首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In clinical practice, blood velocity estimations from Doppler examination of curved vascular segments are normally different from those of nearby straight segments. The observed "accelerations," sometimes considered as a sort of stochastic disturbances, can actually be related to very specific physical effects due to vessel curvature (i.e., the development of nonaxial velocity [NAV] components) and the spreading of the axial velocity direction in the Doppler sample volume with respect to the insonation axis. The relevant phenomena and their dependence on the radius of curvature of the vessels and on the insonation angle are investigated with a beam-vessel geometry as close as possible to clinical setting, with the simplifying assumptions of steady flow, mild vessel curvature, uniform ultrasonic beam and complete vessel insonation. The insonation angles that minimize the errors are provided on the basis of the study results.  相似文献   

2.
《Ultrasonic imaging》1996,18(3):157-172
A numerical model that can produce pulsed Doppler signals for nonaxial, pulsatile flow is presented. The model takes into account both hemodynamic and acoustic factors that affect the Doppler signal, such that a wide range of flow patterns and arbitrary transducer types can be simulated. The physics of blood flow is modeled by solving the Navier-Stokes equations utilizing a finite element technique, and the acoustic field is modeled using the acoustic impulse response method. The model was validated by comparison to the Womersley theory. The median deviation was 3.45%. Doppler signals from flow through a 50% stenosis were also simulated. The calculated spectra demonstrated the changing flow patterns from jets and vortices. This new computer model can be used to test spectral analysis tools on simulated Doppler signals, whose underlying flow patterns are of clinical importance.  相似文献   

3.
In this paper, we present methods for 3D visualization and quantitative measurements of retinal blood flow in rats by the use of optical microangiography imaging technique (OMAG). We use ultrahigh sensitive OMAG to provide high-quality 3D RBF perfusion maps in the rat eye, from which the Doppler angle, as well as the diameters of blood vessels, are evaluated. Estimation of flow velocity (i.e. axial flow velocity) is achieved by the use of Doppler OMAG, which has its origins in phase-resolved Doppler optical coherence tomography. The measurements of the Doppler angle, vessel size, and the axial velocity lead to the quantitative assessment of the absolute flow velocity and the blood flow rate in selected retinal vessels. We demonstrate the feasibility of OMAG to provide 3D microangiograms and quantitative assessment of retinal blood flow in a rat model subjected to raised intra-ocular pressure (IOP). We show that OMAG is capable of monitoring the longitudinal response of absolute blood velocity and flow rate of retinal blood vessels to increased IOP in the rat, demonstrating its usefulness for ophthalmological research.  相似文献   

4.
A triangulation method has been applied to a duplex ultrasound scanner to quantify blood flow velocities in two dimensions. A position locating system (PLS) connected to the scanhead locates the sample volume (SV) in 3-D space to a precision of 1 mm. The PLS is used to obtain flow velocity data from two independent lines of sight in the human femoral artery. Data are gathered from anatomic sites of interest along one line of sight. Later the computer directs the SV to interrogate the same points in space from a second line of sight. Water tank studies using both constant velocity and pulsatile string targets were used to validate the method. Velocity magnitudes could be calculated to within 5% error for Doppler angles below 75 degrees for various string depths and speeds; the error in Doppler angle calculation was usually less than 3 degrees. Results from the superficial femoral artery show flow velocity vectors are nearly parallel to the vessel walls. Peak systolic velocity magnitudes range from 63-66 cm/s in three presumed normal individuals. Following the validation studies addressed in this paper, this triangulation approach is intended in future work to document the complex nonaxial character of blood flow that occurs normally at branch points and in regions of intraluminal disease.  相似文献   

5.
This study investigated the use of ultrasound speckle decorrelation‐ and correlation‐based lateral speckle‐tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation‐based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame‐to‐frame decorrelation. In this research, both decorrelation and lateral speckle‐tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation‐based lateral speckle‐tracking method. The novelty of this study is that speckle decorrelation‐based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decor‐relation‐based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.  相似文献   

