首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Dopamine evokes calcium-dependent release of 3H-acetylcholine from superfused rabbit retina labeled in vitro with 3H-choline, through activation of a D-1 dopamine receptor. This study investigates the activation of this receptor by endogenous dopamine and the modulation of the spontaneous and dopamine-evoked release of 3H-acetylcholine from rabbit retina labeled with 3H-choline by GABAergic agonists and antagonists. Endogenous dopamine, released from dopaminergic amacrine neurons by the indirect amines tyramine or D-amphetamine evoked the calcium-dependent release of 3H-acetylcholine from rabbit retina. The release of 3H-acetylcholine elicited by tyramine (10 M) or D-amphetamine (10 M) was attenuated by the selective D-1 antagonist SCH 23390 (0.1 M) and by the dopamine uptake inhibitor nomifensine (3 M). At concentrations of 1 mM and 1 M respectively, GABA and muscimol inhibited the spontaneous release of tritium from rabbit retina labeled in vitro with 3H-choline. Picrotoxin and bicuculline (10 M) increased the spontaneous release of tritium. GABA and the GABA agonist muscimol (0.01–100 M) inhibited in a concentration-dependent manner the release of 3H-acetylcholine elicited by 100 M dopamine with IC50 values of 4.5 M and 0.02 M respectively. The inhibition of dopamine-evoked 3H-acetylcholine release by GABA (10 M) and muscimol (0.1 M) was antagonized by the GABA antagonists bicuculline and picrotoxin. Picrotoxin and bicuculline (10 M) increased the spontaneous release of tritium, and potentiated the release of 3H-acetylcholine evoked by 100 M dopamine consistant with a tonic, inhibitory GABAergic input to the cholinergic amacrine neurons in rabbit retina. Dopamine-evoked acetylcholine release in rabbit retina may be of physiological importance as D-1 dopamine receptor-mediated increases in 3H-acetylcholine release from rabbit retina can be elicited by endogenous dopamine. In addition, activation of GABA receptor sites modulates the spontaneous and dopamine-evoked acetylcholine release from rabbit retina. Send offprint requests to M. L. Dubocovich at the above address  相似文献   

2.
Summary The effects of three different opioid agonists on contractions and [3H]-acetylcholine (ACh) release evoked by 5-hydroxytryptamine3 (5-HT3) and neurokinin-3 (NK-3) receptor activation were examined in the guinea-pig ileum longitudinal muscle-myenteric plexus strip (LMMP) preparation. The selective mu ()-opioid receptor agonist (d-Ala2,NMe-Phe4,Gly-ol]-enkephalin) (DAMGO; 1 nM–100 nM) and the selective kappa ()-opioid receptor agonist U50488 (10 nM -1 M) inhibited contractile responses to 5-HT and to the selective NK-3 receptor agonist senktide, producing a concentration-related progressive flattening of their concentration-response curves. IC50 estimates for DAMGO and U50488 were somewhat higher for inhibition of 5-HT-evoked as compared to senktide-evoked contractions, and overall lay in the range 6 nM – 51 nM. The selective delta ()-opioid receptor agonist [d-Pen2,5]-enkephalin (DPDPE) inhibited contractile responses only at the highest concentration used (1 M). 3H-overflow from LMMP preparations preincubated with [3H]-choline was measured as an indicator of [3H]-ACh release. DAMGO (1 nM –100 nM) and U50488 (10 nM -1 M) inhibited the increases in release of [3H]-ACh evoked by 5-HT (10 M) and by senktide (10 nM) in a concentration-dependant manner. IC50 estimates for DAMGO and U50488 were not significantly different for inhibition of 5-HT as compared to senktide-evoked increases in [3H]-ACh release and lay in the range 6 nM –23 nM. DPDPE again only inhibited these responses at the maximum concentration used (1 M). The inhibitory effects of DAMGO, U50488 and DPDPE on contractions and [3H]-ACh release evoked by 5-HT and senktide were completely reversed by naloxone (10 M).These results show that ACh release in the guinea-pig ileum evoked by 5-HT and senktide can be modulated to a similar extent by the opioid agonists DAMGO and U50488, but not by DPDPE. This suggests that the pathways of excitation for 5-HT3 and NK-3 receptors converge at some level susceptible to opioid inhibition, which may be mediated by - and -, but not -, opioid receptors.  相似文献   

