 6q16.3-q21 and 6q22.3-q23.1, another distal to 6q23-q24. A comparison of clinicopathologic features of gastric carcinomas with and without LOH at 6q revealed statistically significant or suggestive differences between LOH and young age of the patients and proximal location of the tumors. The two informative early gastric carcinomas both showed LOH at 6q. The occurrence of LOH at 6q was similar in all histological types. We conclude that two distinct regions at 6q appear to be involved in the early stages of gastric carcinogenesis.  相似文献   

2.
In human neuroblastomas, the distal portion of 1p is frequently deleted, as if one or more tumor suppressor genes from this region were involved in neuroblastoma tumorigenesis. Earlier studies had identified a smallest region of overlapping deletion (SRO) spanning approximately 23 cM between the most distally retained D1S80 and by the proximally retained D1S244. In pursuit of generating a refined delineation of the minimally deleted region, we have analyzed 49 neuroblastomas of different stages for loss of heterozygosity (LOH) from 1pter to 1p35 by employing 26 simple sequence length polymorphisms. Fifteen of the 49 tumors (31%) had LOH; homozygous deletion was not detected. Seven tumors had LOH at all informative loci analyzed, and eight tumors showed a terminal or an interstitial allelic loss of 1p. One small terminal and one interstitial deletion defined a new 1.7 cM SRO, approximately 1 Mbp in physical length, deleted in all tumors between the retained D1S2731 (distal) and D1S2666 (proximal). To determine the genomic complexity of the deleted region shared among tumors, we assembled a physical map of the I Mbp SRO consisting predominantly of bacteriophage P1-derived artificial chromosome (PAC) clones. A total of 55 sequence-tagged site (STS) markers (23 published STSs and short tandem repeats and 32 newly identified STSs from the insert ends of PACs and cosmids) were assembled in a contig, resulting in a sequence-ready physical map with approximately one STS per 20 Kbp. Twelve genes (41BB, CD30, DFFA, DJ1, DR3, FRAP, HKR3, MASP2, MTHFR, RIZ, TNR2, TP73) previously mapped to 1p36 are localized outside this SRO. On the basis of this study, they would be excluded as candidate genes for neuroblastoma tumorigenesis. Ten expressed sequence tags were integrated in the contig, of which five are located outside the SRO. The other five from within the SRO may provide an entrance point for the cloning of candidate genes for neuroblastoma.  相似文献   

3.
Chromosomal deletions at segment 11q23-q24 have been identified in a variety of human epithelial tumors, including cervical carcinoma (CC), indicating the presence in this region of at least a tumor suppressor gene (TSG) involved in the development of these neoplasms. To localize the 11q deletion target more precisely, 54 primary cervical carcinomas were examined for loss of heterozygosity (LOH) using a panel of microsatellite DNA markers mapping to 11p.15 and spanning region 11q23-qter. Nineteen tumors were found to have LOH at chromosome 11q. The highest frequency of LOH was observed at locus APOC-3, located in 11q23.1-q23.2, which was deleted in 42% of the informative cases. In contrast, LOH was infrequent at distal 11q in current series of CC. The smallest common region of loss included APOC-3 and was defined distally by marker D11S925 in region 11q23. The present data strongly suggest that the 11q suppressor gene(s) involved in cervical tumorigenesis is likely to be located at chromosome region 11q22-q23.  相似文献   

