首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

The aim of this study was to evaluate Streptococcus mutans adhesion to fluoride varnishes and subsequent change in biofilm accumulation and acidogenicity.

Methods

After producing fluoride varnish-coated hydroxyapatite discs using Fluor Protector (FP), Bifluorid 12 (BIF), Cavity Shield (CASH), or Flor-Opal Varnish White (FO), S. mutans biofilms were formed on the discs. To assess S. mutans adhesion to the discs, 4-h-old biofilms were analysed. To investigate the change in biofilm accumulation during subsequent biofilm formation, the biomass, colony forming units (CFU), and water-insoluble extracellular polysaccharides (EP) of 46-, 70-, and 94-h-old biofilms were analysed. To investigate the change in acidogenicity, pH values of the culture medium were determined during the experimental period. The amount of fluoride in the culture medium was also determined during the experimental period.

Results

BIF, CASH, and FO affected S. mutans adhesion (67–98% reduction) and subsequent biofilm accumulation in 46-, 70-, and 94-h-old biofilms. However, the reducing effect of the fluoride varnishes on the biomass, CFU count, water-insoluble EP amount, and acid production rate of the biofilms decreased as the biofilm age increased. These results may be related to the fluoride-release pattern of the fluoride varnishes. Of the fluoride varnishes tested, FO showed the highest reducing effect against the bacterial adhesion and subsequent biofilm accumulation.

Conclusions

Our findings suggest that if the results of these experiments are extrapolable to the in vivo situation, then reduced clinical benefit of using fluoride varnishes may occur with time.

Clinical significance

Fluoride varnish application can affect cariogenic biofilm formation but the anti-biofilm activity may be reduced with time.  相似文献   

2.

Objective

The main aim of this in vitro study was to evaluate the influence of Streptococcus mutans on the corrosion of titanium.

Methods

S. mutans biofilms were formed on commercially pure titanium (CP-Ti) square samples (10 mm × 10 mm × 1 mm) using a culture medium enriched with sucrose. Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the corrosion behaviour of CP-Ti in the presence of S. mutans in Fusayama's artificial saliva. The corrosion of biofilm-free CP-Ti samples was also evaluated in artificial saliva. Biofilms biomass was measured by spectrophotometry, using crystal violet staining, after 1, 2 and 7 days.

Results

The OCP values recorded on CP-Ti in the presence of S. mutans (−0.3 ± 0.02 V vs. SCE) was lower than those on biofilm-free CP-Ti (−0.1 ± 0.01 V vs. SCE) after 2 h of immersion in artificial saliva (p < 0.05). That reveals a high reactivity of titanium in presence of S. mutans. Impedance spectra revealed the formation of a compact passive film on titanium in artificial saliva or in the presence of a 2 days old S. mutans biofilm even though the corrosion resistance of CP-Ti has decreased in presence of a S. mutans biofilm.

Conclusion

The presence of bacterial colonies, such as S. mutans, negatively affected the corrosion resistance of the titanium.  相似文献   

3.

Objective

To evaluate the antiadherent property of crude, methanol and acetate methanol extract fractions from Schinus terebinthifolius and Croton urucurana in hydroalcoholic (HA) and dimethylsulfoxide (DMSO) solvents on in vitro biofilms formed by Streptococcus mutans and Candida albicans strains.

Design

The minimal concentration of adherence (MICA) was determined to evaluate the antiadherent potential of extracts on the in vitro biofilm formation. The extracts of plants were subjected to thin layer chromatography (TLC) in order to detect what class of compounds was responsible for the antiadherent activity. Data were estimated by analysis of variance (ANOVA) complemented by Tukey test level of significance set at 5%.

Results

Both plants demonstrated inhibition of S. mutans and C. albicans on in vitro biofilm formation. The biofilms of C. albicans were more efficiently inhibited by the S. terebinthifolius fraction of acetate–methanol and methanol in hydroalcoholic solvents (p < 0.05). The S. mutans biofilms adherence was best inhibited by the S. terebinthifolius crude extract and its methanolic fraction, both in hydroalcoholic solvent (p < 0.05). TLC of crude extracts and fractions of S. terebinthifolius detected the presence of several active compounds, including phenolic compounds, anthraquinones, terpenoids, and alkaloids. C. urucurana extracts confirmed activity for both microorganisms (p < 0.05). However, higher concentrations were needed to achieve antiadherent activity, mainly to inhibit in vitro biofilm formation of C. albicans.