3.
The effect of P1-purinoceptor activation on contractions, release of noradrenaline and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) was studied in the superfused vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of total tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferinluciferase technique.Electrical stimulation elicited reproducible contraction, tritium overflow and ATP overflow. In the absence of other drugs, adenosine (10–100 M) did not change evoked contractions but reduced the evoked overflow of tritium and ATP. In subsequent experiments 1-adrenoceptors were blocked by prazosin, P2-purinoceptors by suramin and 2-adrenoceptors by rauwolscine. No or almost no contraction remained under these conditions. The evoked overflow of tritium was 505% and the evoked overflow of ATP 34% of that observed in the absence of prazosin, suramin and rauwolscine. Adenosine (1–100 M) again reduced the evoked overflow of tritium and ATP, and so did the A1-selective agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 0.032–0.32 M). Adenosine and CCPA decreased the evoked overflow of ATP to a greater extent than the evoked overflow of tritrium.It is concluded that neural release of both postganglionic sympathetic cotransmitters, noradrenaline and ATP, is decreased upon activation of prejunctional P1- (A1-) purinoceptors in guinea-pig vas deferens. The A1-receptor-mediated inhibition of the release of ATP is more marked than the inhibition of the release of noradrenaline, a pattern opposite to the inhibition produced by activation of prejunctional 2-autoreceptors. Correspondence to: B. Driessen at the above address  相似文献   

4.
Summary Rat hippocampal synaptosomes preloaded with [3H]serotonin and maintained in a superfusion apparatus were exposed for 3 min to d-fenfluramine or fluoxetine. Both drugs evoked a tritium overflow which was reserpine-sensitive requiring the presence of intact synaptic vesicles. However the two drugs displayed different characteristics: 1) the overflow was immediate with dfenfluramine whereas the releasing activity of fluoxetine showed a delay of about 2 min; 2) d-fenfluramine-induced overflow was already apparent at 0.15 mol/l whereas the minimal effective concentration of fluoxetine was 2.5 mol/l. Their concentration-effect curves were differently shaped, the effect of d-fenfluramine being saturable at 5–20 mol/l (EC50 about 1 gmol/l) while no saturation was observed with fluoxetine up to 10 mol/l; 3) only 1907o of the tritium overflow evoked by fluoxetine (2.5–10 mol/l) consisted of true [3H]serotonin, compared with 7001o when 0.5 mol/l d-fenfluramine was used; 4) the releasing action of 0.5 mol/l d-fenfluramine was completely Ca++-dependent, while at higher dfenfluramine concentrations the Ca++-independent overflow became more important. The fluoxetine induced overflow was mainly. (70010) Ca++-independent; 5) the releasing acitvity of d-fenfluramine was mainly (80%) blocked by the serotonin uptake blockers indalpine, midalcipram and also fluoxetine whereas fluoxetine-induced overflow was insensitive to inhibition of the serotonin carrier.In conclusion, the releasing activity of d-fenfluramine is already present at a very low concentration (0.5 mol/l) and at this concentration its mechanism of action was Ca++-dependent, together with the requirement of a functional serotonin carrier. These data therefore do not support the hypothesis of a simple. displacement of 5-HT from its storage vesicles but suggest an exocytotic release possibly triggered by interaction of d-fenfluramine with intracellular receptors. A direct releasing activity is also shown for fluoxetine, very marked at 5–10 mol/l; such effect is different from that of d-fenfluramine and is probably due to the overflow of 5-hydroxyindoleacetic acid, formed in the synaptosomes after the fluoxetine-induced displacement of serotonin from its storage vesicles. The active concentrations of fluoxetine on serotonin release are compatible with those found in rat brain at doses inducing an anorectic activity. Send offprint requests to M. Gobbi at the above address  相似文献   

5.
Summary Effects of verapamil on the acetylcholine (ACh)-induced K+ current were examined in single atrial cells, using the tight-seal whole-cell clamp technique. The pipette solution contained guanosine-5-triphosphate (GTP) or guanosine-5-O-(3-thiotriphosphate) (GTP-S, a non-hydrolysable GTP analogue). In GTP-loaded cells, ACh induced a specific K+ current, which is known to be mediated by pertussis toxin-sensitive GTP-binding (G) proteins. Verapamil (0.1–100 M) depressed the ACh-induced K+ current in a concentration-dependent fashion. In GTP-S-loaded cells, the K+ current remained persistently after wash-out of ACh, probably due to irreversible activation of G proteins by GTP-S. Verapamil (0.1–100 M) also depressed the intracellular GTP-S-induced K+ current. However, the magnitude of verapamil-depression of the K+ current in GTP-S-loaded cells was significantly smaller than that in GTP-loaded cells at concentrations between 1 and 10 M of the drug. From these results, it is suggested that verapamil may block not only the function of muscarinic ACh receptors but also of G proteins and/or the K+ channel itself and thereby depress the ACh-induced K+ current in isolated atrial myocytes.Supported by grants from the Ministry of Education, Science and Culture of Japan and the Research Program on Ca Signal Control Send offprint requests to Y. Kurachi at the above address  相似文献   

