首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
BACKGROUND: The precise role that CD8+ T cells play in the rejection and acceptance of different types of allograft is unclear and has been shown to vary between donor-recipient combinations. METHODS: The response of adoptively transferred CD8+ T cells reactive to the donor alloantigen H2Kb was examined after transplantation of H2Kb liver, kidney, and heart grafts in mice. RESULTS: After transfer of 6 x 10(6) alloreactive CD8+ T cells to T-cell depleted syngeneic mice spontaneous long-term acceptance of liver grafts was observed, whereas kidney and heart grafts were acutely rejected. Within 5 days of liver transplantation, we found that the entire H2Kb-reactive T-cell pool was stimulated to proliferate and differentiate into memory or effector cells that were detectable within lymphoid tissues as well as the liver graft itself. However, despite the generation of effector or memory T cells, liver allografts were accepted, which correlated with the exhaustion or deletion of such cells. In contrast, although activation and proliferation of H2Kb-reactive CD8+ T cells was observed after transplantation of heart or kidney grafts, unactivated, H2Kb-reactive CD8+ T cells were still present in the spleen even long term. Interestingly, differences in the effector function of liver and kidney graft infiltrating donor-reactive CD8+ T cells were not detected after adoptive transfer into immunodeficient mice, despite a reduction in Th1-type cytokines within liver grafts. CONCLUSIONS: The rapid and extensive initial activation and differentiation of donor-reactive CD8+ T cells that occurs after liver transplantation leads to clonal exhaustion or deletion of the alloreactive CD8+ T-cell repertoire resulting in spontaneous tolerance induction.  相似文献   

2.
3.
BACKGROUND: The mechanisms by which CD4+T cells, especially CD4+ CD25+T cells, transfer allograft specific tolerance are poorly defined. The role of cytokines and the effect on antigen-presenting cells is not resolved. METHODS: Anti-CD3 monoclonal antibody (mAb) therapy induced tolerance to PVG heterotopic cardiac transplantation in DA rats. Peripheral CD4+T cells or CD4+ CD25+ and CD4+ CD25-T cell subsets were adoptively transferred to irradiated DA hosts grafted with PVG heart grafts. For specificity studies, tolerant CD4+T cells were transferred to hosts with Lewis or (PVGxLewis)F1 heart grafts. Cytokine mRNA induction and the requirement for interleukin (IL)-4 and transforming growth factor (TGF)-beta in the transfer of tolerance was assessed. RESULTS: CD4+T cells transferred specific tolerance and suppressed na?ve CD4+T cells capacity to effect rejection of PVG but not Lewis grafts. (PVGxLewis)F1 grafts had a major rejection episode but recovered. Later these hosts accepted PVG but not Lewis skin grafts. Adoptive hosts restored with tolerant or na?ve cells had similar levels of mRNA expression for all Th1 and Th2 cytokines and effector molecules assayed. Transfer of tolerance by CD4+T cells was not blocked by mAb to IL-4 or TGF-beta. CD4+ CD25-T cells from either na?ve or tolerant hosts effected rejection. In contrast neither tolerant nor na?ve CD4+ CD25+T cells restored rejection. CONCLUSIONS: Specific tolerance transfer required CD4+ containing CD4+ CD25+T cells. An inflammatory response with induction of mRNA for Th1 and Th2 cytokines plus cytotoxic effector molecules occurred, but IL-4 and TGF-beta were not essential. Inhibition of antigen presenting cells was not the sole mechanism as there was no linked tolerance.  相似文献   

