首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKCalpha and PKCbetaII levels were increased in 25 mmol/L glucose. However, only PKCbetaII inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKCbetaII were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKCbetaII inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKCbetaII was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKCbetaII-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.  相似文献   

2.
目的 研究内质网应激介导的磷脂酰肌醇3激酶(PI3K)/Akt和丝裂原活化蛋白激酶(MEK)/胞外信号调节激酶(ERK)途径间的信号交流及其对内质网应激条件下肝癌细胞周期的调控作用.方法 采用PI3K抑制剂LY294002、Akt激活型突变载体myr-Akt和MEK抑制剂U0126分别阻断或激活内质网应激介导的Akt和ERK活化,并利用Western blot和流式细胞技术分析内质网应激条件下PI3K/Akt和MEK/ERK途径间的信号交流及其对肝癌细胞株SMMC-7721、Hep3B和HepG2细胞周期的调控作用.数据处理采用Sperman等级相关分析,P<0.05为差异有统计学意义.结果 阻断PI3K/Akt明显促进内质网应激介导的MEK/ERK活化,而过度激活PI3K/Akt则抑制内质网应激介导的MEK/ERK活化.阻断MEK/ERK对内质网应激介导的PI3K/Akt活化无影响.持续活化的Akt突变载体myr-Akt和MEK抑制剂U0126均明显抑制了内质网应激诱导的压力细胞G0/G1期阻滞.结论 PI3K/Akt和MEK/ERK信号途径在内质网应激肝癌细胞中存在信号交流,该信号交流对细胞周期起重要调控作用.  相似文献   

3.
OBJECTIVE: The signaling pathways mediating proliferation and apoptosis in vascular smooth muscle cells (VSMC) are not well established. It has previously been shown that activation of the phosphoinositide 3-OH kinase (PI3K)/Akt pathway or the ERK 1/2 pathway can mediate anti-apoptotic function in different cell types. This study determined the specific contribution of the PI3K/Akt and ERK pathway in the regulation of apoptosis and proliferation of VSMC. METHODS AND RESULTS: Incubation of rat VSMC with FCS, insulin or IGF-1 time-dependently stimulated the phosphorylation of Akt, however FCS but not insulin or IGF-1 activated the MAP-kinase ERK 1/2. Moreover, insulin inhibited H(2)O(2)-induced apoptosis via the Akt pathway as demonstrated by pharmacological inhibition of the PI3K or overexpression of a dominant negative Akt mutant. In contrast, FCS inhibited H(2)O(2)-induced apoptosis via the Akt and also the ERK pathway. FCS, but not insulin or IGF-1 induced VSMC proliferation, suggesting that Akt activation is necessary but not sufficient for VSMC proliferation. FCS-induced proliferation of VSMC was only mediated via the Akt pathway and not the ERK pathway. CONCLUSIONS: These results define a link between cell proliferation and programmed cell death in VSMC via the same signal transduction pathway, namely activation of the serine/threonine kinase Akt, which may have significant implication for the development of vascular diseases or remodeling.  相似文献   

4.
目的观察普伐他汀干预对人骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMMSCs)迁移和黏附能力的影响及其相关细胞信号传导通路。方法使用普伐他汀干预体外培养的第6代人BMMSCs,Western blotting检测作用前后ERK1/2、p38MAPK及PI3K/Akt通路蛋白的表达情况。将10μmol/L普伐他汀预处理人BMMSCs1h后,通过Transwell小室进行细胞迁移实验,并进行细胞黏附性测定,进一步用特异的细胞信号通路抑制剂或激动剂阻断或激活ERK1/2、p38MAPK及PI3K/AKT途径,观察其对普伐他汀作用的影响。结果普伐他汀可使人BMMSCs的PI3K/Akt通路磷酸化水平升高,抑制p38MAPK通路磷酸化水平,而其对人BMMSCs的ERK通路和总Akt、总p38MAPK水平无显著影响。经普伐他汀作用后迁移细胞显著增多(P<0.05),Ly294002预处理后这种作用消失,anisomycin预处理对这种作用影响不明显。普伐他汀作用后贴壁细胞显著增多(P<0.05),但Ly294002或anisomycin预处理对这种作用影响均不明显。结论普伐他汀具有增强人BMMSCs迁移和黏附能力的作用。其增强迁移能力的作用与激活人BMMSCs的PI3K/Akt通路有关。但是它对黏附能力的作用与PI3K/Akt和p38MAPK通路均无关。  相似文献   