Conclusion

The antiadherent potential of both plants on in vitro biofilms formed by C. albicans and S. mutans were confirmed, suggesting the importance of studies about these extracts for therapeutic prevention of oral diseases associated with oral biofilms.  相似文献   

4.

Objectives

To evaluate the influence of desensitising paste containing 8% arginine and calcium carbonate (Ar-Ca) on biofilm formation on dentine.

Methods

Dentine discs were cut from extracted third molars and divided into the following three groups: no treatment, pumice treatment and Ar-Ca treatment. Surface topography and roughness were examined using scanning electron microscopy (SEM) and non-contact 3D surface profiler. After sterilisation, samples were incubated with Streptococcus mutans (S. mutans) for 4 h, 24 h and 72 h. Bacterial adhesion and biofilm formation were analysed using SEM, whereas MTT and lactic acid production assays were used to analyse the metabolic activity of S. mutans.

Results

After polishing with either pumice or Ar-Ca, the surfaces of the samples became smoother than in the control group. The Ra values of the three experimental groups decreased significantly to 0.43 μm, 0.3 μm and 0.26 μm, respectively. Compared to the control group, fewer bacteria adhered to the dentine surface in the Ar-Ca group, while biofilm thickness decreased significantly for both groups after incubating for 24 h and 72 h. MTT and lactic acid production levers also showed a significant reduction in the Ar-Ca group.

Conclusions

Ar-Ca appears to present antibiofilm efficacy and may provide a promising approach to combat bacterial infection in hypersensitive dentinal lesions.

Clinical significance

As a clinical application of desensitising polishing paste, the paste containing 8% arginine and calcium carbonate could also inhibit the biofilm formation effectively.  相似文献   

5.

Objective

Quaternary amine charge density is important because when the negatively charged bacteria contact the positive quaternary amine charge, the electric balance is disturbed and the bacterium could be disrupted. There has been no report on the effects of charge density on the antibacterial efficacy of dental bonding agents. The objective of this study was to synthesize a new quaternary ammonium methacrylate, and investigate the effects of charge density of bonding agent on bacteria early-attachment, biofilm colony-forming units (CFU) and dentin bond strength.

Methods

Dimethylaminododecyl methacrylate (DMAHDM) with an alkyl chain length of 16 was synthesized and mixed into Scotchbond Multi-Purpose adhesive and primer (SBMP) at mass fractions of 0%, 2.5%, 5%, 7.5%, and 10%. A microtensile dentin bond test was performed. The density of quaternary ammonium groups was measured using a fluorescein dye method. Streptococcus mutans (S. mutans) early-attachment was examined at 4 h, and biofilm colony-forming units (CFU) were measured at 2 days.

Results

All groups had similar microtensile bonding strengths (mean ± sd; n = 40) of about 60 MPa (p > 0.1). Quaternary amine charge density of bonding agents monotonically increased with increasing DMAHDM mass fraction. Bacteria early-attachment coverage greatly decreased with increasing DMAHDM content in the resin. Biofilm CFU at 10% DMAHDM was reduced by more than 4 log, compared to SBMP control. Charge density of bonding agent was inversely proportional to bacteria early-attachment coverage and biofilm CFU.

Significance

Increasing the quaternary amine charge density of dentin bonding agent resin was shown to greatly reduce S. mutans attachment and decrease biofilm CFU by four orders of magnitude, without compromising the dentin bond strength. The new DMAHDM is promising for use in bonding agents and other antibacterial restorative materials to inhibit caries.  相似文献   

6.

Objective

The effects of probiotics on cariogenic biofilms remain controversial. Our aim was to characterise two probiotic Lactobacillus reuteri strains, ATCC PTA 5289 and ATCC 55730 from a cariogenic standpoint in vitro. These strains are used in commercial products designed for oral health purposes.

Design

The adhesion and biofilm formation were studied on saliva-coated hydroxyapatite. The effects of glucose or sucrose on the biofilm formation were also tested. Arginine metabolism was assessed by measuring the pH in the presence of glucose and arginine. The degradation of hydroxyapatite was measured in three different growth media. Streptococcus mutans strains Ingbritt and MT 8148 were used as positive controls for bacterial adhesion and degradation of hydroxyapatite.