6.
Summary Isolated rat hearts with the right sympathetic nerves attached were perfused at a constant flow rate of 7 ml/min with Tyrode's solution. (-)-3H-Noradrenaline (final concentration 10–13.9 nM) was infused for 10 min to label the noradrenaline stores. After wash-out the sympathetic nerves were stimulated electrically (3 Hz, 180 impulses, 1 ms, 20–30 mA) three times (S1–S3) at intervals of 15 min. 3H-Noradrenaline and its metabolites were determined by liquid scintillation counting according to Graefe et al. (1973).Both, nicotine 50 M and p-aminophenethyltrimethylammonium (PAPETA) 30 M, enhanced the 3H-noradrenaline overflow in the absence of nerve stimulation. The effect of PAPETA was biphasic and was still observed in the presence of N-methylatropine 0.1 M. Hexamethonium 10 M abolished the first phase only, but cocaine 10 M antagonized both phases.The decline of the stimulation-evoked overflow of 3H-noradrenaline from the first to the third stimulation period was similar in the absence and in the presence of cocaine 10 M starting before S1 and perfused throughout. Cocaine 10 M added before S2, however, enhanced the evoked overflow by 77%.PAPETA 30 M increased the stimulation-evoked overflow by 67% in the absence, and by 73% of the respective control in the presence, of hexamethonium 10 M. PAPETA 30 M failed to enhance the evoked overflow in the presence of cocaine. Hexamethonium (added before S2) did not modify the effectiveness of nerve stimulation.Nicotine, neither when perfused from 6 min before S2, nor when added to the perfusion fluid simultaneously with the onset of nerve stimulation, caused changes in the 3H-noradrenaline output upon S2.Upon stimulation a rather discrete increase in 3H-DOPEG overflow was observed. This increase was abolished by cocaine and/or PAPETA.It is concluded that nicotine and PAPETA stimulate the output of 3H-noradrenaline from the rat heart sympathetic nerves by activation of nicotine receptors. However, the amount of transmitter released is small. Neither drug appeared to modulate the output of 3H-noradrenaline upon electrical nerve stimulation via nicotine receptors.PAPETA, like cocaine, appears to block the reuptake of released transmittsrs thereby enhancing the 3H-noradrenaline overflow and reducing the overflow of 3H-DOPEG (formed intraneuronally from recaptured noradrenaline after nerve stimulation).Abbreviations used DOMA 3,4-dihydroxymandelic acid - DOPEG 3,4-dihydroxyphenylglycol - MOPEG 3-methoxy-4-hydroxy-phenylglycol - NA noradrenaline - NMN normetanephrine - OMDA O-methylated deaminated metabolites (sum of MOPEG and VMA) - PAPETA p-aminophenethyltrimethylammonium - VMA 3-methoxy-4-hydroxymandelic acid  相似文献   