5.
6.
In a previous report, we showed that increased activation of Akt, a downstream effector of phosphoinositide 3-kinase (PI3K) together with decreased activation of extracellular-signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase (MAPK) family, predicted poor clinical outcome in prostate cancer (Kreisberg et al. 2004 Cancer Research 64 5232-5236). We now show that Akt activation, but not ERK activation, is correlated with proliferation in human prostate tumors as estimated by the expression of the cell proliferation antigen Ki67. We verified these results in vitro, using the androgen-dependent prostate cancer cell line LNCaP and its androgen-independent clone C4-2 as models of prostate cancer of good and poor clinical outcome, respectively. C4-2 cells expressed higher Akt activation, lower ERK activation and increased proliferation compared with LNCaP cells, similar to cases of poor clinical outcome. The PI3K inhibitor LY294002, but not the MAPK/ERK kinase inhibitor PD98059, induced growth arrest in both cell lines. Transient transfection with constitutively active Akt increased proliferation while dominant negative Akt decreased it, thus showing that Akt plays an important role in prostate cancer proliferation. Akt regulates the expression and activation of the androgen receptor. Androgen receptor inhibition with Casodex induced growth arrest in LNCaP cells, but not in C4-2 cells. Another PI3K downstream effector, p70 S6 kinase, requires prior phosphorylation by mammalian target of rapamycin (mTOR) for complete activation. Activation of p70 S6 kinase was higher in C4-2 compared with LNCaP cells. Rapamycin, an mTOR inhibitor, had a growth-inhibitory effect in C4-2 cells, but not in LNCaP cells. Our data suggest a shift from a Casodex-sensitive proliferation pathway in LNCaP cells to a rapamycin-sensitive pathway in C4-2 cells.  相似文献   

7.
Kumar P  Amin MA  Harlow LA  Polverini PJ  Koch AE 《Blood》2003,101(10):3960-3968
Angiogenesis plays an important role in a variety of pathophysiologic processes, including tumor growth and rheumatoid arthritis. We have previously shown that soluble E-selectin (sE-selectin) is an important angiogenic mediator. However, the mechanism by which sE-selectin mediates angiogenesis is still unknown. In this study, we show that sE-selectin is a potent mediator of human dermal microvascular endothelial cell (HMVEC) chemotaxis, which is predominantly mediated through the Src and the phosphatidylinositiol 3-kinase (PI3K) pathways. Further, sE-selectin induced a 2.2-fold increase in HMVEC tube formation in the Matrigel in vitro assay. HMVECs pretreated with the Src inhibitor (PP2) and the PI3K inhibitor (LY294002) or transfected with Src antisense oligonucleotides or Akt dominant-negative mutants significantly inhibited sE-selectin-mediated HMVEC tube formation. In contrast, HMVECs transfected with an extracellular signal-related kinase 1/2 (ERK1/2) mutant or pretreated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059 failed to show sE-selectin-mediated HMVEC tube formation. Similarly, in the Matrigel-plug in vivo assay, sE-selectin induced a 2.2-fold increase in blood vessel formation, which was significantly inhibited by PP2 and LY294002 but not by PD98059. sE-selectin induced a marked increase in Src, ERK1/2, and PI3K phosphorylation. PI3K and ERK1/2 phosphorylation was significantly inhibited by PP2, thereby suggesting that both of these pathways may be activated via Src kinase. Even though the ERK1/2 pathway was activated by sE-selectin in HMVECs, it seems not to be essential for sE-selectin-mediated angiogenesis. Taken together, our data clearly show that sE-selectin-induced angiogenesis is predominantly mediated through the Src-PI3K pathway.  相似文献   