6.
This paper reports on a new method intended to detect early flow disturbances generated by small lesions, using conventional clinical instrumentation. In vitro experiments on models of stenotic vessels are presented which prove that ultrasound Doppler, with the beam directed at right angles to the vessel axis can detect vortices and other flow disturbances caused by wall irregularities. These disturbances characterized by small velocity components first toward and then away from the transducer correlate with the spectrum of vortices caused by small artificial lesions. We found these disturbances in flow to be too small to cause detectable broadening in the Doppler spectrum acquired in the traditional way (i.e. with the beam at an angle less than 90 degrees). The detected flow disturbances were found to depend on the surface roughness, the profile of the obstructive lesion and the narrowing of the vessel. Similar flow disturbances to those detected in vitro were demonstrated in vivo for this new beam orientation in regions of the carotid, such as the bulb and the beginning of the common carotid, where vortex-like flows are expected.  相似文献   

7.
Doppler ultrasonography is routinely used to identify abnormal blood flow. Nevertheless, conventional Doppler can be used to determine only the axial component of blood flow velocity and is angle dependent. A new method of multidimensional angle‐independent estimation of flow velocity, called Vector Flow Imaging (VFI), has been proposed. It quantitatively evaluates the true velocity vector's amplitude and direction at any location into a vessel and displays a more intuitive depiction of the flow movements. High frame rate VFI, based on plane wave imaging, allows a detailed dynamic visualization of complex flow by showing even transient events, otherwise undetectable. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 45 :582–588, 2017  相似文献   

8.
A method for measuring the absolute blood flow velocity waveform is reported. Two independent beams of ultrasound illuminate a vessel simultaneously, producing complementary Doppler signals. The two Doppler frequency shift signals are processed by subtraction and addition at the receiver. The optimum probe position where blood flow velocity is detected can be found as the position where the subtractor output reaches zero. At this position the blood flow velocity is the output from the adder. By this means the influence of the angle between the probe and blood flow is eliminated so that a quantitative measurement is obtained. Both in vitro and clinical results are reported.  相似文献   

9.
We present an approach to measure pulsatile total retinal arterial blood flow in humans and rats using ultrahigh speed Doppler OCT. The axial blood velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area, without the need to measure the Doppler angle. By measuring flow at the central retinal artery, the scan area can be very small. Combined with ultrahigh speed, this approach enables high volume acquisition rates necessary for pulsatile total flow measurement without modification in the OCT system optics. A spectral domain OCT system at 840nm with an axial scan rate of 244kHz was used for this study. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was ±37.7mm/s. By repeatedly scanning a small area centered at the central retinal artery with high volume acquisition rates, pulsatile flow characteristics, such as systolic, diastolic, and mean total flow values, were measured. Real-time Doppler C-scan preview is proposed as a guidance tool to enable quick and easy alignment necessary for large scale studies. Data processing for flow calculation can be entirely automatic using this approach because of the simple and robust algorithm. Due to the rapid volume acquisition rate and the fact that the measurement is independent of Doppler angle, this approach is inherently less sensitive to involuntary eye motion. This method should be useful for investigation of small animal models of ocular diseases as well as total blood flow measurements in human patients in the clinic.  相似文献   

10.
Blind source separation (BSS) for adaptive filtering is presented in application to imaging both physiological and acoustic radiation force impulse (ARFI)-induced tissue and blood motion in the common carotid artery. The collected raw radiofrequency (RF) data includes vessel wall motion, blood flow and ARFI-induced motion. In the context of these complex motion patterns, the same BSS adaptive filtering method was employed for three diverse applications: 1. clutter filtering ensembles prior to blood velocity estimation, 2. extracting small axial velocity components from noisy velocity measurements given large flow angles and 3. reducing noise in measured ARFI-induced tissue displacement profiles to enhance differentiation of local tissue structures. The filter separated physiological vessel wall motion from axial blood flow and ARFI-induced motion; successful filter performance is demonstrated in velocity estimates, color flow images and ARFI displacement profiles. The results demonstrate the breadth of applications for BSS adaptive filtering in the clinical imaging environment.  相似文献   

