首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The giant protein titin serves a primary role as a scaffold for sarcomere assembly; however, proteins that mediate this remodeling have not been identified. One potential mediator of this process is the protease calpain 3 (C3), the protein mutated in limb girdle muscular dystrophy type 2A. To test the hypothesis that C3 mediates remodeling during myofibrillogenesis, C3 knockout (C3KO) mice were generated. The C3KO mice were atrophic containing small foci of muscular necrosis. Myogenic cells fused normally in vitro, but lacked well-organized sarcomeres, as visualized by electron microscopy (EM). Titin distribution was normal in longitudinal sections from the C3KO mice; however, EM of muscle fibers showed misaligned A-bands. In vitro studies revealed that C3 can bind and cleave titin and that some mutations that are pathogenic in human muscular dystrophy result in reduced affinity of C3 for titin. These studies suggest a role for C3 in myofibrillogenesis and sarcomere remodeling.  相似文献   

2.
Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.  相似文献   

3.
A defect of the gene for p94 (calpain 3), a skeletal muscle-specific calpain, is responsible for limb girdle muscular dystrophy type 2A (LGMD2A), or 'calpainopathy', which is an autosomal recessive and progressive neuromuscular disorder. To study the relationships between the physiological functions of p94 and the etiology of LGMD2A, we created transgenic mice that express an inactive mutant of p94, in which the active site Cys129 is replaced by Ser (p94:C129S). Three lines of transgenic mice expressing p94:C129S mRNA at various levels showed significantly decreased grip strength. Sections of soleus and extensor digitorum longus (EDL) muscles of the aged transgenic mice showed increased numbers of lobulated and split fibers, respectively, which are often observed in limb girdle muscular dystrophy muscles. Centrally placed nuclei were also frequently found in the EDL muscle of the transgenic mice, whereas wild-type mice of the same age had almost none. There was more p94 protein produced in aged transgenic mice muscles and it showed significantly less autolytic degradation activity than that of wild-type mice. Although no necrotic-regenerative fibers were observed, the age and p94:C129S expression dependence of the phenotypes strongly suggest that accumulation of p94:C129S protein causes these myopathy phenotypes. The p94:C129S transgenic mice could provide us with crucial information on the molecular mech-anism of LGMD2A.  相似文献   

4.
Limb girdle muscular dystrophies (LGMDs) are a group of clinically heterogeneous genetic diseases characterized by progressive weakness and atrophy of scapular and pelvic muscles, with either a dominant or recessive autosomic mode of inheritance. The first symptoms of the disorder appear during the first 20 years of life and progresses gradually, and a walking disability develops 10-20 years later. The gene responsible for LGMD2A has been identified and encodes calpain 3, a protease expressed mainly in skeletal muscle. Apoptotic myonuclei were recently detected in muscular biopsy specimens of LGMD2A patients, and apoptosis was found to be correlated with altered subcellular distribution of inhibitory protein kappaBalpha (IkappaBalpha) and nuclear factor kappaB (NF-kappaB), resulting in sarcoplasmic sequestration of NF-kappaB. Calpain 3 dependent IkappaBalpha degradation was reconstituted in vitro, supporting a possible in vivo sequence of events leading from calpain 3 deficiency to IkappaBkappa accumulation, prevention of nuclear translocation of NF-kappaB, and ultimately apoptosis. Therefore calpain 3, present in healthy muscle as sarcoplasmic and nuclear forms, may control IkappaBalpha turnover and indirectly regulate NF-kappaB dependent expression of survival genes. Recent data reported from a new model of LGMD2A in mice and from other muscular disorders strengthen understanding of the molecular links between calpain 3 and the Ikappaalpha/NF-kappaB pathway. Finally, in light of the lack of apoptosis observed in inflammatory myopathies, a unifying model for the control of cell survival in muscle is proposed and discussed  相似文献   