Results

Strain ATCC PTA 5289 adhered on saliva-coated hydroxyapatite and formed detectable biofilm, but strain ATCC 55730 was poor in both adhesion and biofilm formation. Both strains were arginolytic and raised the pH in the presence of arginine. The amount of dissolved calcium from hydroxyapatite correlated with bacterial growth rate and the final pH of the growth medium.

Conclusion

L. reuteri strains ATCC PTA 5289 and ATCC 55730 differed in their adhesion, biofilm formation and arginine metabolism in vitro. Thus, these probiotic lactobacilli are likely to differ in their behaviour and cariogenic potential also in an oral environment.  相似文献   

7.

Objectives

The aim of this study was to evaluate the effect of grape seed extract (GSE) on enamel caries lesion formation in an in vitro Streptococcus mutans biofilm model.

Methods

Enamel fragments were prepared from bovine incisors and divided into six treatment groups (n = 12): inoculated Brain Heart Infusion with 1% sucrose (BHIS), 1 mg/mL GSE, 2 mg/mL GSE, 3 mg/mL GSE, 10 ppm fluoride as NaF, and uninoculated BHIS. For biofilm formation, tooth fragments were incubated anaerobically in polystyrene 6-well tissue culture plates containing BHIS, the respective agents, and S. mutans (1 × 105 CFU/mL) for 24 h at 37 °C. Culture medium was replaced with fresh BHIS and respective agents daily over a 7-day period. Following caries lesion formation, lesion depth (LD) and relative optical density (ROD) were determined by polarized light microscopy (PLM) and confocal laser scanning microscopy (CLSM), respectively, to evaluate lesion progression.

Results

LDs of the 2 mg/mL GSE group (122.86 ± 13.41 μm) and the 3 mg/mL GSE group (111.92 ± 11.39 μm) were significantly smaller than those of the 1 mg/mL GSE (198.33 ± 17.70 μm) and control groups (210.86 ± 15.50 μm) (p < 0.05). Compared with the 2 mg/mL and 3 mg/mL groups, the control and 1 mg/mL GSE groups showed significantly lower ROD values when depth was less than 200 μm, indicating greater mineral loss.

Conclusions

Dose-dependent GSE inhibits in vitro enamel caries formation due to its ability to suppress growth of S. mutans and the formation of bio?lm.

Clinical signi?cance

Grape seed extract may be a novel virulence-targeted natural antimicrobial agent for caries prevention.  相似文献   

8.

Objective

The purpose of this study was two-fold: (1) to monitor bacterial biofilm formation and bacteria-induced demineralization of dentine in situ by using electrochemical impedance spectrum (EIS); (2) to examine the relationship between EIS findings and changes in the chemical composition and ultrastructure of dentine during bacteria-induced demineralization.

Methods

In this study, dentine demineralization was induced by Streptococcusmutans (ATCC 25175) in the presence of sucrose in culture medium and was monitored using two EIS measurement systems (Type A with a working electrode and Type B without a working electrode). Scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were employed to examine the morphology, element contents and crystallinity of hydroxyapatite (HAP) on the dentine surface. Transverse microradiography (TMR) was used to characterize the lesion depth and degree of mineral loss during demineralization.

Results

The resistance of the bulk dentine (Rd) and the apparent resistance of dentine (Ra) measured from the Type A and Type B EIS systems, respectively, decreased gradually with demineralization. The resistance of the biofilm formed on dentine surface was determined by fitting the EIS data with equivalent circuits. The presence of biofilm slightly increased Ra of dentine before demineralization. However, the electrochemical behavior of biofilm did not affect the decreasing impedance of dentine with demineralization. The SEM, EDX, XRD and TMR results demonstrated that the surface and bulk dentine gradually became more porous due to the loss of minerals during demineralization, which in turn resulted in the decrease in Rd and Ra values obtained from EIS systems.

Conclusions

This investigation highlighted EIS as a potential technique to monitor biofilm formation and bacterial-induced demineralization in situ.  相似文献   

9.

Objective

In this study, three dimethacrylate quaternary ammonium compounds N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methyldodecyl ammonium iodide (QADMAI-12), N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methylhexadecyl-ammonium iodide (QADMAI-16), and N,N-bis[2-(3-(methacryloyloxy)propanamido)ethyl]-N-methyloctadectyl ammonium iodide (QADMAI-18) were synthesized and proposed to be used as antibacterial and radio-opaque agents in dental resin.