7.
Summary The aim of the present study was to investigate -adrenoceptor modulation of noradrenaline release from sympathetic nerves in superfused cortical kidney slices of 4-week-old spontaneously hypertensive rats (SHR) and age-matched controls (WKY). After preincubation with 3H-noradrenaline the kidney slices were electrically stimulated in superfusion chambers. The stimulation induced (S-I) outflow of radioactivity was mainly composed of unmetabolized 3H-noradrenaline in both strains and thus taken as an index of noradrenaline release. There was a frequency-dependent (1.25–20 Hz) increase in the S-1 outflow of radioactivity. At all stimulation frequencies tested S-I outflow of radioactivity was similar or even slightly lower in SHR than in WKY kidney slices in either the absence or presence of cocaine (10 mol/l). The non-selective -adrenoceptor agonists isoprenaline (0.l gmol/1) and adrenaline (0.01 and 0.1 mol/l) enhanced S-I outflow of radioactivity. The facilitatory effects of isoprenaline (0.1 mol/l) and adrenaline (0.1 mol/l) were blocked by the selective 2-adrenoceptor antagonist ICI 118551 (0.1 mol/l) but not by the selective 1-adrenoceptor antagonist atenolol (0.3 mol/l). The cell-permeable CAMP analogue 8-bromo-cAMP (300 mol/l) enhanced S-1 outflow of radioactivity to a similar extent in both SHR and WKY kidney slices. A combination of 8-bromo-cAMP (300 mol/l) and adrenaline (0.1 mol/l) did not enhance S-1 outflow of radioactivity to a greater extent than 8-bromo cAMP (300 mol/l) alone in both strains. However, the facilitatory effects of isoprenaline (0.1 mol/l) and adrenaline (0.1 mol/l) but not that of adrenaline (0.01 mol/l) were significantly greater in SHR than in WKY. The results suggest that stimulation of prejunctional 2-adrenoceptors by adrenaline even in the absence of a-adrenoceptor blockade enhances noradrenaline release in kidney cortex of young SHR and WKY. This 2-adrenoceptor mediated effect may possibly be dependent on cAMP formation. The greater facilitatory effects of isoprenaline (0.1 mol/l) and adrenaline (0.1 mol/l) in SHR as compared to WKY are in accord with receptor binding studies which show a higher density of 2-adrenoceptors in SHR than in WKY kidney cortex.Abbreviations SHR Spontaneously hypertensive rats - WKY WistarKyoto rats - cAMP 3-5-cyclic adenosine monophosphate - S-I stimulation induced Send offprint requests to: L. C. Rump  相似文献   

8.
Summary KCl-, NMDA-, and glycine-evoked release of [3H]acetylcholine was studied in superfused rat striatal slices. KCl-evoked release of [3H]acetylcholine was inhibited by 1.2 mM MgC12 and 100 M lidocaine. Similarly, NMDA-evoked release was inhibited by MgCl2 and lidocaine as well as 10 M CGS 19755, a competitive antagonist at NMDA receptors, and 10 nM MK-801, a noncompetitive antagonist of NMDA-induced responses. Glycine-evoked release was calcium-dependent and was inhibited by 0.1 M strychnine whereas KCl- and NMDA-evoked release were resistant to strychnine. In addition, lidocaine inhibited the glycine-induced response. Cross-tachyphylaxis was not observed between NMDA- and glycine-evoked release. These results indicate that the strychnine-sensitive, glycine-evoked release of [3H]acetylcholine is independent of the NMDA receptor.  相似文献   

9.
The ATP-induced increase in tritium outflow from cultured chick sympathetic neurons prelabelled with [3H]-noradrenaline was investigated.Seven days-old dissociated cell cultures of embryonic paravertebral ganglia, loaded with [3H]-noradrenaline (0.05 M), were superfused in the presence of (+)-oxaprotiline and exposed to ATP, ATP-analogues, or 1,1-dimethyl-4-piperazinium (DMPP) for 2 min. ATP (3 LM-3 mM), 2-methylthio-ATP (3–100 M), as well as DMPP (10 and 100 M) induced a significant overflow of tritium. The EC50-value of ATP was 20 M. Both the ATP-induced and the DMPP-induced tritium overflow was Ca2+-dependent and sensitive to tetrodotoxin (0.3 M) and -conotoxin (0.1 M); in addition, it was inhibited by the 2-adrenoceptor agonist 5-bromo-6-(2-imidazoline-2-ylamino)-quinoxaline (UK-14,304; 1 M). The effects of ATP and DMPP were not additive. The ATP-induced as well as the DMPP-induced overflow of tritium was diminished by the P2-purinoceptor antagonists suramin (300 M) and reactive blue 2 (3 M); in all 4 cases, the inhibition amouted to approximately 40%. The tritium overflow induced by ATP or DMPP was almost abolished by the nicotinic receptor antagonist mecamylamine (10 M) and markedly inhibited by hexamethonium (100 M). Neither ATP nor electrical stimulation caused an overflow of tritium from cultures loaded with [3H]-choline.The results suggest that ATP at molar concentrations induces noradrenaline release from cultured chick sympathetic neurons via an action on a subclass of the nicotinic cholinoceptor.  相似文献   