5.
Modifications in muscle loading have been reported previously to result in increased numbers of mononucleated cells and changes in myofibril organization at myotendinous junctions (MTJs). The goals of this study were to determine the identity of those mononucleated cells and to examine the relationships between changes in their structure, location, and number with structural aspects of remodeling at MTJs experiencing modified loading. Soleus muscles from rats subjected to 10 days of hindlimb suspension were analyzed 0, 2, 4, and 7 days after return to weight bearing. Immunohistochemistry showed that ED1+, ED2+ and Ia+ macrophages were present at the MTJ and microtendon of control muscle. After reloading, ED2+ macrophages increased in number and size at MTJs and microtendons, indicating their activation. ED1+ cells showed no change in size or number whereas Ia+ cells were increased in size at day 7 of reloading. Electron microscopic observations showed that mononucleated cells near MTJs of control or suspended muscle were not highly active in protein synthesis or secretion. However, in reloaded muscle, mononucleated cells were found to be in close proximity to MTJs and to contain a high concentration of organelles associated with protein secretion. During these stages of reloading, extensive remodeling of myofibril-membrane associations occurred and nascent sarcomeres appeared in the MTJ regions of muscle fibers. Immunohistochemistry showed that during these stages of nascent sarcomere formation, there was renewed expression of developmental myosin heavy chain at MTJs, with this heavy chain appearing most prominently at the MTJ at day 7 of reloading. The activation and increased numbers of macrophages at MTJs and the close apposition of secretory cells to the MTJ membrane during remodeling lead us to propose that macrophage-derived factors may influence remodeling of MTJs in muscles experiencing modified loading.  相似文献   

6.
目的:探讨废用状态及废用后再负荷对大鼠比目鱼肌钙蛋白酶(calpain)活性和肌细胞膜通透性的影响。方法:采用尾部悬吊法建立大鼠后肢骨骼肌废用模型,将48只雌性SD大鼠分为正常组(CON)、正常运动组(CON+T)、吊尾2周组(TS)和吊尾2周后运动组(TS+T),每组12只。用伊文思蓝(Evansblue,EB)作为示踪物,检测细胞膜的通透性;用酪蛋白酶谱法检测calpain的活性。结果:CON组和CON+T组细胞间隙充满EB,肌细胞内则未见,TS组极少量肌细胞有EB进入,TS+T组有部分细胞内充盈EB。TS组calpain水解条带与正常组相比吸光度呈增加趋势,并且有自激发条带出现,TS+T组calpain水解条带更加明显,calpian水解活性明显增强。结论:大鼠在经历2周吊尾后的再负荷,肌细胞膜通透性升高,屏障功能受损,可能与calpain水解肌细胞膜上的骨架蛋白有关;由calpian介导的细胞骨架蛋白的降解加速可能是导致废用后再负荷骨骼肌损伤的重要机制。  相似文献   

7.
Myotilin is a muscle-specific Z-disc protein with putative roles in myofibril assembly and structural upkeep of the sarcomere. Several myotilin point mutations have been described in patients with limb-girdle muscular dystrophy type 1A (LGMD1A), myofibrillar myopathy (MFM), spheroid body myopathy (SBM), three similar adult-onset, progressive and autosomal dominant muscular dystrophies. To further investigate myotilin's role in the pathogenesis of these muscle diseases, we have characterized three independent lines of transgenic mice expressing mutant (T57I) myotilin under the control of the human skeletal actin promoter. Similar to LGMD1A and MFM patients, these mice develop progressive myofibrillar pathology that includes Z-disc streaming, excess myofibrillar vacuolization and plaque-like myofibrillar aggregation. These aggregates become progressively larger and more numerous with age. We show that the mutant myotilin protein properly localizes to the Z-disc and also heavily populates the aggregates, along with several other Z-disc associated proteins. Whole muscle physiological analysis reveals that the extensor digitorum longus muscle of transgenic mice exhibits significantly reduced maximum specific isometric force compared with littermate controls. Intriguingly, the soleus and diaphragm muscles are spared of any abnormal myopathology and show no reductions in maximum specific force. These data provide evidence that myotilin mutations promote aggregate-dependent contractile dysfunction. In sum, we have established a promising patho-physiological mouse model that unifies the phenotypes of LGMD1A, MFM and SBM.  相似文献   