Methods

All QADMAIs were synthesized through a 2-steps reaction route, and their structures were confirmed by FT-IR and 1H NMR spectra. Antibacterial activities against Streptococcus mutans (S. mutans) of QADMAIs were measured by agar diffusion test. Each QADMAI was mixed with TEGDMA (50/50, w/w) and photoinitiation system (0.7 wt% of CQ and 0.7 wt% of DMAEMA) to form resin system. Degree of monomer conversion (DC) was determined by FT-IR analysis. The flexural strength (FS) and modulus (FM) of the polymer were measured using a three-point bending set up. Radiograph was taken to determine the radio-opacity of the polymer, and aluminum step-wedge (0.5–4 mm) was used as calibration standard. Surface charge density was measured using fluorescein binding. A single-species biofilm model with S. mutans as the tests organism was used to evaluate the antibacterial property of the polymer. Bis-GMA/TEGDMA resin system was used as control material in all of the tests.

Results

FT-IR and 1H NMR spectra showed that the structures of QADMAIs were the same as designed. ANOVA analysis revealed that antibacterial activity of QADMAI decreased with the increasing of alkyl chain length (p < 0.05). QADMAI containing polymers had higher DC (p < 0.05) but lower FS and FM (p < 0.05) than control polymer. Alkyl chain length had no influence on DC (p > 0.05), but FS and FM of QADMAI-12 containing polymer were better than those of QADMAI-16 and QADMAI-18 containing polymers (p < 0.05). QADMAI containing polymers had much better radio-opacity than control polymer (p < 0.05), and the radio-opacity of polymer decreased with the increasing of alkyl chain length (p < 0.05). All of QADMAIs containing polymers had higher surface charge density than control polymer (p < 0.05), and surface charge densities of QADMAI-12 and QADMAI-16 containing polymers were nearly the same (p > 0.05) which were higher than that of QADMAI-18 containing polymer (p < 0.05). All of QADMAI containing polymers had good inhibitory effect on biofilm formation.

Significance

QADMAIs had no miscibility problem with TEGDMA, and QADMAIs could endow dental resin with both antibacterial activity and radio-opacity. Formulation of QADMAI containing resin should be optimized in terms of mechanical stregth to satisfy the requirements of dental resin for clinical application.  相似文献   

10.

Objectives

This study was attempted to incorporate an antibacterial monomer, methacryloxylethyl cetyl dimethyl ammonium chloride (DMAE-CB), into a commercial dental adhesive and to evaluate the antibacterial activity of the DMAE-CB-incorporated adhesive after being cured against Streptococcus mutans.

Methods

DMAE-CB was incorporated at 3% (w/v) into a clinically used dental adhesive, Single Bond 2. Single Bond 2 without DMAE-CB was served as a negative control; Clearfil Protect Bond, containing an intensively researched antibacterial monomer MDPB, was enrolled as a positive control. The effects of the cured adhesives and their eluents on the growth of S. mutans were determined by film contact test and absorbance measurement, respectively. The effects of the cured adhesives on the adherence and membrane integrity of S. mutans were investigated using confocal laser scanning microscopy (CLSM) in conjunction with fluorescent indicators.

Results

Compared with negative control, the cured DMAE-CB-incorporated dental adhesive and positive control were found to exhibit inhibitory effect on the growth of S. mutans (P < 0.05), whereas their eluents did not show detectable antibacterial activity. Moreover, the fluorescence analysis of CLSM images demonstrated that the cured DMAE-CB-incorporated adhesive and positive control could hamper the adherence of S. mutans and exert detrimental effect on bacterial membrane integrity (P < 0.05).

Conclusions

The incorporation of DMAE-CB can render dental adhesive with contact antibacterial activity after polymerization via influencing the growth, adherence and membrane integrity of S. mutans.  相似文献   

11.

Objectives

The aim of this study was to evaluate the degree of conversion (DC), rate of polymerization (Rpmax), Knoop hardness (KHN) and bond strength between tooth/restoration of composite resins containing different photo-initiators photo-activated by different light-curing units (LCUs).