10.
Summary Conditions required for the inhibitory feedback modulation of noradrenergic neurotransmission were studied in isolated atria of the rat.The alpha adrenergic antagonist, yohimbine, 0.8 M, or phentolamine, 1 M, did not affect the chronotropic response to 4 or 8 shocks at 0.8 Hz but increased it when a higher number of shocks was applied. When neuronal uptake was inhibited by cocaine, 2.9 M, or desipramine, 0.1 M, the enhancement of neurotransmission by yohimbine or phentolamine was higher than that observed in the presence of -adrenergic antagonists alone.In atria preincubated with 3H-noradrenaline, the effect of the drugs on the 3H-overflow evoked by 240 shocks at 2.0 Hz was studied. Cocaine 2.9 M, did not increase the evoked overflow but yohimbine, 0.8 M, did. The 3H-overflow obtained in the group of yohimbine plus cocaine was significantly higher than was expected from the effects of both drugs alone.It is concluded that yohimbine or phentolamine enhance the chronotropic response in rat atria only when the concentration of noradrenaline in the biophase is sufficiently high to activate presynaptic receptors. In this tissue, the efficiency of the neuronal uptake influences the degree of -adrenergic autoinhibition.  相似文献   

11.
Release of endogenous ATP elicited by electrical (neural) stimulation and exogenous agonists was studied in the rat isolated vas deferens. The aims were to dissect neural and postjunctional contributions to the nerve activity-evoked overflow of ATP and to clarify the role of transmitter receptors and calcium in postjunctional ATP release.In tissues preincubated with [3H]-noradrenaline, electrical stimulation (100 pulses/10 Hz) elicited contraction and an overflow of tritium and ATP. Contractions as well as ATP overflow were reduced by prazosin 0.3 M and even more so by prazosin 0.3 M combined with suramin 300 M. They were also reduced by nifedipine 10 M and even more so by nifedipine 10 M combined with ryanodine 20 M (the additional effect of ryanodine on ATP overflow was not significant). In tissues not pretreated with [3H]-noradrenaline, exogenous noradrenaline 10 M and ,-methylene ATP 10 M elicited contraction and an overflow of ATP. Responses to noradrenaline were blocked by prazosin 0.3 M but not suramin 300 M and were greatly reduced by nifedipine 10 M and in Ca2+-free medium. Responses to ,-methylene ATP were blocked by suramin 300 M but not prazosin 0.3 M were reduced by nifedipine 10 M (effect on ATP overflow not significant) and were reduced even more in Ca2+-free medium. Neuropeptide Y 0.3 M caused only very small contraction and ATP overflow. The electrically as well as the agonist-evoked ATP overflow correlated well with the contraction responses except in experiments with suramin which retarded the removal, by vas deferens tissue, of ATP from the medium.Itsis concluded that the overflow of ATP from rat vas deferens elicited by electrical (neural) stimulation is at least 90% postjunctional, presumably smooth muscle, in origin. ATP is released from postjunctional cells as a consequence of both 1-adrenoceptor and P2-purinoceptor activation. Ca2+ is a second messenger in the postjunctional ATP release response; its major part enters through L-type channels. A purely neural overflow of ATP was not isolated under the conditions of the experiments. Correspondence to: R. Bültmann at the above address  相似文献   

12.
The aim of this study was to determine whether the calmodulin inhibitors trifluoperazine (TFP) and calmidazolium (CMZ) could decrease the action-potential-evoked release of noradrenaline from mouse isolated atria incubated with [3H]-noradrenaline in support of the hypothesis that calmodulin is involved in neurotransmitter release.TFP (10 M and 30 M) significantly enhanced stimulation-induced (S-1) outflow of radioactivity from mouse atria but had no effect at 1.0 M or 70 M. TFP (70 M) also significantly increased the spontaneous outflow of radioactivity. The facilitatory effect of TFP (10 M) on S-I outflow of radioactivity persisted in either the presence of 3-isobutyl-1-methylxanthine (100 M) or atropine (0.3 M) indicating that this effect of TFP was not mediated through either inhibition of phosphodiesterases or through interference with presynaptic muscarinic receptors, respectively. In the presence of phentolamine, the facilitatory effect of TFP (10 M) on S-I outflow was reduced but there was no effect on S-I outflow at 70 M. However, in the presence of a combination of both phentolamine (l.0 M) and the neuronal uptake blocker desipramine (1.0 M) a significant inhibitory effect of TFP (70 M) on the S-I outflow of radioactivity was observed, indicating that effects of TFP on presynaptic a-adrenoceptors and neuronal uptake had disguised an inhibitory effect on S-1 noradrenaline release. Another inhibitor of the Ca2+-calmodulin complex, calmidazolium (CMZ, 10 M) inhibited the S-1 outflow of radioactivity but had no effect at 1.0 M. However, CMZ (10 M) also induced a concomitant increase in the spontaneous outflow of radioactivity. In the presence of both phentolamine (1.0 M) and desipramine (1.0 M), CMZ (10 M) also decreased S-1 outflow of radioactivity. The spontaneous outflow of radioactivity by calmidazolium (10 M) was mainly attributable to a rise in unmetabolized noradrenaline.Since concentrations of both TFP and CMZ, which inhibited S-1 noradrenaline release, also caused an increase in the spontaneous outflow of radioactivity, it is possible that the inhibitory effects on S-1 noradrenaline release may be secondary to changes in spontaneous outflow. This suggests that these drugs have complex effects on transmitter release dynamics which are perhaps due to multiple roles for calmodulin within the sympathetic nerve terminal. Correspondence to: M. Barrington at the above address  相似文献   