11.
Determination of any volumetric blood flow requires assessment of mean blood flow velocity and vessel cross-sectional area. For evaluation of coronary blood flow and flow reserve, however, assessment of average peak velocity alone is widely used, but changes in velocity profile and vessel area are not taken into account. We studied the feasibility of a new method for calculation of volumetric blood flow by Doppler power using a Doppler flow wire. An in vitro model with serially connected silicone tubes of known lumen diameters (1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mm) and pulsatile blood flow ranging from 10 to 200 mL/min was used. A Doppler flow wire was connected to a commercially available Doppler system (FloMap(R), Cardiometrics) for online calculation of the zeroth (M(0)) and the first (M(1)) Doppler moment, as well as mean flow velocity (V(m)). Two different groups of sample volumes (at different gate depths) were used: 1. two proximal sample volumes lying completely within the vessel were required to evaluate the effect of scattering and attenuation on Doppler power, and 2. distal sample volumes intersecting completely the vessel lumen to assess the vessel cross-sectional area. Area (using M(0)) and V(m) (using M(1)/M(0)) obtained from the distal gates were corrected for scattering and attenuation by the data obtained from the proximal gates, allowing calculation of absolute volumetric flow. These results were compared to the respective time collected flow. Correlation between time collected and Doppler-derived flow measurements was 0.98 (p < 0.0001), with a regression line close to the line of equality indicating an excellent agreement of the two measurements in each individual tube. The mean paired flow difference between the two techniques was 1.5 +/- 9.0 mL/min (ns). Direct volumetric blood flow measurement from received Doppler power using a Doppler flow wire system is feasible. This technique may potentially be of great clinical value because it allows an accurate assessment of coronary flow and flow reserve with a commercially available flow wire system.  相似文献   

12.
Implementation of spectral width Doppler in pulsatile flow measurements   总被引:1,自引:0,他引:1  
In this paper, we present an automatic beam-vector (Doppler) angle and flow velocity measurement method and implement it in pulsatile flow measurements using a clinical Doppler ultrasound system. In current clinical Doppler ultrasound flow velocity measurements, the axis of the blood vessel needs to be set manually on the B-scan image to enable the estimation of the beam-vector angle and the beam-vector angle corrected flow velocity (the actual flow velocity). In this study, an annular array transducer was used to generate a conical-shaped and symmetrically focused ultrasound beam to measure the flow velocity vectors parallel and perpendicular to the ultrasound beam axis. The beam-vector angle and flow velocity is calculated from the mode frequency (f(d)) and the maximum Doppler frequency (f(max)) of the Doppler spectrum. We develop a spectrum normalization algorithm to enable the Doppler spectrum averaging using the spectra obtained within a single cardiac cycle. The Doppler spectrum averaging process reduces the noise level in the Doppler spectrum and also enables the calculation of the beam-vector angle and flow velocity for pulsatile flows to be measured. We have verified the measurement method in vivo over a wide range of angles, from 52 degrees to 80 degrees, and the standard deviations of the measured beam-vector angles and flow velocities in the carotid artery are lower than 2.2 degrees and 12 cm/s (about 13.3%), respectively.  相似文献   

13.
Doppler OCT (DOCT) can provide blood flow velocity information which is valuable for investigation of microvascular structure and function. However, DOCT is only sensitive to motion parallel with the imaging beam, so that knowledge of flow direction is needed for absolute velocity determination. Here, absolute volumetric flow is calculated by integrating velocity components perpendicular to the B-scan plane. These components are acquired using two illumination beams with a predetermined angular separation, produced by a delay encoded technique. This technology enables rapid pulsatile flow measurement from single B-scans without the need for 3-D volumetric data or knowledge of blood vessel orientation.OCIS codes: (110.4500) Optical coherence tomography, (170.3880) Medical and biological imaging  相似文献   

14.
15.
Doppler ultrasound flow measurement techniques are often validated using phantoms that simulate the vasculature, surrounding tissue and blood. Many researchers use rubber tubing to mimic blood vessels because of the realistic acoustic impedance, robust physical properties and wide range of available sizes. However, rubber tubing has a very high acoustic attenuation, which may introduce artefacts into the Doppler measurements. We describe the construction of a wall-less vessel phantom that eliminates the highly attenuating wall and reduces impedance mismatches between the vessel lumen and tissue mimic. An agar-based tissue mimic and a blood mimic are described and their acoustic attenuation coefficients and velocities are characterised. The high attenuation of the latex rubber tubing resulted in pronounced shadowing in B-mode images; however, an image of a wall-less vessel phantom did not show any shadowing. We show that the effects of the highly attenuating latex rubber vessels on Doppler amplitude spectra depend on the vessel diameter and ultrasound beam width. In this study, only small differences were observed in spectra obtained from 0.6 cm inside diameter thin-wall latex, thick-wall latex and wall-less vessel phantoms. However, a computer model predicted that the spectrum obtained from a 0.3-cm inside diameter latex-wall vessel would be significantly different than the spectrum obtained from a wall-less vessel phantom, thus resulting in an overestimation of the average fluid velocity. These results suggest that care must be taken to ensure that the Doppler measurements are not distorted by the highly attenuating wall material. In addition, the results show that a wall-less vessel phantom is preferable when measuring flow in small vessels.  相似文献   