8.
Calpains are intracellular Ca2+-requiring ‘modulator proteases’, which modulate cellular functions by limited and specific proteolysis. p94/calpain3, a skeletal-muscle specific calpain, has been one of the representative calpain species which indicates physiological importance of calpain proteolytic system; a defect of proteolytic activity of p94 causes limb girdle muscular dystrophy type2A (LGMD2A, also called ‘calpainopathy’). Immunohistochemical studies on myofibrils showed that p94 localizes at the Z- and N2-line regions of sarcomeres. It was also identified by the yeast two hybrid studies that p94 binds to the N2A and M-line regions of connectin. Furthermore, genetic studies indicate that p94 is indispensable for skeletal muscles, although its precise functions are still unclear. Interestingly, connectin provides sarcomere not only with elasticity but also with binding sites to various multi-functional proteins such as muscle ankyrin repeat proteins (MARPs), muscle RING finger proteins (MURFs), titin-capping protein (T-cap/telethonin), sarcomeric-α-actinin, p94 etc. Binding sites for these proteins are not randomly placed along connectin but rather accumulated in the Z-, N2-, and/or M-line regions, indicating the existence of ‘signal complexes’ unique to each regions. The concept of these complexes are strongly supported by the facts that mutations of connectin or its binding proteins in these regions severely perturb muscle functions, as in the case of LGMD2A caused by mutations in the p94 gene. Therefore, it is hypothesized that the ‘signal complexes’ in the Z-, N2-, and M-lines modulate muscle cell homeostasis by transducing signals of external stimulations/stresses to trigger appropriate response at various different cellular events such as protein modification and gene expressions. In this article, we performed detailed immunohistochemical analyses of p94 on isolated single myofibers. Together with recent findings about p94, it is suggested that sarcomeric localization of p94, especially its M-line localization, is affected by the combination of cellular contexts such as contractile status of myofibrils, fiber type compositions, sarcomeric maturation, and the composition of the ‘signal complexes’ in each region.  相似文献   

9.
Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flown rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair. © 1994 Wiley-Liss, Inc.  相似文献   

10.
CAPN3 (also called p94/calpain‐3) is a skeletal muscle‐specific calpain, an intracellular cysteine protease. Loss of CAPN3 protease activity and/or structural functions cause limb‐girdle muscular dystrophy type 2A (LGMD2A). However, the precise mechanism of action of CAPN3 in skeletal muscles in vivo remains largely elusive. By studying the protein modifications that regulate CAPN3 activity, we found that CAPN3 was phosphorylated. By performing mutagenesis and mass spectrometry analyses, we identified two Ser residues at positions 629 and 636 in human CAPN3 that are phosphorylated and showed that S629 is a major phosphorylation site. Intriguingly, rapid and exhaustive autolysis of CAPN3 was slightly attenuated by the substitution of S629. In skeletal muscles, phosphorylated CAPN3 was enriched in the myofibril fraction. These results imply that phosphorylated CAPN3 is a myofibril structural component and/or participates in myofibril‐based signaling pathways, rather than functions as a protease. We evaluated the relationship between phosphorylated CAPN3 and the pathology of LGMD2A. The level of phosphorylated CAPN3 was greatly reduced in LGMD2A muscles. Our findings suggest that phosphorylated CAPN3 is involved in the pathology of LGMD2A through defects in myofibril integrity and/or signaling pathways. This is the first report that phosphorylation of CAPN3 may be involved in its physiological function.  相似文献   

11.
Ahnak1 is a giant, ubiquitously expressed, plasma membrane support protein whose function in skeletal muscle is largely unknown. Therefore, we investigated whether ahnak would be influenced by alterations of the sarcolemma exemplified by dysferlin mutations known to render the sarcolemma vulnerable or by mutations in calpain3, a protease known to cleave ahnak. Human muscle biopsy specimens obtained from patients with limb girdle muscular dystrophy (LGMD) caused by mutations in dysferlin (LGMD2B) and calpain3 (LGMD2A) were investigated for ahnak expression and localization. We found that ahnak1 has lost its sarcolemmal localization in LGMD2B but not in LGMD2A. Instead ahnak1 appeared in muscle connective tissue surrounding the extracellular site of the muscle fiber in both muscular dystrophies. The entire giant ahnak1 molecule was present outside the muscle fiber and did only partially colocalize with CD45-positive immune cell infiltration and the extracelluar matrix proteins fibronectin and collagenVI. Further, vesicles shedded in response to Ca(2+) by primary human myotubes were purified and their protein content was analysed. Ahnak1 was prominently present in these vesicles. Electron microscopy revealed a homogenous population of vesicles with a diameter of about 150?nm. This is the first study demonstrating vesicle release from human myotubes that may be one mechanism underlying abnormally localized ahnak1. Taken together, our results define ahnak1 in muscle connective tissue as a novel feature of two genetically distinct muscular dystrophies that might contribute to disease pathology.  相似文献   