13.
Summary Segments of the rabbit ear artery were preincubated with (–)-3H-noradrenaline and then perfused/superfused and stimulated by transmural electrical pulses. The outflow of 3H-noradrenaline and total tritium was determined.In the first series of experiments, stimulation periods of approximately constant length (50 s) were used (cocaine 5 M present). Thirteen pulses (0.25 Hz) elicited an overflow of 3H-noradrenaline of 0.024% of tissue tritium; 26 pulses (0.5 Hz) elicited an overflow of 0.059%, and 52 pulses (1 Hz) of 0.166%. Rauwolscine 1 M did not change the overflow evoked by 13 pulses, increased that evoked by 26 pulses and increased most markedly that evoked by 52 pulses. Phentolamine 1 M decreased the overflow at 13, did not change the overflow at 26, and increased the overflow at 52 pulses. Corynanthine 1 M decreased the overflow at 13, and did not change the overflow at 26 and 52 pulses. The effect of tetraethylammonium (TEA) 100 M was opposite to that of rauwolscine; it increased most markedly the overflow evoked by 13 pulses, increased less that evoked by 26 pulses, and least the overflow at 52 pulses.In the second series of experiments, the frequency of stimulation was kept constant (2 Hz). In the absence of cocaine, 10 pulses elicited an overflow of 3H-noradrenaline of 0.023% of tissue tritium; 20 pulses elicited an overflow of 0.043%, and 40 pulses of 0.089%. Phentolamine 1 M did not change the overflow evoked by 10 pulses, increased that evoked by 20 pulses, and increased most markedly that evoked by 40 pulses. TEA 100 M increased the evoked overflow at all pulse numbers. Similar results were obtained in the presence of cocaine 5 M.The results demonstrate that the enhancement by -adrenoceptor antagonists of the release of noradrenaline depends on the biophase concentration of noradrenaline. Under the present conditions, graded increases in biophase noradrenaline concentration led to graded increases in the effect of the antagonists. A second prerequisite for the release-enhancing effect appears to be a sufficient length of the pulse train. Under the present conditions, graded increases in train length up to about 20s led to graded increases in the effect of the antagonists, even though the average biophase concentration of noradrenaline did not change with the pulse train length. This pattern of effects of the -antagonists is not shared by at least one other release-enhancing drug, namely TEA.  相似文献   

14.
Summary Contractions, release of previously stored [3H]-noradrenaline (measured as overflow of total tritiated compounds) and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) were studied in the superfused vas deferens of the guinea pig. Prazosin and suramin were used to suppress non-neural ATP release, and effects of bromoxidine and rauwolscine on the neural release thus isolated were examined.Electrical stimulation elicited reproducible contraction, tritium overflow and ATP overflow. Both prazosin (0.03–3 M) and suramin (30–300 M) reduced contractions as well as the evoked overflow of ATP. No visible contraction remained in 21 of 28 tissues exposed to prazosin 0.3 M combined with suramin 300 M. The evoked overflow of ATP under these conditions was about 17% of that observed in the absence of drugs. In the presence of prazosin 0.3 M and suramin 300 M, bromoxidine (0.01–1 M) decreased and rauwolscine (0.1–10 M) increased the evoked overflow of both tritium and ATP. Rauwolscine increased the evoked overflow of tritium to a significantly greater extent than the overflow of ATP.It is concluded that the overflow of ATP elicited by electrical (neural) stimulation in the presence of prazosin 0.3 M and suramin 300 M reflects purely neural release of ATP. This release of ATP, like the release of noradrenaline, is modulated through prejunctional 2-adrenoceptors. The 2-adrenoceptor modulation of the release of noradrenaline seems to be more marked than the modulation of the release of ATP. Correspondence to B. Driessen at the above address  相似文献   