4.
BACKGROUND: Tubulitis is a defining feature for the diagnosis and management of acute renal allograft rejection. Lymphocytes extracted from rejecting renal tissue are known to express the alphaEbeta7-integrin (CD103), a receptor for E-cadherin expressed on epithelial cells. In this study, expression of CD103 was examined in situ in tubulitis associated with acute rejection. METHODS: Immuno-labeling detected CD8+ and CD103+ lymphocytes and E-cadherin on epithelial cells in cryostat sections from 34 diagnostic biopsy specimens and a limited number of transplant nephrectomies. CD8+ and CD103+ intratubular cells were enumerated as mean numbers per tubular crosssection and median values were compared between rejection grades as were median ratios of CD103+ to CD8+ cells. Active transforming growth factor (TGF) beta1 was quantified in paraffin sections by immunofluorescence and confocal microscopical analysis. A parallel in vitro study quantified CD103+ T cells after allospecific activation with and without exogenous TGFbeta1. RESULTS: CD8+ T cells were present in tubules and tubular interstitium in acute rejection. CD103+ T cells were restricted exclusively to the tubules. The numbers of intratubular CD8+ and CD103+ cells and the ratio of intratubular CD103+ to CD8+ cells increased significantly with tubulitis score (P values 0.005, 0.009, and 0.02, respectively). TGFbeta1 expression was wide-spread in tubules also increasing significantly with tubulitis score (P=0.034). In chronic rejection, CD103+ T cells and TGFbeta1 were present within both tubules and interstitial cell populations. The in vitro study demonstrated that addition of TGFbeta1 to activated, alloantigen-specific T cells increased the proportion of CD8+ cells that also expressed CD103. CONCLUSIONS: These data indicate that specific upregulation of the alphaEbeta7-integrin by activated, intratubular T cells in acute renal allograft rejection could be a consequence of exposure to high local concentrations of TGFbeta1. The capacity of CD103+ T cells to bind E-cadherin on tubular epithelial cells may be an important factor in the pathogenesis of specific tissue damage observed in acute renal allograft rejection.  相似文献   

5.
Despite success of early islet allograft engraftment and survival in humans, late islet allograft loss has emerged as an important clinical problem. CD8+ T cells that are independent of CD4+ T cell help can damage allograft tissues and are resistant to conventional immunosuppressive therapies. Previous work demonstrates that islet allografts do not primarily initiate rejection by the (CD4-independent) CD8-dependent pathway. This study was performed to determine if activation of alloreactive CD4-independent, CD8+ T cells, by exogenous stimuli, can precipitate late loss of islet allografts. Recipients were induced to accept intrahepatic islet allografts (islet 'acceptors') by short-term immunotherapy with donor-specific transfusion (DST) and anti-CD154 mAb. Following the establishment of stable long-term islet allograft function for 60–90 days, recipients were challenged with donor-matched hepatocellular allografts, which are known to activate (CD4-independent) CD8+ T cells. Allogeneic islets engrafted long-term were vulnerable to damage when challenged locally with donor-matched hepatocytes. Islet allograft loss was due to allo specific immune damage, which was CD8- but not CD4-dependent. Selection of specific immunotherapy to suppress both CD4- and CD8-dependent immune pathways at the time of transplant protects islet allografts from both early and late immune damage.  相似文献   

6.
PVG-rnu/rnu nude rats reject fully allogenic renal (DA) and skin (BN, AO) allografts after the adoptive transfer of naive CD4+ T cells alone, but rejection is accompanied by the accumulation of many nude-derived CD8+ leukocytes within the graft. In addition, mononuclear cells infiltrating the rejecting renal grafts in these animals display cytotoxic activity in vitro against specific and third-party alloantigens. In this investigation we have treated CD4+ T cell-restored nude rats bearing renal or skin allografts with the mAb MRC OX8 to deplete the host of CD8+ cells. In vivo treatment with OX8 completely eliminated CD8+ cells from rejecting grafts of both kidney and skin, but it did not prevent graft rejection, nor did OX8 treatment abolish the cytotoxic effector cells found in nude rat spleen or in graft-infiltrating cells (GIC) of rejecting renal allografts. The nature of the cytotoxic activity was examined with anti-CD3 mAb 1F4, which was shown to block conventional CD8+ Tc killing in vitro but did not inhibit allogeneic target cell lysis by spleen cells from nude rats. The cytotoxic activity found in GIC of rejecting allografts was not inhibited by anti-CD3 mAb, suggesting that these cytotoxic effector cells were CD3-CD8- and were of extrathymic origin. We conclude that non-thymus-derived CD8+ GIC are not essential for allograft rejection in CD4+ T cell-restored nude rats.  相似文献   