4.
Uterine leiomyomas are benign tumors that arise clonally from smooth muscle cells of the myometrium. Cytogenetic studies of uterine leiomyomas have shown that about 40% have chromosome abnormalities and that deletion of 7q is a common finding. The observations suggest the possible location of a growth-suppressor gene within the 7q21-q22 region. Molecular genetic analysis of cytogenetically normal tumors has frequently shown somatic loss of specific tumor suppressor genes detected by loss of heterozygosity in the critical region. To test the hypothesis that chromosome region 7q21-q22 contains a growth-suppressor gene involved in the development of leiomyomas, we examined 92 leiomyomas for allelic loss of 7q markers spanning the cytogenetically defined critical region. Forty tumors with cytogenetically defined 7q deletion, 45 tumors without cytogenetically visible 7q deletion, and seven tumors with no cytogenetic information were examined for allelic loss of loci D7S489, D7S440, D7S492, D7S518, D7S471, D7S466, and D7S530. Loss of heterozygosity for one or more of these loci was observed in 23 of 40 (57.5%) of the tumors with deletion of 7q and in 2 of 45 cases without a cytogenetically visible deletion. The tumors with cytogenetic deletion of 7q, but no loss of 7q21-q22 markers, were mosaics, with only a minority of cells containing the cytogenetic deletion. The critical region of loss is defined by the markers D7S518 and D7S471, each showing loss in approximately 50% of informative cases. These markers define a 10 cM region of 7q21-q22 that is consistent with the cytogenetically defined smallest region of overlap and exclude loss of the MET oncogene locus and WNT1, the murine mammary tumor-virus integration site, from the critical region. Our results further define a region that is consistently lost in leiomyomas with cytogenetic deletion of chromosome arm 7q. This region may contain a tumor suppressor gene involved in the development of a subset of leiomyomas.  相似文献   

5.
Whole-genome scan studies recently identified a locus on chromosome segments 19q12-q13.11 linked to prostate tumor aggressiveness by use of the Gleason score as a quantitative trait. We have now completed finer-scale linkage mapping across this region that confirmed and narrowed the candidate region to 2 cM, with a peak between markers D19S875 and D19S433. We also performed allelic imbalance (AI) studies across this region in primary prostate tumors from 52 patients unselected for family history or disease status. A high level of AI was observed, with the highest rates at markers D19S875 (56%) and D19S433 (60%). Furthermore, these two markers defined a smallest common region of AI of 0.8 Mb, with 15 (29%) prostate tumors displaying interstitial AI involving one or both markers. In addition, we noted a positive association between AI at marker D19S875 and extension of tumor beyond the margin (P = 0.02) as well as a higher Gleason score (P = 0.06). These data provide strong evidence that we have mapped a prostate tumor aggressiveness locus to chromosome segments 19q12-q13.11 that may play a role in both familial and non-familial forms of prostate cancer.  相似文献   

6.
One of the main genetic abnormalities associated with breast carcinogenesis is the loss of genetic material from chromosome arm 16q. Different groups have identified two regions (16q22.1 and 16q24-ter) that are frequently deleted in primary tumors, suggesting the presence of tumor suppressor genes in these regions. Little is known about the late stages of tumor progression in this respect, and we, therefore, analyzed biopsy specimens of breast cancer metastases for deletions in these critical regions of 16q. We examined fine needle cytopunctures from 24 metastases, each with lymphocyte DNA, for allelic imbalance on 16q by means of polymerase chain reaction (PCR) with 15 highly polymorphic markers. All the metastatic samples showed deletion of at least one informative locus on 16q. The loss of heterozygosity (LOH) pattern often indicated the loss of a complete long arm of chromosome 16 (13 cases); nevertheless, in the remaining 11 samples, partial LOH patterns were observed. A small region of overlap (SRO2) in 16q22.1 was frequently involved, whereas another (SRO1) in 16q24-ter was affected in only two cases. A third region of LOH in 16q22.2-q23.2 was found in 6/11 samples. These results suggest that at least three different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Loss of material from the third region could be a major event in the genesis of metastases. Genes Chromosom. Cancer 19:185–191, 1997. © 1997 Wiley-Liss Inc.  相似文献   

7.
Defining the region(s) of deletion at 6q16-q22 in human prostate cancer   总被引:3,自引:0,他引:3  
Deletion of the long arm of chromosome 6 (6q) frequently occurs in many neoplasms, including carcinomas of the prostate and breast and melanoma, suggesting the location of a tumor-suppressor gene or genes at 6q. At present, however, the region of deletion has not been well defined, and the target gene of deletion remains to be identified. In this study, we analyzed 44 primary prostate cancers with 16 polymorphic markers for loss of heterozygosity (LOH) by using PCR-based techniques. We also examined 23 cell lines/xenografts of prostate cancer with 38 markers for LOH by the method of homozygosity mapping of deletion. LOH at 6q16 - q22 was detected in 21 of 44 (48%) primary tumors and in 12 of 23 (52%) cell lines/xenografts. Two regions of LOH were defined. One was 7.5 cM at 6q16 - q21 between markers D6S1716 and D6S1580, and the other was 4.3 cM at 6q22 between D6S261 and D6S1702. Whereas no correlation was found between LOH at 6q16-q22 and patient age at diagnosis or Gleason score, tumors at higher stage appear to have more frequent LOH. These findings suggest that deletion of 6q16 - q22 is a frequent event in prostate cancer, and that the deletion originates from two distinct regions. These results should be useful in identifying the target gene(s) of deletion at 6q.  相似文献   