8.
CONTEXT: Genetic alterations in receptor tyrosine kinases (RTKs) and phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK pathways have not been fully defined in anaplastic and follicular thyroid cancers [anaplastic thyroid cancer (ATC), follicular thyroid cancer (FTC)]. OBJECTIVE: The objective of the study was to explore a wide-range genetic basis for the involvement of these pathways in ATC. DESIGN: We examined mutations and copy number gains of a large panel of genes in these pathways and corresponding phosphorylation of ERK (p-ERK) and Akt. RESULTS: We found frequent copy gains of RTK genes, including EGFR, PDGFRalpha and -beta, VEGFR1 and 2, KIT, and MET and in PIK3Ca, PIK3Cb, and PDK1 genes in the PI3K/Akt pathway. Mutations of Ras, PIK3Ca, PTEN, and BRAF genes and RET/PTC rearrangements were common, whereas mutations in PDK1, Akt1, Akt2, and RTK genes were uncommon in ATC. Overall, 46 of 48 ATC (95.8%) harbored at least one genetic alteration, and coexistence of two or more was seen in 37 of 48 ATC (77.1%). These genetic alterations were somewhat less common in FTC. Genetic alterations that could activate both the PI3K/Akt and MAPK pathways were found in 39 of 48 ATC (81.3%). RTK gene copy gains were preferentially associated with p-Akt, suggesting their dominant role in activating the PI3K/Akt pathway. The phosphorylation of Akt was far more common than p-ERK in FTC, and both were relatively common and often coexisted in ATC. CONCLUSIONS: Genetic alterations in the RTKs and PI3K/Akt and MAPK pathways are extremely prevalent in ATC and FTC, providing a strong genetic basis for an extensive role of these signaling pathways and the development of therapies targeting these pathways for ATC and FTC, particularly the former.  相似文献   

9.
Chuang CC  Yang RS  Tsai KS  Ho FM  Liu SH 《Endocrinology》2007,148(9):4267-4275
The molecular events of hyperglycemia-triggered increase in adipogenic induction of lipid accumulation remain unclear. We examined the effects of hyperglycemia on adipogenic induction of lipid accumulation and its involved signaling molecules, such as phosphoinositide 3-kinase (PI3K), ERKs, and peroxisome proliferator-activated receptor gamma (PPAR gamma). Bone marrow-derived mesenchymal stem cells (MSCs) isolated from FVB/N mice were capable of differentiating into adipocytes in adipogenic medium. The effects of high glucose (HG) (25.5 mm) were assessed in vitro by RT-PCR, ELISA, flow cytometry, immunostaining, and immunoblotting. The in vivo effect of hyperglycemia was further studied in streptozotocin (STZ)-induced diabetic FVB/N mice. Exposure of MSCs to HG enhanced adipogenic induction of lipid accumulation as compared with 5.5 mm glucose. HG increased PPAR gamma expression and PI3K activity and its downstream effector Akt phosphorylation during adipogenesis. Inhibition of PI3K/Akt activity with PI3K inhibitor LY294002 or by expressing the dominant negative p85 or Akt prevented the HG-enhanced PPAR gamma-dependent adipogenic induction of lipid accumulation. Moreover, HG increased the phosphorylation of ERK1/2 during adipogenesis. MAPK/ERK inhibitor PD98059 inhibited the PI3K activity, Akt phosphorylation, and lipid accumulation triggered by HG. PI3K inhibitor LY294002 did not affect the HG-increased ERK1/2 phosphorylation during adipogenesis. We next observed that adipogenic induction of lipid accumulation of MSCs isolated from STZ-induced diabetic mice is enhanced. Moreover, triglyceride, PPAR gamma expression, phosphorylated Akt and ERK1/2, and marrow fat in bones of STZ-diabetic mice were also increased. These results suggest that hyperglycemia enhances the adipogenic induction of lipid accumulation through an ERK1/2-activated PI3K/Akt-regulated PPAR gamma pathway.  相似文献   