7.
BACKGROUND: An adoptive transfer system was used to study the fate of alloreactive CD8+ H-2Kb-specific TCR transgenic (DES+) T cells in vivo after transplantation. METHODS: A trace population of 2.0x10(6) CD8+DES+ T cells were adoptively transferred into syngeneic CBA.Ca (H-2k) mice 24 hr before transplantation of an H-2Kb+ or H-2Kb- cardiac allograft. RESULTS: H-2Kb specific T cells proliferated and produced interleukin-2 and interferon-gamma in response to H-2Kb+, but not H-2Kb- cardiac allografts. CD8+DES+ T cells that infiltrated the H-2Kb+ cardiac allografts developed a distinct cell surface and cytokine phenotype compared with the CD8+DES+ T cells that remained in the periphery. H-2Kb-specific graft infiltrating T cells (a) underwent a larger number of cell divisions (> =3), (b) increased in size, (c) up-regulated CD69, and (d) down-regulated CD62L. CONCLUSIONS: These results demonstrate that alloantigen-specific T cells can be monitored in vivo during the immune response to an allograft and that the fate of CD8+ T cells specific for the allogeneic class I molecules expressed by the graft is different between cells in the periphery and those that infiltrate the graft.  相似文献   

8.
Limbal transplantation or limbal stem cell (LSC) transfer represents the only way to treat severe ocular surface damage or LSC deficiency. However, limbal allografts are promptly rejected in spite of extensive immunosuppressive therapy. To characterize immune response after limbal transplantation, we established an experimental model of limbal transplantation in the mouse. Syngeneic, allogeneic and xenogeneic (rat) limbal grafts were grafted orthotopically in BALB/c mice and graft survival was evaluated. The presence of graft donor cells and the expression of IL-2, IL-4, IL-10, IFN-γ and inducible nitric oxide synthase (iNOS) mRNA in the grafts were detected by real-time PCR. While syngeneic grafts survived permanently, allografts were rejected in 9.0±1.8 days and xenografts in 6.5±1.1 days. The manifestation of clinical symptoms of rejection correlated with the disappearance of donor cells in the graft and in the recipient cornea. Intragraft expression of iNOS mRNA and distinct expression patterns of Th1 (IL-2, IFN-γ) and Th2 (IL-4, IL-10) cytokines were detected during rejection of limbal allografts and xenografts. The limbal graft rejection was prevented with anti-CD4, but not anti-CD8 monoclonal antibody therapy. The results indicate that limbal grafts do not enjoy immune privilege of the eye and are promptly rejected by Th1 (allografts) or by a combined Th1 and Th2 (xenografts) type of immune response involving CD4+ cells and iNOS expression. Targeting this pathway may be an effective way to prevent and treat limbal graft rejection.  相似文献   

9.
An inducible co-stimulator (ICOS), a recently identified co-stimulatory receptor with a close structural homology of CD28 and CTLA4, is expressed on activated T cells. Anti-ICOS antibody was demonstrated to be effective on prolongation of graft survival after liver transplantation in rats. In this study, we investigated the potency of tolerance induction using the antibody combined with a recombinant adenovirus vector containing CTLA-4Ig cDNA (AdCTLA-4Ig) in rat heart transplantation model. Using a DA-to-Lewis rat heart transplantation model, an anti-rat ICOS antibody and AdCTLA-4Ig were simultaneously administered i.v. into recipients. The tissue specimens from the grafts were removed on various days after transplantation for histological evaluation. Donor-strain skin and heart grafts, and third-party heart allografts were challenged in the recipients with a long-term surviving graft. Splenocytes from the tolerance-induced recipients were used for adoptive transfer study. Anti-ICOS antibody alone did not prolong the survival of heart allograft. AdCTLA-4Ig monotherapy significantly prolonged the survival of heart allograft (Group 4). With a combination of Anti-ICOS antibody and AdCTLA-4Ig, all recipients were resulted in a long-term allograft acceptance for more than 200 days (Group 8). When challenged donor-strain skin grafts in the tolerant rats of Group 4, the skin was rejected, which also lead to a rejection of primary heart allografts. The recipients in Group 8 also rejected donor-strain skin grafts with no rejection of the primary heart grafts. These recipients accepted secondary heart grafts from donor-strain but not third-party. In Group 8 long-term survival recipients showed a high population of CD4+CD25+ regulatory T cell in peripheral blood, and in adoptive transfer study subtraction of these CD4+CD25+ T cells accelerate the rejection of heart graft in secondary irradiated recipients. The present results demonstrated that anti-ICOS antibody combined with AdCTLA-4Ig potently induces a stable immune tolerance after heart allografting in rat, which is mediated by the induction of CD4+CD25+ regulatory T cells. This strategy may be attractive for clinical employment to induce transplantation tolerance.  相似文献   