Materials and methods

A mixture of BisGMA, UDMA, BisEMA and TEGDMA was prepared along with the following photo-initiators: camphorquinone (CQ), phenyl-propanedione (PPD) or the association (CQ/PPD) and 65 wt% of silanated filler particles. The LCUs included a halogen lamp XL 2500 and two LEDs: UltraBlueIS and UltraLume5. The conversion profiles during photo-polymerization were investigated using middle-infrared spectroscopy (mid-IR). Bond strength was evaluated using push-out test in ninety teeth with prepared cavities. Before the push-out test, Knoop hardness (KH) was verified in the top and at the base of the restorations.

Results

PPD obtained lower Rpmax values, regardless of the LCU used. It also provided a greater bond strength than CQ when the LEDs LCUs were used. The degree of conversion after 40 s of irradiation was the same for all composite resins, except PPD photo-activated for XL 2500, which showed lower DC values than CQ and CQ/PPD. In the top and at the base of the restorations, PPD showed the lowest KH values when photo-activated with XL 2500. XL 2500 produced higher KH values than UltraBlueIS when used with CQ or CQ/PPD photo-initiators.

Conclusion

Because it increased the bond strength without compromising the properties of composite resins when photo-activated by an LED, PPD can be used as an alternative photo-initiator.  相似文献   

12.

Objectives

This study aimed to measure the effect of xylitol mouthrinse on salivary Streptococcus mutans counts.

Methods

Subjects in the study group (n = 25) used xylitol mouthrinse for 4 weeks, while another group (n = 25) used saccharine mouthrinse. S. mutans were measured before and after intervention.

Results

At the baseline the mean S. mutans scores were 3.9 (SE = 0.03) and 3.9 (0.04) for the xylitol group and control group respectively, while the scores were 2.8 (0.13) and 3.9 (0.07) after the intervention. Significant reductions (p < 0.01) in the scores of S. mutans were found after the four week use of xylitol mouthrinse.

Conclusions

Significant reductions in the scores of S. mutans were found after the four week use of 20% xylitol mouthrinse. The bacteriostatic effect of xylitol mouthrinse on S. mutans may be comparable to other xylitol products. Further studies are needed to confirm both the short and long term effects of xylitol mouthrinse.  相似文献   

13.

Objective

Resin-based composites are known to elute leachables that include unincorporated starting materials. The objective of this work was to determine the effect of common dental monomers and initiators on Streptococcus mutans biofilm metabolic activity and biomass.

Methods

S. mutans biofilms were inoculated in the presence of bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), camphorquinone (CQ), and ethyl 4-(dimethylamino)benzoate (4E) at 0.01 μg/mL up to 500 μg/mL, depending on the aqueous solubility of each chemical. Biofilms were evaluated at 4 h and 24 h for pH (n = 3–8), biomass via crystal violet (n = 12), metabolic activity via tetrazolium salt (n = 12), and membrane permeability for selected concentrations via confocal microscopy (n = 6). Parametric and non-parametric statistics were applied.

Results

500 μg/mL TEGDMA reduced 24 h metabolic activity but not biomass, similar to prior results with leachables from undercured BisGMA-TEGDMA polymers. 50 μg/mL BisGMA reduced biofilm biomass and activity, slightly delayed the pH drop, and decreased the number of cells with intact membranes. 100 μg/mL CQ delayed the pH drop and metabolic activity at 4 h but then significantly increased the 24 h metabolic activity. 4E had no effect up to 10 μg/mL.

Significance

Monomers and initiators that leach from resin composites affect oral bacterial biofilm growth in opposite ways. Leachables, which can be released for extended periods of time, have the potential to alter oral biofilm biomass and activity and should be considered in developing and evaluating new dental materials.  相似文献   

14.

Objective

For the past several decades, the resins used in dental restorations have been plagued with numerous problems, including their implication in biofilm formation and secondary caries. The need for alternative resins is critical, and evaluation of biofilm formation on these resins is essential. The aim of this study was to evaluate in vitro biofilm formation on the surface of novel copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)-based resins and composites.

Methods

CuAAC-based resins/composites made from varying azide monomers and different copper concentrations were compared with BisGMA-TEGDMA resins/composites that served as the control. Biofilms were formed using a mono-species model containing a luciferase-expressing strain of Streptococcus mutans. Luciferase activity was measured and the number of viable bacteria was enumerated on biofilms associated with each resin and composite.