8.
Duane syndrome (MIM 126800) is an autosomal dominant disorder characterised by primary strabismus and other ocular anomalies, associated with variable deficiency of binocular sight. We have recently identified a < 3 cM smallest region of deletion overlap (SRO) by comparing interstitial deletions at band 8q13 in two patients (one described by Vincent et al, 1994, and the other by Calabrese et al, 1998). Here we report on another patient with Duane syndrome carrying a reciprocal translation t(6;8)(q26;q13). FISH and PCR analyses using a YAC contig spanning the SRO narrowed the Duane region to a < 1 cM interval between markers SHGC37325 and W14901. In addition, the identification and mapping of two PAC clones flanking the translocation breakpoint, allowed us to further narrow the critical region to about 40 kb. As part of these mapping studies, we have also refined the map position of AMYB, a putative candidate gene, to 8q13, centromeric to Duane locus. AMYB is expressed in brain cortex and genital crests and has been previously mapped to 8q22.  相似文献   

9.
DNA copy number losses at chromosome arm 14q are the most frequently occurring aberrations in gastrointestinal stromal tumors (GISTs). To characterize the deletion at 14q, we performed comparative genomic hybridization (CGH) and high-resolution deletion mapping using a panel of 32 polymorphic microsatellite markers in 30 GISTs. The GISTs were classified according to their metastatic potential and mitotic counts into 15 low-risk and 15 high-risk tumors. Losses with a minimal common overlapping region at 14q12-q24 were detected by CGH in 16 tumors (53) (nine low-risk and seven high-risk). Investigation with microsatellite markers was informative in 690 analyses (72%). Loss of heterozygosity (LOH) with at least one marker was detected in 279 analyses in 24 tumors (80%). Deletions were equally frequent in low-risk and high-risk GISTs. Two common deletion regions were identified at 14q11.1-q12 and 14q23-q24.3. The highest frequencies of deletions were seen in regions corresponding to markers D14S283 (20/28, 71%) at 14q11.1-q12 and D14S258 (17/27, 63%) at 14q23-q24, suggesting that these are two tumor suppressor loci.  相似文献   

10.
The high incidence of allelic imbalance on the long arm of chromosome 16 in breast cancer suggests its involvement in the development and progression of the tumor. Several loss of heterozygosity (LOH) studies have led to the assignment of commonly deleted regions on 16q where tumor suppressor genes may be located. The most recurrent LOH regions have been 16q22.1 and 16q22.4-qter. The aim of this study was to gain further insight into the occurrence of one or multiple “smallest regions of overlap” on 16q in a new series of breast carcinomas. Hence, a detailed allelic imbalance map was constructed for 46 sporadic breast carcinomas, using 11 polymorphic microsatellite markers located on chromosome 16. Allelic imbalance of one or more markers on 16q was shown by 30 of the 46 tumors (65%). Among these 30 carcinomas, LOH on the long arm of chromosome 16 was detected at all informative loci in 19 (41%); 13 of them showed allelic imbalance on the long but not on the short arm, with the occurrence of variable “breakpoints” in the pericentromeric region. The partial allelic imbalance in 11 tumors involved either the 16q22.1-qter LOH region or interstitial LOH regions. A commonly deleted region was found between D16S421 and D16S289 on 16q22.1 in 29 of the 30 tumors. The present data argue in favor of an important involvement of a tumor suppressor gene mapping to 16q22.1 in the genesis or progression of breast cancer.  相似文献   