10.
BACKGROUND: Regulatory T cells (T(reg) cells) may be operational in both the induction and maintenance of transplantation tolerance. We recently showed that alloantigen-induced CD103+ CD8+ T cells strongly suppressed T-cell proliferation in mixed lymphocyte culture (MLC) via a contact-dependent mechanism. CD103 directs T lymphocytes to their ligand E-cadherin, which is expressed on renal tubular epithelial cells, and CD103+ CD8+ T cells have been described to be present in late renal allograft rejection. METHODS: We studied the influence of prednisolone, cyclosporin, tacrolimus, CD25 monoclonal antibodies, rapamycin, and mycophenolate mofetil (MMF) on the development and functional activity of alloantigen-activated CD103+ CD8+ T cells in MLC. RESULTS: Calcineurin inhibitors, MMF, and CD25mAb did not influence the number of CD103 expressing CD8+ T cells. In contrast, corticosteroids diminished CD103 expression on alloactivated CD8+ T cells, which appeared to be caused by their inhibitory action on myeloid dendritic cells. Addition of rapamycin to allocultures led to an increased percentage of CD103+ CD8+ alloreactive T cells. Moreover, in the presence of rapamycin, these cells tended to show higher suppressive capacity. CONCLUSIONS: Alloreactive CD103+ CD8+ T(reg) cells may expand and exert their suppressive function during immunosuppressive treatment with rapamycin. These data are relevant in the design of immunosuppressive drug regimens intended to induce and/or maintain transplantation tolerance.  相似文献   

11.
Previous studies have shown that vaccinating rodents with anti-donor-specific T cells significantly prolonged allograft survival; however, the putative mechanism of the tolerance remains unclear. In this study, we used the model of heterotopic heart transplantation between the C57BL/6 donor mice and BALB/c recipient mice vaccinated with anti-donor (C57BL/6) or anti-third party (C3H)-specific T cells to determine whether T cells prolong survival of mouse heart allografts and which cells were involved in induction of allograft tolerance. We observed that the mean survival time (MST) of C57BL/6 heart grafts in BALB/c mice vaccinated with anti-C57BL/6 specific T cells (43.1 +/- 4.7 days) was prolonged from that in untreated BALB/c mice (9.5 +/- 1.1 days) or BALB/c mice receiving anti-C3H-specific T cells (10.4 +/- 1.9 days). These results suggested that alloantigen-specific T-cell vaccination significantly prolonged cardiac allograft survival. The CD4+CD25+ or CD8+CD28- T cells purified from splenocytes of BALB/c mice vaccinated with anti-donor-specific T cells proliferated markedly in response to irradiated anti-C57BL/6-specific T cells in vitro. Adoptive transfer of these CD4+CD25+ or CD8+CD28- T cells to na?ve syngenic mice significantly prolonged the survival of heart allografts. These data suggested that anti-donor-specific T-cell vaccination induced development of CD4+CD25+ or CD8+CD28- regulatory T cells, which in turn mediated allogeneic-specific tolerance.  相似文献   