Results

A significant reduction (p < 0.05) in luciferase activity, and the number of viable bacteria recovered from biofilms on CuAAC-based resins and composites was observed in comparison to biofilms associated with the BisGMA-TEGDMA controls.

Significance

CuAAC-based resins do still allow for the formation of biofilms; however, the statistically significant reduction of growth that was associated with the CuAAC resin may enhance the longevity of restorations that incorporate CuAAC-based materials.  相似文献   

15.

Objective

This study was conducted to estimate oral colonization by Streptococcus mutans and Streptococcus sanguinis in adults with high and without any caries experience. Furthermore, differences in the amount of hydrogen peroxide (H2O2) produced by S. sanguinis isolated from both groups were assessed.

Design

Forty adults were divided into: (i) carious lesion-free, without any carious lesion, assessed by the International Caries Detection and Assessment System (ICDAS), or restoration, (CF) and (ii) high caries experience (HC). Saliva samples were collected and seeded on respective agar-plates for enumeration of total streptococci, S. mutans and S. sanguinis (CFU/mL) and compared between groups. Additionally, S. sanguinis colonies obtained from both groups were inoculated on Prussian blue agar for H2O2 detection. Production of H2O2 was quantified and compared between the two groups. S. sanguinis counts were significantly higher in CF than HC individuals (p < 0.05). Conversely, S. mutans showed significantly higher levels in HC than CF subjects (p < 0.001). S. sanguinis colonies from CF individuals produced significantly larger H2O2 halos compared with HC subjects.

Conclusions

S. sanguinis predominates over S. mutans in saliva of adults without caries experience. In those people, S. sanguinis produces more H2O2ex vivo.  相似文献   

16.

Objectives

The purposes of this study were to clarify the surface characteristics of various implant overdenture materials and the capabilities of Candida albicans adherence and biofilm formation on these surfaces, and to investigate the role of salivary mucin in biofilm formation.

Methods

Seven commonly used implant and restorative materials were assessed. The surface roughness averages of all materials were limited to 0.07–0.10 μm. Contact angles and salivary mucin absorption were measured. After 90-min initial adhesion and 2-day biofilm formation, the amounts of C. albicans were determined by counting colony-forming units and the morphological characteristics were observed by scanning electron microscopy (SEM). The effects of saliva coating and the influences of material surface property on initial adhesion, biofilm formation and its removability were analysed by univariate two-way analysis of variance and multiple linear regression analysis.

Results

Surface contact angle of materials, the index of hydrophobicity, was found to be correlated positively with initial adhesion and biofilm formation of C. albicans. A negative correlation between mucin absorption and removability of Candida biofilm indicates that mucin plays an important role in biofilm formation and its rigidity. SEM observation also revealed fewer Candida cells on saliva-coated Ti than on saliva-coated hydroxyapatite or acrylic resin.

Conclusions

The materials with different hydrophobic property and compositions display diverse manners of salivary mucin absorption, initial adhesion and biofilm formation. The hydrophobic materials encourage enhanced initial adhesion, subsequently resulting in the active biofilm formation. Mucin has decisive effects on Candida immobilization and biofilm development on the materials.

Clinical significance

Surface hydrophilic property and composition of materials and salivary proteins, especially mucin, affect the process of Candida biofilm formation and influence the amount and rigidity of formed biofilm. The present data may be applied as a reference for selecting materials in implant overdenture treatment from a microbiological point of view.  相似文献   

17.
ObjectivesThe currently available commercial dental resin composites have limitations in use owing to the high viscosity and water sorption of Bisphenol A glycidyl methacrylate (BisGMA). The objective of this study was to obtain a BisGMA analog with reduced viscosity and hydrophilicity for potential use as an alternative to BisGMA in dental resin composites.MethodsThe targeted chlorinated BisGMA (Cl-BisGMA) monomer was synthesized via the Appel reaction. The structural modification was confirmed via 1H- and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and mass spectrometry. Five resin mixtures (70:30 wt.%: F1 = BisGMA/TEGDMA; F2 = Cl-BisGMA/TEGDMA; F3 = Cl-BisGMA only; F4 = Cl-BisGMA/BisGMA; F5 contained 15% TEGDMA with equal amounts of BisGMA and Cl-BisGMA) were prepared. The viscosity, degree of double-bond conversion (DC), water sorption (WSP), and solubility (WSL) were tested. Cell viability and live/dead assays, as well as cell attachment and morphology assessments, were applied for cytotoxicity evaluation.ResultsCl-BisGMA was successfully synthesized with the viscosity reduced to 7.22 (Pa s) compared to BisGMA (909.93, Pa s). Interestingly, the DC of the F2 resin was the highest (70.6%). By the addition of equivalence concentration of Cl-BisGMA instead of BisGMA, the WSP was decreased from 2.95% (F1) to 0.41% (F2) with no significant change in WSL. However, the WSL increased with high Cl-BisGMA content. Biological tests revealed that all the resins were biocompatible during CL1 incubation.SignificanceThe experimental resins based on Cl-BisGMA exhibited improved properties compared with the control samples, e.g., biocompatibility and lower viscosity, indicating that Cl-BisGMA can be considered as a potential monomer for application in dental resin composites.  相似文献   