11.
Allelic deletions have been thought to be indicators of the presence of tumor suppressor genes (TSGs). As indicated by this allelotype study using 39 highly informative microsatellite markers distributed among all autosomal chromosomes, frequent loss of heterozygosity (LOH) has been found at 6p in B-cell non-Hodgkin's lymphoma. To identify the commonly deleted regions (CDRs), we performed fine deletion mapping using 26 highly polymorphic microsatellite markers on 6p. The most frequent LOH occurred at D651721, where 9 of 18 of the informative cases (50%) had allelic losses. Seventeen of 32 cases (53%) exhibited LOH at least at one locus on 6p. Ten of these 17 cases showed interstitial deletions, and their LOH patterns indicated two CDRs on 6p; one between D6S1721 and D6S260 (at 6p23-24), and the other between D6S265 and D6S291 (at 6p21). The genetic distance of both CDRs was 6 cM. The CDKN1A (p21) gene is reported to be located within the interval of the CDR at 6p21, but no mutation of the gene was found in these 32 patients. These data suggested that these two loci might harbor novel putative TSGs responsible for the pathogenesis of malignant lymphoma. We have constructed a contig of yeast artificial chromosome (YAC) clones spanning the most frequent CDR at 6p23-24. This YAC contig can be used for fine physical mapping of the region and cloning of candidate TSGs.  相似文献   

12.
AIMS: Loss of heterozygosity (LOH) at specific chromosomal regions strongly suggests the existence of tumour suppressor genes at the relevant segment. Frequent LOH on chromosome 5q has been reported in a wide variety of human tumours, including those of the lung. The aim of this study was to screen for LOH and to clarify the location of putative tumour suppressor genes on chromosome 5 implicated in the genesis and/or development of non-small cell lung carcinoma. METHODS: Thirty three patients with advanced non-small cell lung carcinoma were screened for LOH with a panel of 21 microsatellite DNA markers spanning the entire chromosome 5, using semi-automated fluorochrome based methodology. RESULTS: Twenty of the non-small cell lung carcinoma samples displayed LOH for one or more informative locus. LOH involving only 5q was found in 10 of 14 of the informative samples. Deletions involving 5p only were not present in the samples under study. There was no evidence of microsatellite instability in any of the analysed loci. These results indicate the presence of five distinct segments displaying high frequencies of deletion on chromosome 5, namely: 5q11.2-q12.2, 5q15 (D5S644 locus), 5q22.3-q23.1, 5q31.1, and 5q35.3. Eight of 14 samples had simultaneous interstitial deletions in at least two different regions. Moreover, concomitant deletion of three and four distinct regions was displayed in three of 14 and two of 14, respectively, of the informative samples. CONCLUSION: Allelic deletion on chromosome 5 is a frequent event in patients with non-small cell lung carcinoma. These results suggest the involvement of these five regions, either independently or simultaneously, in both lung squamous cell carcinoma and lung adenocarcinoma.  相似文献   

13.
The candidate tumor-suppressor gene ING1 encodes p33(ING1), a nuclear protein which physically interacts with TP53. It has been shown that p33(ING1) acts in the same biochemical pathway as TP53, leading to cell growth inhibition. Interestingly, a rearrangement of the ING1 gene was found in a neuroblastoma cell line, supporting its involvement in tumor development. Because ING1 resides on the long arm of chromosome 13 (13q34) (a region frequently deleted in many tumor types), we sought to characterize its role in head and neck squamous-cell carcinoma (HNSCC). We first analyzed 44 primary tumors for loss of heterozygosity (LOH) at 13q, using four widely spaced microsatellite markers (13q14, 13q14.3-q22, 13q22, and 13q34). Twenty (48%) of the tumor samples showed LOH in all of the informative markers tested, including D13S1315 at 13q34. Two of the tumors displayed partial losses restricted to one marker (D13S118 at 13q14 in tumor 1164, and D13S135 at 13q14.3-q22 in tumor 1398). We then determined the genomic structure of the ING1 gene and sequenced the entire coding region in 20 primary tumors showing 13q LOH and in five head and neck cancer cell lines. A single germline polymorphism was detected in 10 of the tumors analyzed (T to C change) located 110 nucleotides upstream of the starting methionine. No somatic mutations were found in any of the samples, suggesting that ING1 is not a tumor suppressor gene target in head and neck cancer. Genes Chromosomes Cancer 27:319-322, 2000.  相似文献   