12.
Recessively inherited limb girdle muscular dystrophy (LGMD) type 2A is the most common LGMD worldwide. Here, we report the first single missense variant in CAPN3 causing dominantly inherited calpainopathy. A 43‐year‐old proband, his father and two sons were heterozygous for a c.1715G>C p.(Arg572Pro) variant in CAPN3. Affected family members had at least three of the following; muscle pain, a LGMD2A pattern of muscle weakness and wasting, muscle fat replacement on magnetic resonance imaging, myopathic muscle biopsy, and elevated creatine kinase. Total calpain 3 protein expression was 4 ± 3% of normal. In vitro analysis of c.1715G>C and the previously described c.643_663del variant indicated that the mutant proteins lack autolytic and proteolytic activity and decrease the quantity of wild‐type CAPN3 protein. Our findings suggest that dominantly inherited calpainopathy is not unique to the previously reported c.643_663del mutation of CAPN3, and that dominantly inherited calpainopathy should be considered for other single variations in CAPN3.  相似文献   

13.
14.
Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in the calpain 3 gene. In a large family affected by LGMD2A with four severely affected members, three additional asymptomatic relatives had very high serum creatine kinase concentrations. All were homozygous for the R110X mutation and showed a total absence of calpain 3 in the muscle. Histological analysis of muscle in these three rare preclinical cases showed a consistent but unusual pattern, with isolated fascicles of degenerating fibres in an almost normal muscle. This pattern was also seen in one patient with early stage LGMD2A who had a P82L missense mutation and a partial deficiency of calpain 3 in the muscle, but was not seen in early stage patients affected by other forms of LGMD. These findings suggest that a peculiar pattern of focal degeneration occurs in calpainopathy, independently of the type of mutation or the amount of calpain 3 in the muscle.  相似文献   

15.
Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.  相似文献   

16.
Limb girdle muscular dystrophies (LGMD) are a heterogeneous group of genetic disorders characterised by progressive weakness of the pelvic and shoulder girdle muscles and a great variability in clinical course. LGMD2A, the most prevalent form of LGMD, is caused by mutations in the calpain-3 gene (CAPN-3). More than 100 pathogenic mutations have been identified to date, however few genotype : phenotype correlation studies, including both DNA and protein analysis, have been reported. In this study we screened 26 unrelated LGMD2A Brazilian families (75 patients) through Single-Stranded Conformation Polymorphism (SSCP), Denaturing high-performance liquid chromatography (DHPLC) and sequencing of abnormal fragments which allowed the identification of 47 mutated alleles (approximately 90%). We identified two recurrent mutations (R110X and 2362-2363AG > TCATCT) and seven novel pathogenic mutations. Interestingly, 41 of the identified mutations (approximately 80%) were concentrated in only 6 exons (1, 2, 4, 5, 11 and 22), which has important implications for diagnostic purposes. Protein analysis, performed in 28 patients from 25 unrelated families showed that with exception of one patient (with normal/slight borderline reduction of calpain) all others had total or partial calpain deficiency. The effects of type of mutation, amount of calpain in the muscle, gender and ethnicity of affected patients on clinical course (age of onset and ascertainment) were analysed. Interestingly, it was observed that, on average, African-Brazilian calpainopathy patients are more severely affected than Caucasians.  相似文献   

17.
Muscular dystrophies comprise a genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and weakness. Two forms of limb-girdle muscular dystrophy, 2A and 2B, are caused by mutations in calpain 3 (CAPN3) and dysferlin (DYSF), respectively. While CAPN3 may be involved in sarcomere remodeling, DYSF is proposed to play a role in membrane repair. The coexistence of CAPN3 and AHNAK, a protein involved in subsarcolemmal cytoarchitecture and membrane repair, in the dysferlin protein complex and the presence of proteolytic cleavage fragments of AHNAK in skeletal muscle led us to investigate whether AHNAK can act as substrate for CAPN3. We here demonstrate that AHNAK is cleaved by CAPN3 and show that AHNAK is lost in cells expressing active CAPN3. Conversely, AHNAK accumulates when calpain 3 is defective in skeletal muscle of calpainopathy patients. Moreover, we demonstrate that AHNAK fragments cleaved by CAPN3 have lost their affinity for dysferlin. Thus, our findings suggest interconnectivity between both diseases by revealing a novel physiological role for CAPN3 in regulating the dysferlin protein complex.  相似文献   