10.
In pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells. Either specific pharmacological PI3K and Akt inhibitors (LY294002, Akt I, and phosphoinositide analog-6) or Akt dominant-negative mutant (K179M) enhanced ERK-1/2 phosphorylation in unstimulated GH4C1 cells. Under the same conditions, PI3K and Akt inhibition also both increased Raf-1 kinase activity and the levels of GTP-bound (active form) monomeric G protein Rap1, which suggests that a down-regulation of the ERK-1/2 cascade is induced by the PI3K/Akt signaling pathway in unstimulated cells. On the contrary, ERK-1/2 phosphorylation, Raf-1 activity, and Rap1 activation were almost completely blocked in IGF-I-stimulated cells previously subjected to PI3K or Akt inhibition. Although the PRL promoter was not affected by either PI3K/Akt inhibition or activation, PRL release increased in response to the pharmacological PI3K/Akt inhibitors in unstimulated GH4C1 and rat pituitary primary cells. The IGF-I-stimulated PRL secretion was diminished, on the contrary, by the pharmacological PI3K/Akt inhibitors. Taken together, these findings indicate that the PI3K/Akt pathway exerts dual regulatory effects on both the Rap1/Raf-1/ERK-1/2 cascade and PRL release in pituitary cells, i.e. negative effects in unstimulated cells and positive ones in IGF-I-stimulated cells.  相似文献   

11.
To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer (PCa) to more invasive forms. One of the major targets for the therapy in PCa can be epidermal growth factor receptor (EGFR), which signals via the phosphoinositide 3'-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways, among others. Despite multiple reports of overexpression in PCa, the reliance on activated EGFR and its downstream signalling to the PI3K and/or MAPK/extracellular signal-regulated kinase (ERK) pathways has not been fully elucidated. We reported that the EGFR-selective tyrosine kinase inhibitor gefitinib (ZD1839; Iressa) is able to induce growth inhibition, G(1) arrest and apoptosis in PCa cells and that its effectiveness is associated primarily with phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression (and thus Akt activity). In fact PTEN-negative PCa cells are slowly sensitive to gefitinib treatment, because this molecule is unable to downregulate PI3K/Akt activity. PI3K inhibition, by LY294002 or after PTEN transfection, restores EGFR-stimulated Akt signalling and sensitizes the cells to pro-apoptotic action of gefitinib. The MAPK pathway seems to be involved primarily on cell-growth modulation because dual blockade of EGFR and ERK1/2 phosphorylation potentiates growth inhibition (both not cell apoptosis) in PTEN-positive PCa cells and reduced EGF-mediated growth in PTEN-negative cells. Thus the effectiveness of gefitinib requires growth factor receptor-stimulated PI3K/Akt and MAPK signalling to be intact and functional. The loss of the PTEN activity leads to uncoupling of this signalling pathway, determining a partial gefitinib resistance. Moreover, gefitinib sensitivity may be maintained in these cells through its inhibitory potential in MAPK/ERK pathway activity, modulating proliferative EGFR-triggered events. Therefore, our data suggest that the inhibition of EGFR signalling can result in a significant growth reduction and in increased apoptosis in EGFR-overexpressing PCa cells with different modalities, which are regulated by PTEN status, and this may have relevance in the clinical setting of PCa.  相似文献   

12.
Hepatocyte growth factor (HGF) has recently been the focus of attention due to its angiogenic effects, which are similar to those of vascular endothelial growth factor (VEGF); because of these effects, HGF is considered to be a novel therapeutic agent against vascular disorders, including atherosclerotic angiopathies. Although nitric oxide (NO), which is derived from vascular endothelial cells (ECs), is also involved in angiogenesis, little is known regarding the interactions between HGF and NO. We therefore examined the effects of HGF on NO production as well as endothelial NO synthase (eNOS) phosphorylation, and investigated their mechanisms. In bovine aortic ECs, HGF induced a rapid (5 min) increase of NO production measured by diaminofluorescein-2 diacetate. Moreover, HGF rapidly (2.5 min) stimulated eNOS phosphorylation (Ser-1179) as determined by Western immunoblot analyses. Both of these effects were almost completely suppressed by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and were partially suppressed by the mitogen-activated protein kinase (MAPK) kinase 1/2 inhibitor U0126. HGF also stimulated Akt phosphorylation (Ser-473), which was completely suppressed by LY294002 and was partially suppressed by U0126. Moreover, HGF stimulated extracellular signal-regulated kinase 1/2 phosphorylation (Thr-202/Tyr-204), which was completely suppressed by U0126 and was partially suppressed by LY294002. Taken together, these results indicate that HGF not only phosphorylates eNOS through the PI3K/Akt pathway, but also partially through the MAPK pathway, and that these two pathways may interact. Compared with VEGF, HGF was more potent in both NO production and eNOS phosphorylation. Our study thus demonstrates a novel activity of HGF-the stimulation of NO production-which occurs via eNOS phosphorylation that may in turn be mediated by cross-talk between the PI3K/Akt and MAPK pathways.  相似文献   