12.
Nonobese diabetic (NOD) mice develop diabetes and destroy syngeneic islet grafts through an autoimmune response. Because transforming growth factor (TGF)-beta1 downregulates immune responses, we tested whether overexpression of TGF-beta1 by gene transfection of NOD mouse islets could protect beta-cells in islet grafts from autoimmune destruction. NOD mouse islet cells were transfected with an adenoviral DNA expression vector encoding porcine latent TGF-beta1 (Ad TGF-beta1) or the adenoviral vector alone (control Ad vector). The frequency of total islet cells expressing TGF-beta1 protein was increased from 12 +/- 1% in control Ad vector-transfected cells to 89 +/- 4% in Ad TGF-beta1-transfected islet cells, and the frequency of beta-cells that expressed TGF-beta1 was increased from 12 +/- 1% to 60 +/- 7%. Also, secretion of TGF-beta1 was significantly increased in islets that overexpressed TGF-beta1. Ad TGF-beta1-transfected NOD mouse islets that overexpressed TGF-beta1 prevented diabetes recurrence after transplantation into diabetic NOD mice for a median of 22 days compared with only 7 days for control Ad vector-transfected islets (p = 0.001). Immunohistochemical examination of the islet grafts revealed significantly more TGF-beta1+ cells and insulin+ cells and significantly fewer CD45+ leukocytes in Ad TGF-beta1-transfected islet grafts. Also, islet beta-cell apoptosis was significantly decreased whereas apoptosis of graft-infiltrating leukocytes was significantly increased in Ad TGF-beta1-transfected islet grafts. These observations demonstrate that overexpression of TGF-beta1, by gene transfection of NOD mouse islets, protects islet beta-cells from apoptosis and autoimmune destruction and delays diabetes recurrence after islet transplantation.  相似文献   

13.
To investigate the mechanism of CD4(+) T-cell help during the activation and differentiation of directly alloreactive CD8(+) T cells, we examined the development of obliterative airways disease (OAD) following transplantation of airways into fully mismatched recipient mice deficient in CD4(+) T cells. BALB/c trachea allografts became fibrosed significantly less frequently in B6 CD4(-/-) recipients as compared to wildtype controls. Furthermore, class I-directed cytotoxicity failed to develop in the absence of CD4(+) T cells. The infiltration of graft tissue by primed L(d)-specific directly alloreactive 2C CD8(+) T cells was not found to depend on the presence of CD4(+) T cells. Nevertheless, graft-infiltrating 2C CD8(+) T cells failed to express CD69 and granzyme B when CD4(+) T-cell help was unavailable. Importantly, reconstitution of B6 CD4(-/-) recipient mice with graft peptide-specific TCR-Tg CD4(+) T cells (OT-II or TEa) capable of recognizing antigen only on recipient APC allowed for full expression of CD69 and granzyme B by the directly alloreactive CD8(+) T cells and restored the capacity of recipients to reject their allografts. These results demonstrate that indirectly alloreactive CD4(+) T cells ensure the optimal activation and differentiation of graft-infiltrating directly alloreactive CD8(+) T cells independent of donor APC recognition.  相似文献   

14.
The complexity of allorejection (cell activation, homing, and effector function) makes detailed studies difficult. We have developed a model of allograft rejection using purified monoclonal alloreactive effector cells. Immunodeficient C57Bl/6-Rag-1 (H-2(b)) recipients of Balb/c (H-2(d)) islet or skin grafts were reconstituted via adoptive transfer of splenocytes from 2C transgenic mice containing CD8+ cytotoxic effector cells directed against L(d). Recipients were assessed for engraftment, activation and homing of effector cells, and ability to reject grafts. Both unpurified 2C splenocytes and purified 2C/CD8+ cells durably reconstitute immunodeficient mice. Naive 2C effector cells reject skin grafts, but not islet allografts. However, when effector cells are primed prior to reconstitution, islet allografts are rejected. Using this model, blockade of adhesion molecules LFA-1 and alpha4-integrin delayed infiltration of islet allografts and prolonged allograft survival. This model of allorejection may be useful to study the activation and homing of allospecific cells in vivo.  相似文献   