14.
Pancreatic cancer has one of the poorest prognoses among malignant diseases. To understand its molecular mechanisms, we studied allelic losses on the long arm of chromosome 6. Using 55 paired DNAs of tumors and their corresponding normal tissues and 30 microsatellite markers that spanned the entire 6q chromosome arm, we found three distinct regions of common allelic loss: region A, a less than 500-kb region bordered by D6S449 and D6S283 on 6q21 with a loss of heterozygosity (LOH) frequency of 69% (38/55); region B, a 7-cM region bordered by D6S292 and D6S308 on 6q23-q24 with a LOH frequency of 60% (33/55); and region C, a 13-cM region bordered by D6S305 and D6S264 with a LOH frequency of 51% (28/55). We further focused on region A and constructed a physical map using yeast artificial chromosome (YAC) clones, their derived cosmid clones, and bacterial artificial chromosome (BAC) clones. Region A was completely covered by three overlapping BAC clones. Our results in the present study should shed light on the cloning and characterization of tumor suppressor genes in pancreatic carcinogenesis.  相似文献   

15.
Mutational activation of KIT or PDGFRA is considered an early step in pathogenesis of gastrointestinal stromal tumors (GISTs); however, other nonrandom genetic changes have also been identified. At least three common regions of deletions on chromosome 22q, which may harbor putative tumor suppressor genes, have been defined. However, mapping of these regions has been inconsistent. It has also been speculated that GI autonomous nerve tumors (GANTs), GISTs with ultrastructural features suggestive of autonomic nerve differentiation, are characterized by a specific deletion involving 22q13 cytogenetic region. This study was undertaken to evaluate loss of heterozygosity (LOH) on chromosome 22q in 50 GISTs, including 10 GANTs. Four tumors were incidental minimal lesions 相似文献   

16.
We have previously described the physical localization of a constitutional t(5;6)(q21;q21) in a patient (tumor cell sample designated as MA214) with bilateral Wilms tumor (WT). We have now physically refined the breakpoints and identified putative gene targets within this region. The translocation breakpoints are contained within a 2.5-Mbp region on 5q21 containing four candidate genes and a 1.3-Mbp region on 6q21 that contains three candidate genes. To explore the role of this region in WT genesis, we have performed loss of heterozygosity (LOH) analysis with markers flanking the translocation breakpoints in tumor from MA214 and a panel of sporadic WT. Alleles were retained for all informative markers used in the MA214 tumor. In sporadic tumors LOH was found in 6 of 63 (9.5%) and 5 of 62 (8%) informative cases for flanking markers D6S301 and D6S1592 on 6q21. LOH was found in 3 of 58 (5.2%) and 2 of 54 (3.6%) for flanking markers D5S495 and D5S409 on 5q21. These preliminary data suggest LOH at the t(5;6)(q21;q21) region is unlikely to be a mechanism for tumor development in MA214, but may be important for a subgroup of sporadic WT.  相似文献   

17.
Gastric carcinoma is one of the most common malignancies in Asia. Although the allelic deletion of 7q has been reportedly associated with primary gastric carcinoma tumorigenesis, no predisposing genes in this region have been identified so far. Here, we report the results of genotype and loss of heterozygosity (LOH) analysis on 7q in this tumor. A panel of nine microsatellite markers distributed over the whole chromosome 7q was used for genotyping primary gastric carcinomas. Of 72 primary tumors LOH of D7S486 occurred in 24.0% (12/50) of cases. Fine mapping with 12 additional markers flanking D7S486 resulted in LOH of 30.36% (17/56) and defined one minimal deleted region in primary gastric carcinomas, a 90-kilobase region bounded by D7S2543 and D7S486 at 7q31.2. The allelic deletion correlates statistically with clinicopathologic variables. Our data suggest a possible link between putative tumor suppressor genes and gastric carcinoma in the 7q31 region.  相似文献   