13.
BACKGROUND/AIMS: In chronic liver injury, quiescent hepatic stellate cells change into proliferative myofibroblast-like cells, which are a main source of fibrosis. We have recently reported that these cells synthesize ADAM12, a disintegrin and metalloprotease whose expression is up-regulated by TGF-beta1 in liver cancers. Here, we studied the role of the serine/threonine p70S6 kinase (p70S6K) in regulating TGF-beta1-induced ADAM12 expression. RESULTS: The phophatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the mitogen-activated protein kinase inhibitor, UO126, decreased the TGF-beta1-dependent ADAM12 expression and prevented the phosphorylation of p70S6K. In addition, TGF-beta1-induced ADAM12 up-regulation was blocked by the Frap/mTOR inhibitor rapamycin, which abrogated the phosphorylation of p70S6K. In untreated cells, LY294002 but not rapamycin diminished the basal ADAM12 expression related to inhibition of Akt and the glycogen synthase kinase-3 phosphorylation. CONCLUSIONS: The data suggest that TGF-beta1 induces ADAM12 gene expression through both the PI3K/Frap-mTOR/p70S6K and MEK/ERK pathways. In addition, activation of the PI3 pathway might be involved in the basal ADAM12 expression in cultured hepatic stellate cells. The involvement of PI3K in ADAM12 expression, similar to that previously observed for collagen I and fibronectin, suggests common pathways for gene up-regulation in hepatic stellate cells that occur during liver fibrogenesis and contribute to tumor progression.  相似文献   

14.
Growth factors are known to favor both proliferation and survival of hepatocytes. In this work, we investigated the role of 2 main signaling pathways, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), in these processes. First, evidence was provided that the PI3K cascade as well as the MEK/ERK cascade is a key transduction pathway controlling hepatocyte proliferation, as ascertained by arrest of DNA synthesis in the presence of LY294002, a specific PI3K inhibitor. Inhibition of FRAP/mTOR by rapamycin also abrogated DNA replication and protein synthesis induced by growth factor. We showed that expression of cyclin D1 at messenger RNA (mRNA) and protein levels was regulated by this pathway. We highlighted that 4E-BP1 phosphorylation was not activated by epidermal growth factor (EGF) but was under an insulin-regulation mechanism through a PI3K-FRAP/mTOR activation that could account for the permissive role of insulin on hepatocyte proliferation. No interference between the MEK/ERK pathway and 4E-BP1 phosphorylation was detected, whereas p70S6K phosphorylation induced by EGF was under a U0126-sensitive regulation. Last, we established that the antiapoptotic function of EGF was dependent on MEK, whereas LY294002 and rapamycin had no direct effect on cell survival. Taken together, these data highlight the regulation and the role of 2 pathways that mediate growth-related response by acting onto distinct steps. In conclusion, hepatocyte progression in late G1 phase induced by EGF generates survival signals depending on MEK activation, whereas PI3K and MEK/ERK cascades are both necessary for hepatocyte replication.  相似文献   