15.
Apoptosis and allograft rejection in the absence of CD8+ T cells.   总被引:2,自引:0,他引:2  
BACKGROUND: The requirement for cytotoxic T lymphocytes during allograft rejection is controversial. We previously demonstrated that CD8+ T cells are not necessary for allograft rejection or for the induction of apoptosis in rat small intestinal transplantation. In this study, we examined the mechanisms of apoptosis and rejection after liver transplantation in the absence of CD8+ T cells. METHODS: Either Lewis or dark agouti rat liver grafts were transplanted into Lewis recipients to create syngeneic and allogeneic combinations. CD8+ T cells were depleted in an additional allogeneic group by treatment with OX-8 mAb on day -1 and day 1 after liver transplant. RESULTS: Apoptosis and rejection were observed in both the CD8+ T cell-depleted allogeneic and allogeneic grafts by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, and radiolabeled-annexin V in vivo imaging. Granzyme B and FasL were expressed in all allogeneic transplants, including those depleted of CD8+ T cells, indicating that a mononuclear cell other than a CD8+ T cell can be the source of these molecules during allograft rejection. Activation of the caspase cascade was detected in all rejecting allografts. Caspases 3, 8, and 9 were activated at similar significantly elevated levels in both allogeneic and CD8+ T cell-depleted liver grafts. CONCLUSION: These data indicate that in the absence of CD8+ T cells an alternative pathway, associated with granzyme B and FasL expression and activation of the caspase cascade, can mediate apoptosis and graft rejection.  相似文献   

16.
Athymic PVG-rnu/rnu (RT1c) rats were grafted with skin bearing isolated MHC disparities 7-14 days in advance of cell transfer. The ability of naive CD4+ or CD8+ thoracic duct lymphocytes to induce rejection was assessed by adoptive transfer of one or both T cell subsets into nude recipients bearing congenic PVG.r1 (MHC class I-only disparity, Aa) or PVG.r19 (class I and II-only disparity, Aa B/Da) skin grafts. Recipients of purified CD4+ TDL always rejected r19 allografts, whereas CD8+ TDL were ineffective against this class I + II difference. Neither the injection of CD4+ TDL nor CD8+ TDL alone resulted in destruction of r1 skin grafts. However, rejection of r1 tissue was observed in 63% of cases (19/30) when both CD4+ and CD8+ TDL were present in the nude recipients. Rejection of r1 skin was also induced in some recipients when CD8+ TDL were transferred 8 weeks in advance of CD4+ TDL. In contrast, sequential transfer in the reverse order apparently induced tolerance in the CD4+ population--i.e., surviving r1 skin grafts on 8 week CD4+ T cell-reconstituted nude recipients were not rejected following the subsequent transfer of CD8+ TDL. We conclude that CD4+ T cells were required for rejection of both class I and class II differences. In the presence of a class II difference, CD4+ T cells function autonomously to initiate both the inducer and effector stages of rejection. When the disparity is confined to class I, CD8+ T cells are required (probably at the effector stage) but are dependent on CD4+ T cells for help. There was no evidence of CD4+ effector T cells that could recognize class I directly within the graft.  相似文献   

17.
T cells mediating chronic rejection (CR) of human kidney allografts were characterized by comparing them with those mediating acute rejection (AR). Two lines of analysis were performed using biopsy specimens (23 CR and 8 AR). First, the extent of infiltration of CD4+ and CD8+ T cells into allografts was assessed from mRNA expression of CD4 and CD8. The group of CR specimens was not significantly different from the group of AR specimens in terms of the extent of CD4+ and CD8+ T cell infiltration, underlining the importance of the immunological contribution to the progress of CR. Second, Th1/Th2 polarization in infiltrating T cells was investigated by measuring mRNA expression of interferon gamma (IFN-gamma; a Th1 cytokine) and interleukin 4 (IL-4; a Th2 cytokine). IFN-gamma expression was detected in most CR specimens, and was not significantly different between the group of CR specimens and the group of AR specimens. On the other hand, IL-4 expression was detected in only two CR specimens and one AR specimen; from its pathological features, the AR in this last case was concomitant with CR. These results suggest that most cases of CR and of AR are mediated by Th1 mechanisms, although some cases of CR show features of both Th1 and Th2.  相似文献   