18.

Objective

Streptococcus gordonii is a pioneer colonizer of the enamel salivary pellicle that forms biofilm on the tooth surfaces. Recent reports show the surface protein analogue peptide {400 (T) of SspB 390-402 is substituted to K forming SspB (390-T400K-402)} from S. gordonii interacts strongly with salivary receptors to cariogenic bacteria, Streptococcus mutans. To characterize the analogue peptide biological activities, we investigated its binding and inhibiting effects, and the role of its amino acid moities.

Methods

We measured binding activity of analogue peptides to salivary components using the BIAcore assay; assayed inhibition activities of peptides for bacterial binding and growth on saliva-coated hydroxyapatite beads (s-HA); and describe the peptides interfering with biofilm formation of S. mutans on polystyrene surfaces.

Results

The SspB (390-T400K-402 and -401) peptides significantly bound with salivary components and inhibited the binding of S. mutans and S. gordonii to s-HA without bactericidal activity; but did not inhibit binding of Streptococcus mitis, a beneficial commensal. Further, the lack of D and E-L at position 390 and 401-402 in the peptide, and substituted peptide SspB (D390H- or D390K-T400K-402) did not bind to salivary components or inhibit binding of S. mutans. The SspB (390-T400K-402) peptide inhibited biofilm formation on salivary components-coated polystyrene surfaces in absence of conditioned planktonic cells.

Conclusions

We found constructing the peptide to include positions 390(D), 400(K) and 401(E), two surface positive and negative connective charges, and at least 12 amino acids are required to bind salivary components and inhibit the binding of S. mutans and S. gordonii.  相似文献   

19.
Since bacteria remain in the dentin following caries removal, restorative materials with antibacterial properties are desirable to help maintaining the residual microorganisms inactive. The adhesive system Clearfil Protect Bond (PB) contains the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) in its primer, which has shown antimicrobial activity. However, its bactericidal effect against biofilm on the dentin has been little investigated.

Objective

The aim of this study was to analyze by confocal laser scanning microscopy (CLSM) and viable bacteria counting (CFU) the MDPB bactericidal effect against S. mutans biofilm on the dentin surface.

Material and Methods

Bovine dentin surfaces were obtained and subjected to S. mutans biofilm formation in BHI broth supplemented with 1% (w/v) sucrose for 18 h. Samples were divided into three groups, according to the primer application (n=3): Clearfil Protect Bond (PB), Clearfil SE Bond, which does not contain MDPB, (SE) and saline (control group). After the biofilm formation, Live/Dead stain was applied directly to the surface of each sample. Next, 10 µL of each primer were applied on the samples during 590 s for the real-time CLSM analysis. The experiment was conducted in triplicate. The primers and saline were also applied on the other dentin samples during 20, 90, 300 and 590 s (n=9 for each group and period evaluated) and the CFU were assessed by colonies counting.

Results

The results of the CLSM showed that with the SE application, although non-viable bacteria were detected at 20 s, there was no increase in their count during 590 s. In contrast, after the PB application there was a gradual increase of non-viable bacteria over 590 s.

Conclusions

The quantitative analysis demonstrated a significant decrease of S. mutans CFU at 90 s PB exposure and only after 300 s of SE application. Protect Bond showed an earlier antibacterial effect than SE Bond.  相似文献   

20.

Objectives

Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibit bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time.

Methods

MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentine shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts.

Results

Adding 7.5% MPC into primer and adhesive did not decrease the dentine bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control.

Conclusions

A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentine bond strength.

Clinical significance

The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号