首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The SOCS family of genes are negative regulators of cytokine signalling with SOCS-1 displaying tumor suppressor activity. SOCS-1, CIS and SOCS-3 have been implicated in the regulation of red blood cell production. In this study, a detailed examination was conducted on the expression patterns of these three SOCS family members in normal erythroid progenitors and a panel of erythroleukemic cell lines. Unexpectedly, differences in SOCS gene expression were observed during maturation of normal red cell progenitors, viz changes to CIS were inversely related to the alterations of SOCS-1 and SOCS-3. Similarly, these SOCS genes were differentially expressed in transformed erythoid cells - erythroleukemic cells immortalized at an immature stage of differentiation expressed SOCS-1 and SOCS-3 mRNA constitutively, whereas in more mature cell lines SOCS-1 and CIS were induced only after exposure to erythropoietin (Epo). Significantly, when ectopic expression of the tyrosine kinase Lyn was used to promote differentiation of immature cell lines, constitutive expression of SOCS-1 and SOCS-3 was completely suppressed. Modulation of intracellular signalling via mutated Epo receptors in mature erythroleukemic lines also highlighted different responses by the three SOCS family members. Close scrutiny of SOCS-1 revealed that, despite large increases in mRNA levels, the activity of the promoter did not alter after erythropoietin stimulation; in addition, erythroid cells from SOCS-1-/- mice displayed increased sensitivity to Epo. These observations indicate complex, stage-specific regulation of SOCS genes during normal erythroid maturation and in erythroleukemic cells.  相似文献   

3.
4.
The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-β and IFN-γ on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-γ on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-γ greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-γ on the growth of B16-BL6 cells, these findings suggest that IFN-γ-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-γ. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN. ( Cancer Sci 2008; 99: 1650–1655)  相似文献   

5.
6.
Stat3 activation in human endometrial and cervical cancers   总被引:10,自引:0,他引:10  
  相似文献   

7.
8.
In polycythemia vera (PV) and essential thrombocythemia (ET) specific JAK2 mutations constitutively activate the JAK-STAT pathway, explaining biologic findings such as endogenous erythroid colony (EECs) growth or PRV-1 RNA overexpression. Since these markers are detected also in JAK2 wild type patients, we hypothesized that, in these cases, the activation of the JAK-STAT pathway could be produced by a deregulation of the suppressor of cytokine signaling (SOCS) protein system. Eighty-one patients with PV and ET (53 adults and 28 children) were investigated for the methylation status of the SOCS-1, SOCS-2 and SOCS-3 CpG islands and for several myeloproliferative markers (including JAK2 and MPL mutations and clonality of hematopoiesis). SOCS-1 or SOCS-3 hypermethylation was identified in 23 patients and was associated with a significant decrease of SOCS-1 or SOCS-3 RNA and protein levels. The gene expression was restored by exposing cells to the demethylating agent 2-deoxyazacytidin. Interestingly, SOCS-1 or SOCS-3 hypermethylation was detected in 6 female patients, proved negative for JAK2 or MPL mutations and exhibiting monoclonal hematopoiesis. In conclusion, SOCS-1 or SOCS-3 hypermethylation can activate the JAK-STAT signaling pathway in alternative or together with JAK2 mutations. These alterations might represent a potential therapeutic target.  相似文献   

9.
The interleukin-mediated Janus kinase (JAK)/STAT pathway plays a crucial role in carcinogenesis. Recently, increased STAT3 activity was found in hepatocellular carcinoma and multiple myeloma in which there was silencing of SOCS-1 (suppressor of cytokine signalling-1) by gene promoter hypermethylation. We investigated the expression level of interleukin-6 (IL-6) and SOCS-1 in gastric cancer cell lines. Expression of SOCS-1 correlated with IL-6 level in most of the cell lines, except for AGS cells in which SOCS-1 was absent despite a high level of IL-6 production. Methylation analysis by methylation-specific polymerase chain reaction and bisulphite sequencing revealed that CpG island of SOCS-1 was densely methylated in AGS cells. Demethylation treatment by 5'aza-deoxycytidine restored SOCS-1 expression and also suppressed constitutive STAT3 phosphorylation in AGS cells. Moreover, methylation of SOCS-1 was detected in 27.5% (11 of 40) of primary gastric tumours samples, 10% (one of 10) of adjacent noncancer tissues but not in any (zero of nine) normal gastric mucosa. Methylation of SOCS-1 also correlated with the loss of mRNA expression in some primary gastric cancers. In conclusion, this is the first report to demonstrate that hypermethylation of SOCS-1 led to gene silencing in gastric cancer cell line and primary tumour samples. Downregulation of SOCS-1 cooperates with IL-6 in the activation of JAK/STAT pathway in gastric cancer.  相似文献   