15.
Summary Electrically-evoked release of [3H]acetylcholine from autonomic neurons (myenteric plexus), motoneurons (phrenic nerve) and the central nevous system (neocortex) was investigated in the presence and absence of the calcium channel antagonists -conotoxin GVIA, nifedipine and verapamil, whereby the same species (rat) was used in all experiments. Release of [3H]acetylcholine was measured after incubation of the tissue with [3H]choline.-Conotoxin GVIA markedly reduced (70%) the evoked release of [3H]acetylcholine from the myenteric plexus of the small intestine (IC50: 0.7 nmol/l) with a similar potency at 3 and 10 Hz stimulation. An increase in the extracellular calcium concentration attenuated the inhibitory effect of -conotoxin GVIA. Release of [3H]acetylcholine from the rat neocortex was also inhibited (90%) by -conotoxin GVIA, but the potency was 19-fold lower (IC50: 13 nmol/l). However, the release of [3H]acetylcholine from the phrenic nerve was not reduced by -conotoxin GVIA (100 nmol/l) at 1.8 mmol/l calcium (normal concentration), whereas -conotoxin GVIA inhibited evoked [3H]acetylcholine release by 47% at 0.9 mmol/l calcium. Neither nifedipine (0.1 and 1 mol/l) nor verapamil (0.1, 1 and 10 mol/l) modified the evoked release of [3H]acetylcholine from the myenteric plexus and the phrenic nerve.Acetylcholine release from different neurons appears to be regulated by different types of calcium channels. N-type channels play the dominant role in regulating acetylcholine release from both the myenteric plexus and the neocortex, whereas acetylcholine release from motor nerves is regulated by calcium channel(s) not yet characterized. Send offprint requests to I. Wessler at the above address  相似文献   

16.
The influence exerted by monoamines on acetylcholine release was studied in electrically stimulated slices of guinea pig nucleus basalis magnocellularis (nbM) prelabelled with 3H-choline (3H-Ch).Noradrenaline, 30 M, and clonidine, 1 M, reduced the evoked 3H-Ch efflux by about 50%, but phenylephrine, 100 M. did not; idazoxan, 0.1 M. but not prazosin, 1 M, antagonized these effects. pointing to the involvement of alpha2 receptors. Apomorphine, 1 or 30 M. reduced 3H-Ch efflux from nbM slices as well. The effect was shared by quinpirole, 1 or 10 M, but not by 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benz-azepine (SKF 38393). 10 M, and was antagonized by sulpiride, 1 M, but not by R-(+)-8-chloro-2,3,4,5-tetra-hydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol (SCH 23390). 1 M, suggesting the involvement of the D2 receptor subtype.5-hydroxytryptamine (5-HT) 0.3–30 M, and alphamethyl-5-HT, 10 M, significantly increased 3H-Ch efflux from nbM slices; the 5-HT2 antagonist ritanserin, 1 M. prevented this response. 2-methyl-5-HT, 1–30 M, inhibited the evoked 3H-Ch efflux and its effect was prevented by the 5-HT3 antagonist 1H,3,5H-tropan-3-yl-3,5-dichlorobenzoate (MDL 72222). 1 M.These findings indicate that i) catecholamines inhibit nbM neurons through alpha2 and D2 receptors and that ii) a complex serotonergic modulation of cholinergic function exists in the nbM, involving the activation of various receptor subtypes. which can mediate opposite responses. Correspondence to: A. Siniscalchi at the above address  相似文献   