18.
目的 研究CD4+CD25+调节性T细胞在诱导自发性肝脏免疫耐受中的作用.方法 向受体和供体注射抗CD25抗体(PC61)后进行小鼠原位肝脏移植,观测其生存时间.术后20~30 d切取移植肝脏行HE染色,同时观察CD4+CD25+T细胞对CD4+T细胞和CD8+T细胞功能的影响.结果 去除受体而不是供体小鼠的CD4+CD25+T细胞可以导致肝移植排斥反应.而且,去除CD4+CD25+T细胞使移植物的白细胞浸润明显增多,组织损伤加重.同时,去除CD4+CD25+T细胞导致CD4+T细胞的增殖活性和CD8+T细胞的细胞毒活性明显增强.结论 受体来源的CD4+CD25+调节性T细胞在小鼠肝脏移植免疫耐受诱导中起重要作用.
Abstract:
Objective To examine the contribution of CD4+ CD25+ regulatory T cells to liver transplant tolerance. Methods After injection of anti-CD25 monoclonal antibody (mAb, PC61), mouse orthotopic liver transplantation was performed and survivals were determined. The paraffin-embedded sections of hepatic allografts were cut and stained with hematoxylin and eosin (HE). Furthermore, the effect of CD4+ CD25+ regulatory T cells on proliferative response of CD4+ T cells and cytotoxicity of CD8+ T cells was examined by depleting these regulatory T cells. Results Depletion of these cells in the recipients but not in the donors before liver transplantation caused rejection. Histological analyses of hepatic allografts with PC61 treatment showed extensive leukocyte infiltration and tissue destruction, whereas those in the control group showed minimal changes. Moreover, elimination of CD4+CD25+ T cells resulted in the enhancement of both proliferative response of CD4+ T cells and cytotoxicity of CD8+ T cells against donor-type alloantigen. Conclusions These results suggest that CD4+CD25+ regulatory T cells were important for tolerance induction to hepatic allografts.  相似文献   

19.
20.
OBJECTIVE: The authors investigated whether adenoviral gene transfer to the thymus could be accomplished in vivo and whether immunologic unresponsiveness to recombinant adenovirus could be induced by intrathymic inoculation. SUMMARY BACKGROUND DATA: A major barrier to the clinical application of adenovirus-mediated gene therapy for diseases requiring long-lasting gene expression is the immunogenicity of adenoviral vectors, which limits the duration of its effects. In other experimental models, intrathymic inoculation of foreign proteins or cells has proven to be an effective means to induce immunologic tolerance. METHODS: The efficiency of gene transfer to the mouse thymus after direct inoculation of recombinant adenovirus was compared with that of several other vectors. Animals inoculated with adenovirus-infected pancreatic islets into the thymus were tested for unresponsiveness to the virus with a subsequent challenge of adenovirus administered into the liver by intravenous injection. RESULTS: Adenovirus accomplished highly efficient gene transfer to the thymus, unlike plasmid DNA, DNA-liposome complexes, retrovirus, and adeno-associated virus. Adenoviral transgene expression was transient in the thymus of immunocompetent mice but persistent in CD8+ T-cell-deficient and severe combined immunodeficiency (SCID) mice, implicating the role of cytotoxic T lymphocytes in viral clearance. Intrathymic transplantation of syngeneic pancreatic islet cells infected with adenovirus impaired the normal antiviral cytotoxic T-lymphocyte response and prolonged hepatic transgene expression after an intravenous challenge with adenovirus. CONCLUSIONS: Recombinant adenovirus accomplishes highly efficient gene transfer to the thymus in vivo. Intrathymic inoculation of adenovirus-infected islets can be used to induce immunologic unresponsiveness to the adenoviral vector and, potentially, to other proteins that it might be engineered to encode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号