10.
11.
The Jak/Stat signaling pathway transmits signals from many cytokine and growth factor receptors to target genes in the nucleus. Constitutive activation of Stat3 has recently been observed in many tumor cells and dysregulation of the Stat signaling pathway has been proposed to be implicated in malignant transformation. In a previous study, we found constitutively tyrosine phosphorylated Stat3 in mycosis fungoides tumor cells. Here, we show that the Jak kinase inhibitor, Ag490, inhibits the constitutive binding of Stat3 to an oligonucleotide representing the Stat-binding sequence from the ICAM promotor. The decreased ability of Stat3 to bind DNA precedes dynamic alterations in the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins (decreased Bcl-2 expression and increased Bax expression) and induction of apoptosis. Thus, our data suggest that the involvement of Stat3 in oncogenic transformation could be mediated through regulation of survival signals.  相似文献   

12.
13.
14.
15.
Li C  Chi S  He N  Zhang X  Guicherit O  Wagner R  Tyring S  Xie J 《Oncogene》2004,23(8):1608-1617
Basal cell carcinoma (BCC), the most common form of human cancer, is understood to be associated with activation of the sonic hedgehog pathway, through loss-of-function mutations of tumor suppressor PTCH1 or gain-of-function mutations of smoothened. Interferon (IFN)-based therapy is quite effective in BCC treatment, but the molecular basis is not well understood. Here we report a novel mechanism by which IFNalpha mediates apoptosis in BCCs. In the presence of IFNalpha, we observed increased apoptosis in a BCC cell line ASZ001, in which PTC is null, and therefore with constitutive activation of the sonic hedgehog pathway. We demonstrate that SMO agonist Ag-1.4 mediates activation of extracellular signal-regulated kinase (Erk) phosphorylation, which is abrogated by IFNalpha in sonic hedgehog responsive C3H10T1/2 cells. In transient transfection experiments, we demonstrate that IFNalpha inhibits Erk phosphorylation and serum response element activation induced by expression of SMO, Gli1, PDGFRalpha and activated Raf, but not activated mitogen-activated Erk-regulating kinase (Mek), suggesting that IFNalpha targets mainly on Mek function. We further show that IFNalpha induces expression of Fas in BCC cells through interfering with Mek function. The role of the Fas-L/Fas signaling axis in IFNalpha-mediated apoptosis is demonstrated by the fact that addition of Fas-L neutralizing antibodies, just as caspase-8 inhibitor Z-IETD-FMK, effectively prevents IFNalpha-mediated apoptosis. Thus, our data indicate that IFNalpha-based BCC therapy induces Fas expression and apoptosis through interfering with Mek function.  相似文献   

16.
As negative feedback regulators of cytokine signaling, suppressor of cytokine signaling proteins are induced by interleukins and various peptide hormones and may prevent sustained activation of signaling pathways. In particular, suppressor of cytokine signaling‐3 (SOCS‐3) plays pivotal roles in the development and progression of various cancers and exerts pleiotropic effects on cell proliferation and apoptosis. In recent years, abnormal expression of SOCS‐3 and its multiple functions have been extensively investigated in human carcinomas, particularly in prostate cancer. SOCS‐3 can act as an oncogene or a tumor suppressor depending on the cellular context. In this review, we focus on the role of SOCS‐3 in prostate cancer development and prognosis, as well as the potential of SOCS‐3 as a therapeutic target and diagnostic marker.  相似文献   

17.
18.
19.
20.
Previously, we have demonstrated that constitutive expression of suppressor of cytokine signaling-3 (SOCS3) affects the sensitivity of chronic myelogenous leukemia (CML) cell lines to interferon-alpha (IFN-alpha). In the present study, we analyzed the expression of SOCS3 mRNA in bone marrow cells from patients with CML at diagnosis, with the aid of real-time polymerase chain reaction. SOCS3 mRNA expression in bone marrow cells from CML patients who responded well to IFN-alpha therapy was significantly lower than that in cells from healthy volunteers and patients who were resistant to IFN-alpha therapy. Methylation of SOCS3 promoter was absent in bone marrow cells from all CML patients examined. These results indicate that the expression of SOCS3 mRNA is inversely associated with the sensitivity to IFN-alpha both in vitro and in vivo and that differences in SOCS3 mRNA expression are not due to the methylation status of SOCS3 promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号