17.
This study investigated the vasorelaxant activity, superoxide radicals (O2)-scavenging capacity and cyclic nucleotide phosphodiesterase (PDE)-inhibitory effects of hesperidin and hesperetin, two flavonoids mainly isolated from citrus fruits. Hesperetin concentration-dependently relaxed the isometric contractions induced by noradrenaline (NA, 1 M) or by a high extracellular KCl concentration (60 mM) in intact rat isolated thoracic aorta rings. However, hesperetin (10 M–0.3 mM) did not affect the contractile response induced by okadaic acid (OA, 1 M). Mechanical removal of endothelium and/or pretreatment of aorta rings with glibenclamide (GB, 10 M), tetraethylammonium (TEA, 2 mM) or nifedipine (0.1 M) did not significantly modify the vasorelaxant effects of this flavonoid. Hesperetin (10 M–0.1 mM) did not affect the basal uptake of 45Ca2+ but decreased the influx of 45Ca2+ induced by NA and KCl in endothelium-containing and endothelium-denuded rat aorta. Hesperetin (10 M–0.1 mM) did not scavenge O2 generated by the phenazine methosulfate (PMS)-reduced -nicotinamide adenine dinucleotide (NADH) system. Hesperetin (0.1 mM) significantly reversed the inhibitory effects of NA (1 M) and high KCl (60 mM) on cyclic nucleotide (cAMP and cGMP) production in cultured rat aortic myocytes. Hesperetin preferentially inhibited calmodulin (CaM)-activated PDE1 and PDE4 isolated from bovine aorta with IC50 values of about 74 M and 70 M respectively. In contrast, the 7-rhamnoglucoside of hesperetin, hesperidin (10 M–0.1 mM), was inactive in practically all experiments, although it inhibited basal and cGMP-activated PDE2 isolated from platelets (IC50 values of 32±4 M and 137±34 M respectively). These results suggest that the vasorelaxant effects of hesperetin are basically due to the inhibition of PDE1 and PDE4 activities.  相似文献   

18.
Summary The perivascular nerves of rabbit mesenteric arteries were stimulated with 15 pulses at 2 Hz, and decreases in external diameter were measured by means of a photoelectric device. Both extra- and intraluminally added [Met5]-enkephalin 1 mol/l depressed vasoconstriction, although with the second mode of application a larger inhibition occurred. Therefore, in the subsequent experiments all opioids were added into the lumen. [Met5]enkephalin 0.1 mol/l had no effect. [d-Pen2, l-Pen5]enkephalin 3 mol/l was less potent than [Met5]enkephalin 1 mol/l. ICI 174864 1 mol/l was also without effect when given alone, but antagonized the action of [Met5]enkephalin 1 mol/l.Ethylketocyclazocine, dynorphin A(1–13), normorphine and DAGO, all 1 mol/l, were ineffective. [Met5]enkephalin 1 mol/l did not change the vasoconstriction evoked by the application of noradrenaline (0.1 –3 mol/l). It is concluded that in the mesenteric artery action potential-induced transmitter release, and in consequence vasoconstriction can be inhibited by the activation of presynaptic opioid -receptors. Send offprint requests to P. Illes at the above address  相似文献   

19.
The effect of strychnine on evoked release of catecholamines from a primary culture of bovine adrenal medullary cells was investigated. Strychnine at > 1 M inhibited catecholamine release stimulated by 10 M acetylcholine, or 10 M nicotine, but not by excess K+ (59 mM), the sodium ionophore veratridine (100 M) or the calcium ionophore A-23187 (10 M). The inhibitory response elicited by exposure of the cells to strychnine was rapid (< 3 min) and competitive with acetylcholine. High concentrations of acetylcholine (1 mM) completely overcame this inhibition. Strychnine might be acting on a regulatory site of the nicotinic-cholinergic receptor, which is genetically similar to the strychnine-binding 48 KD subunit of the glycine receptor.  相似文献   

20.
Summary After incubation with 2.3 M 3H-(±)-adrenaline(3H-AD) or 3H-(-)-noradrenaline(3H-NA) for 60 min in the presence of hydrocortisone and U-0521, dog saphenous vein strips were perifused (the fluid containing cocaine+hydrocortisone+U-0521) and electrically stimulated. Tritium fractional release per shock was calculated for 1 and 5 Hz.Phentolamine (3 M) enhanced the overflow of tritium evoked by electrical stimulation at both frequencies but at 1 Hz the enhancement was higher for strips loaded with 3H-AD than for strips loaded with 3H-NA.Propranolol (1 M) reduced the overflow evoked by electrical stimulation at 1 Hz from the strips loaded with 3H-AD but not from those loaded with 3H-NA.Isoprenaline (0.04 M) increased the overflow of tritium evoked by electrical stimulation at 1 Hz from the strips loaded with 3H-NA but did not change that from strips loaded with 3H-AD.It is concluded that: a) the -adrenoceptor-mediated feedback mechanism is also present in the dog saphenous vein; b) this feedback mechanism also functions with the false transmitter AD; c) the use of 3H-AD as false transmitter revealed the existence of a -adrenoceptor-mediated positive feedback mechanism in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号