15.
The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 kinase 1 (S6K1) activity in 3T3-L1 adipocytes. Inhibition of mTOR/S6K1 by rapamycin increased insulin-stimulated glucose transport by as much as 45% in 3T3-L1 adipocytes. Activation of mTOR/S6K1 by insulin was associated with a rapamycin-sensitive increase in Ser636/639 phosphorylation of insulin receptor substrate (IRS)-1 but, surprisingly, did not result in impaired IRS-1-associated phosphatidylinositol (PI) 3-kinase activity. However, insulin-induced activation of Akt was increased by rapamycin. Insulin also activated S6K1 and increased phosphorylation of IRS-1 on Ser636/639 in human adipocytes. As in murine cells, rapamycin treatment of human adipocytes inhibited S6K1, blunted Ser636/639 phosphorylation of IRS-1, leading to increased Akt activation and glucose uptake by insulin. Further studies in 3T3-L1 adipocytes revealed that rapamycin prevented the relocalization of IRS-1 from the low-density membranes to the cytosol in response to insulin. Furthermore, inhibition of mTOR markedly potentiated the ability of insulin to increase PI 3,4,5-triphosphate levels concomitantly with an increased phosphorylation of Akt at the plasma membrane, low-density membranes, and cytosol. However, neither GLUT4 nor GLUT1 translocation induced by insulin were increased by rapamycin treatment. Taken together, these results indicate that the mTOR pathway is an important modulator of the signals involved in the acute regulation of insulin-stimulated glucose transport in 3T3-L1 and human adipocytes.  相似文献   

16.
IGF binding protein (IGFBP)-3 is an important regulator of mammary epithelial cell (MEC) growth and can enhance the ability of both IGF-I and epidermal growth factor ligands such as TGFalpha to stimulate MEC proliferation. Here we investigate the role of the phosphatidylinositol-3 kinase (PI3K) and MAPK pathways in the regulation of IGFBP-3 expression by IGF-I and TGFalpha in bovine MECs. Both growth factors stimulated DNA synthesis, although IGF-I was the stronger mitogen. IGF-I and TGFalpha also stimulated IGFBP-3 mRNA and protein levels. TGFalpha stimulated rapid, transient activation of Akt that was maximal at 5 min and diminished by 15 min. In contrast, IGF-I-induced Akt activation was maximal between 15 and 90 min and was sustained for 6 h. Although ERK 1/2 was maximally stimulated by TGFalpha between 5 and 15 min, IGF-I did not stimulate discernible activation of ERK 1/2. In addition, TGFalpha but not IGF-I induced rapid phosphorylation of Shc, whereas only IGF-I activated insulin receptor substrate-1. Pretreatment with the PI3K inhibitor LY294002 or knockdown of p85 with small interfering RNA inhibited IGF-I or TGFalpha-stimulated IGFBP-3 expression. Similarly, MAPK kinase-1 inhibitors PD98059 and U0126 each abolished TGFalpha-stimulated increases in IGFBP-3 mRNA levels. In contrast to TGFalpha, IGF-I retained the ability to partially increase IGFBP-3 mRNA levels in the presence of MAPK kinase-1 inhibitors, indicating that IGF-I may activate alternative substrates of the PI3K pathway that are involved in IGFBP-3 regulation. In conclusion, stimulation of IGFBP-3 mRNA levels by mitogens is regulated through both the PI3K and MAPK pathways in bovine MECs.  相似文献   

17.
18.
Wang XH  Meng XW  Sun X  Liu BR  Han MZ  DU YJ  Song YY  Xu W 《Neoplasma》2011,58(3):239-244
In hepatocellular carcinoma (HCC), Wnt/β-catenin, Ras/MAPK and PI3K/AKT signaling pathways form a complex network and play important roles during HCC genesis and development. To study their relationship and the influence on cell growth, the siRNA directed against β-catenin was transfected into HCC HepG2 cells. β-catenin mRNA and protein levels were measured respectively at various times by RT-PCR and Western blot. Furthermore, HCC cell growth was measured by MTT assay. Finally, MAPK family and Akt1 protein levels were also measured by Western blot. After the transfection, β-catenin mRNA levels were markedly inhibited at 24 h and increased gradually at 48, 72 and 96 h; β-catenin protein levels decreased gradually at 24, 48 and 72 h and slightly increased at 96 h. HCC cell growth was inhibited from 24-72 h, but this inhibition decreased at 96 h. ERK1/2 (p42/p44 MAPK), JNK/SAPK, p38 MAPK, and Akt1 protein levels showed no change following transfection, while their phosphorylated protein levels showed changes. Thus, siRNA directed against β-catenin markedly decreased β-catenin gene expression and inhibited cell growth. Wnt/β-catenin signaling pathway might regulate Ras/MAPK and PI3K/Akt signaling pathways through regulation of the phosphorylation state of ERK1/2, JNK/SAPK and Akt1 protein in HCC HepG2 cells. These pathways might compensate for the inhibitory effect of β-catenin, thereby affecting tumor cell growth and others downstream factors.  相似文献   