16.
The ultrasonic flow-velocity meter for blood flow measurement has developed in two directions. The first type is the transit-time velocity meter, and the second, the Doppler-shift type. For clinical measurement the transcutaneous Doppler instrument is now in routine use and has largely superseded the transit-time type. Doppler-shift velocity meters are now available which measure blood velocity, volume flow, flow direction, flow profile and visualize the internal lumen of a blood vessel.  相似文献   

17.
Conventional Doppler technique can only provide the axial component of the blood flow vector, which is actually a three dimensional (3-D) quantity. To acquire the complete flow vector, estimations of the other two velocity components are essential. For the two dimensional (2-D) Doppler-bandwidth-based transverse estimation, however, accuracy is generally limited because of the complex dependence of the Doppler spectral shape on the flow variation within the sample volume. Two factors that may lead to the Doppler spectral change were considered in this study. One is the position offset of the sample volume and the other is the length of the sample volume. Simulations were performed and experimental data were also collected. Results indicate that the position offset may result in severe underestimation of Doppler shift frequency. Consequently, Doppler bandwidth is overestimated when it is determined by the difference between Doppler shift frequency and maximum Doppler frequency. Compared with the position offset, influence of the length of sample volume on the Doppler bandwidth is minor. To overcome this problem, a novel method, which is based on the differential maximum Doppler frequency, is proposed. Specifically, two beams with different beam widths are simultaneously generated to observe the blood flow and the difference between the corresponding maximum Doppler frequencies is used to estimate the transverse velocity. It is demonstrated that the accuracy and stability of transverse estimation are significantly improved by the proposed method even when the position offset is present.  相似文献   

18.
During the course of a study of skin blood flow under applied external pressure, it became apparent that decreasing blood flow by loading the skin surface reveals problems that are fundamental to the method of laser Doppler flowmetry. These problems have to do with the fact that the laser Doppler is extremely sensitive to red cell motion of any kind, whether associated with the ordered red cell motion of blood flow or the random red cell motion associated with changes in temperature or vessel occlusion. This effect becomes increasingly important whenever blood flow is compromised (a situation of considerable clinical significance), since the random portion of the signal then becomes significant in comparison with the diminished blood flow. Experiments have been conducted in living animals and with stationary drops of blood which clearly show the importance of these effects with regard to the interpretation of laser Doppler signals. Significant laser Doppler flow signals were repeatedly observed after manipulations which could reasonably be expected to reduce blood flow to zero.  相似文献   

19.
目的探讨股动脉断裂显微外科修复的治疗方法。方法2005年1月至2009年12月,对24例因股动脉断裂采用端端吻合、大隐静脉移植修复方法行急诊手术治疗。结果术后肢体均存活,患肢足背动脉搏动恢复,肤色、皮温及毛细血管反应正常。术后3个月行彩色多普勒检查,吻合口血管通畅,无血栓形成及吻合口狭窄,下肢行走功能恢复。结论急诊抢救休克以及尽早修复重建血管是治疗股动脉断裂的关键。  相似文献   

20.
A method of predicting velocity profiles and hence Doppler relative power spectra (RPS) from mean volumetric flow waveforms using an extension of Womersley's theory is described. The effect on the RPS of using an ultrasound beam which is smaller than the blood vessel is calculated, and comparisons are made between RPS found in this way and experimental RPS measured in a dog model. Finally the effect of making ultrasonic Doppler measurements on complex velocity profiles with different combinations of processing technique and ultrasonic beam size are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号