18.
Muscle injury or modified muscle use can stimulate muscle invasion by leucocytes that have the potential to increase tissue damage or promote tissue growth and repair. In the present investigation, we examined the role of macrophages in muscle injury, repair and regeneration during modified muscle loading. Weight-bearing was removed from the hindlimbs of mice for 10 days followed by reloading through normal ambulation. During the unloading period, soleus muscle fibre cross-section decreased by 38%. Prior to the onset of reloading, mice received a series of intraperitoneal injections of anti-F4/80, which binds a mouse macrophage surface antigen. Although anti-F4/80 injections did not affect macrophage numbers in soleus muscles at 2 days of reloading, macrophages were reduced by 86% at 4 days of reloading. Muscle membrane lysis during the reloading period did not differ at 2 days of reloading between anti-F4/80-treated mice and mice that received isotype control antibody. However, control animals showed large decreases in the number of fibres with membrane lesions at 4 days of reloading, but this membrane repair did not occur in macrophage-depleted mice. Macrophage-depletion also reduced muscle regeneration (indicated by central nucleation) and satellite cell differentiation (indicated by reductions in MyoD-expressing satellite cells) and prevented growth of muscle fibres that normally occurred in control animals between days 2 and 4 of reloading. These findings collectively show that macrophages play a significant role in muscle fibre membrane repair, regeneration and growth during increased muscle use after a period of atrophy.  相似文献   

19.
Human tibial muscular dystrophy and limb-girdle muscular dystrophy 2J are caused by mutations in the giant sarcomeric protein titin (TTN) adjacent to a binding site for the muscle-specific protease calpain 3 (CAPN3). Muscular dystrophy with myositis (mdm) is a recessive mouse mutation with severe and progressive muscular degeneration caused by a deletion in the N2A domain of titin (TTN-N2ADelta83), disrupting a putative binding site for CAPN3. To determine whether the muscular dystrophy in mutant mdm mice is caused by misregulation of CAPN3 activity, genetic crosses with CAPN3 overexpressing transgenic (C3Tg) and CAPN3 knockout (C3KO) mice were generated. Here, we report that overexpression of CAPN3 exacerbates the mdm disease, leading to a shorter life span and more severe muscular dystrophy. However, in a direct genetic test of CAPN3's role as a mediator of mdm pathology, C3KO;mdm double mutant mice showed no change in the progression or severity of disease indicating that aberrant CAPN3 activity is not a primary mechanism in this disease. To determine whether we could detect a functional deficit in titin in a non-disease state, we examined the treadmill locomotion of heterozygous +/mdm mice and detected a significant increase in stride time with a concomitant increase in stance time. Interestingly, these altered gait parameters were completely corrected by CAPN3 overexpression in transgenic C3Tg;+/mdm mice, supporting a CAPN3-dependent role for the N2A domain of TTN in the dynamics of muscle contraction.  相似文献   

20.
Reduced sarcolemmal integrity in dystrophin-deficient muscles of mdx mice and Duchenne muscular dystrophy (DMD) patients has been reported to result in altered calcium homeostasis. Previous studies have shown a correlative relationship between calcium-dependent protease (calpain) activity in dystrophic muscle and muscle necrosis, but have not tested whether calpain activation precedes cell death or is a consequence of it. To test a causal relationship between calpain activation and muscle cell death in dystrophin deficiency, mdx mice were generated that overexpress a calpastatin transgene in muscle. Calpastatin (CS) is a specific, endogenous inhibitor of m- and micro -calpains that does not inhibit calpain 3 (p94). CS overexpression on a C57/BL 10 background produced no phenotype. Transgenic (Tg) mice crossed with mdx mice were tested for pathological indicators of necrosis, regeneration and membrane damage. Two lines of mice were examined, with different levels of CS overexpression. Both lines of Tg/mdx mice showed reductions in muscle necrosis at 4 weeks of age. These mice had fewer as well as smaller lesions. In addition, one line of mice had significantly less regeneration, indicating a reduction in previous necrosis. The extent of improvement correlated with the level of CS protein expression. Membrane damage, as assessed by procion orange and creatine kinase assays, was unchanged, supporting the idea that calpains act downstream of the primary muscle defect. These data suggest that calpains play an active role in necrotic processes in dystrophic muscle and that inhibition of calpains might provide a good therapeutic option for treatment of DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号