19.
Islet neogenesis associated protein (INGAP) increases islet mass and insulin secretion in neonatal and adult rat islets. In the present study, we measured the short- and long-term effects of INGAP-PP (a pentadecapeptide having the 104-118 amino acid sequence of INGAP) upon islet protein expression and phosphorylation of components of the PI3K, MAPK and cholinergic pathways, and on insulin secretion. Short-term exposure of neonatal islets to INGAP-PP (90 s, 5, 15, and 30 min) significantly increased Akt1(-Ser473) and MAPK3/1(-Thr202/Tyr204) phosphorylation and INGAP-PP also acutely increased insulin secretion from islets perifused with 2 and 20 mM glucose. Islets cultured for 4 days in the presence of INGAP-PP showed an increased expression of Akt1, Frap1, and Mapk1 mRNAs as well as of the muscarinic M3 receptor subtype, and phospholipase C (PLC)-beta2 proteins. These islets also showed increased Akt1 and MAPK3/1 protein phosphorylation. Brief exposure of INGAP-PP-treated islets to carbachol (Cch) significantly increased P70S6K(-Thr389) and MAPK3/1 phosphorylation and these islets released more insulin when challenged with Cch that was prevented by the M3 receptor antagonist 4-DAMP, in a concentration-dependent manner. In conclusion, these data indicate that short- and long-term exposure to INGAP-PP significantly affects the expression and the phosphorylation of proteins involved in islet PI3K and MAPK signaling pathways. The observations of INGAPP-PP-stimulated up-regulation of cholinergic M3 receptors and PLC-beta2 proteins, enhanced P70S6K and MAPK3/1 phosphorylation and Cch-induced insulin secretion suggest a participation of the cholinergic pathway in INGAP-PP-mediated effects.  相似文献   

20.
目的 体外以缺氧无血清条件模拟心肌梗死后的心脏缺血微环境,研究洛伐他汀能否抑制缺氧无血清引起的骨髓间充质干细胞(MSC)凋亡并探讨其机制.方法 以Hocchst33342染色荧光显微镜观察法及Annexin V/PI流式细胞术检测洛伐他汀的抗凋亡作用,并进一步采用Westernblot方法 检测洛伐他汀对线粒体凋亡途径的抑制作用以及对磷脂酰肌醇3激酶(PI3K)/丝氨酸苏氨酸激酶(Akt)途径和丝裂原活化的蛋白激酶(MAPK)的激酶(MEK)/细胞内信号调节蛋白激酶(ERK1/2)途径的激活作用.结果 0.01~1 μmol/L浓度范围的洛伐他汀能够有效地抑制缺氧无血清引起的MSC凋亡.洛伐他汀抑制线粒体凋亡途径,洛伐他汀抑制细胞色素C释放,降低天冬氨酸特异性半胱氨酸蛋白酶-3(caspase-3)活化,从而保护线粒体功能.洛伐他汀的抗凋亡效应以及其抑制细胞色素C释放的作用均可被PI3K抑制剂LY294002和MEK抑制剂U0126阻断.洛伐他汀能够激活PI3K/Akt和MEK/ERK1/2两条细胞存活信号通路,分别导致Akt和GSK-3β及ERK1/2磷酸化.结论 洛伐他汀能够抑制线粒体凋亡途径,并激活PI3K/Akt和MEK/ERK1/2细胞存活通路,最终发挥抗缺氧无血清引起的MSC凋亡.该研究为提高移植干细胞的存活率提供了一种可能有效的干预措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号