18.
Wilms tumor (WT) is genetically heterogeneous, and the one known WT gene, WT1 at 11p13, is altered in only a subset of WTs. Previous loss of heterozygosity (LOH) analyses have revealed the existence of additional putative WT genes at 11p15, 16q, and 1p, but these analyses examined only one or a handful of chromosomes or looked at LOH at only a few markers per chromosome. We conducted a genome-wide scan for LOH in WT by using 420 markers spaced at an average of 10 cM throughout the genome and analyzed the data for two genetically defined subsets of WTs: those with mutations in WT1 and those with no detectable WT1 alteration. Our findings indicated that the incidence of LOH throughout the genome was significantly lower in our group of WTs with WT1 mutations. In WT1-wild-type tumors, we observed the expected LOH at 11p, 16q, and 1p, and, in addition, we localized a previously unobserved region of LOH at 9q. Using additional 9q markers within this region of interest, we sublocalized the region of 9q LOH to the 12.2 Mb between D9S283 and a simple tandem repeat in BAC RP11-177I8, a region containing several potential tumor-suppressor genes. As a result, we have established for the first time that WT1-mutant and WT1-wild-type WTs differ significantly in their patterns of LOH throughout the genome, suggesting that the genomic regions showing LOH in WT1-wild-type tumors harbor genes whose expression is regulated by the pleiotropic effects of WT1. Our results implicate 9q22.2-q31.1 as a region containing such a gene.  相似文献   

19.
The long arm of chromosome 6 is frequently rearranged in human cancer. In breast cancer, allelotyping studies have indicated the existence of three to four distinct regions of allelic imbalance. Chromosome transfer studies have shown the presence of several growth inhibiting or senescence promoting genes in the segment between 6q13 and 6q27. Moreover, results from comparative genomic hybridization (CGH) analyses have indicated that 6q was indeed a site of chromosomal losses, but that it was also involved in a substantial number of gains. In the present work, we allelotyped 178 pairs of breast tumor and normal tissue DNAs using 30 CA repeat markers from the Genethon collection. Seventy-six percent of the tumors in our panel displayed allelic imbalance (AI) of at least one locus, but patterns of AI could be complex. Whereas 11 tumors showed AI at all markers tested, 57 presented zebra profiles, and 28 showed AI at one site only. We characterized five distinct domains of AI defined, from centromere to telomere, by D6S300 (domain 1), D6S434 (domain 2), D6S261 (domain 3), D6S314-D6S409 (domain 4), and D6S441-D6S415 (domain 5). Some of the domains could be narrowed down to intervals of 1cM or less. We performed CGH analysis on a subset of 34 tumors presenting AI of variable extent at 6q. In 10/34 tumors, CGH did not reveal any anomaly on 6q. Most of these presented AI on short intervals, thus being below the detection threshold by CGH. Of the remaining 24 tumors presenting anomalies by CGH, 11 presented gains involving all or portions of 6q and 15 losses (2 presented combined losses and gains). By CGH, the 6q21-22 region was most commonly involved in gains, whereas 6q13-14 and 6q25-27 were frequently lost. Thus, allelic imbalances on 6q can either represent a gain or a loss depending on the region involved. Genes Chromosomes Cancer 27:76-84, 2000.  相似文献   

20.
Cytogenetic investigations of malignant mesothelioma (MM) have revealed frequent losses in chromosomes 13 and 14, suggesting that inactivation of tumor suppressor genes (TSGs) residing in these chromosomes may contribute to mesothelial cell tumorigenesis. To define the shortest region of overlap (SRO) of deletions from these chromosomes, we performed loss of heterozygosity (LOH) analyses on 30 MMs using 25 microsatellite markers in 13q and 21 markers in 14q. Twenty of the 30 MMs (67%) showed allelic loss of at least one marker in 13q. The SRO of deletions was delineated as an approximately 7 centiMorgan region, flanked by markers D13S1253 and D13S291, located at 13q13.3-14.2. Thirteen of the 30 MMs (43%) displayed allelic losses from 14q, with at least three distinct regions of LOH located at segments q11.2-13.2, q22.3-24.3, and q32. 12. These data highlight a single region of chromosomal loss in 13q in many MMs, implicating the involvement of a TSG that is critical to the pathogenesis of this malignancy. In contrast, the lower incidence and diffuse pattern of allelic losses in 14q suggest that several TSGs in this chromosome arm may contribute to tumorigenic progression in a subset of MMs. Genes Chromosomes Cancer 28:337-341, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号