首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As integration of nanoparticles (NPs) into products becomes more common, the need to address the paucity of chronic hazard information for aquatic environments required to determine risk potential increases. This study generated acute and chronic toxicity reference values for Ceriodaphnia dubia exposed to 20 and 100?nm silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) to generate and evaluate potential differences in acute-to-chronic ratios (ACR) using two different feeding methods. A modified feeding procedure was employed alongside the standard procedures to investigate the influence of food on organism exposure. An 8-h period before food was added allowed direct organism exposure to NP dispersions (and associated ions) without food-to-NP interactions. The AgNPs [chronic lethal median concentrations (LC50) between 18.7 and 31.9?µg/L] were substantially more toxic than AuNPs (LC50?=?21 507 to >26 384?µg/L). The modified chronic testing method resulted in greater sensitivity in AgNPs exposures. However, the modified feeding ration had less of an effect in exposures to the larger (100?nm) AgNPs compared to smaller particles (20?nm). The ACRs for AgNPs using the standard feeding ration were 1.6 and 3.5 for 20?nm and 100?nm, respectively. The ACRs for AgNPs using the modified feeding ration were 3.4 and 7.6 for 20?nm and 100?nm NPs, respectively. This supports that the addition of the standard feeding ration decreases C. dubia chronic sensitivity to AgNPs, although it must also be recognized organisms may be sensitized due to less access to food. The ACRs for 20?nm and 100?nm AuNPs (standard ration only) were 4.0 and 3.0, respectively. It is important to also consider that dissolved Ag+ ions are more toxic than AgNPs, based on both acute toxicity values in the cited literature and chronic toxicity thresholds generated in this study that support existing thresholds that Ag+ are likely protective of AgNPs effects.  相似文献   

2.
《Nanotoxicology》2013,7(2):91-97
This research evaluated the toxicity of TiO2 nanoparticles to freshwater aquatic organisms and the effects of organic and inorganic material on TiO2 toxicity. The fathead minnow was much less acutely sensitive to TiO2 (LC50 500 mg/l and higher) than Ceriodaphnia dubia and Daphnia pulex (mean LC50 values 7.6 and 9.2 mg/l, respectively). Total organic carbon levels of 1.5 mg/l decreased TiO2 acute toxicity to C. dubia (LC50 > 100 mg/l), but kaolinite clay decreased TiO2 toxicity to a lesser extent. In chronic toxicity tests, the green algae Pseudokirchneriella subcapitata was more sensitive to TiO2 (IC25 1–2 mg/l) than C. dubia (IC25 9.4–26.4 mg/l) and the fathead minnow (IC25 values over 340 mg/l). Study results indicate that the specific organisms exposed and the effects of water quality parameters on TiO2 toxicity should be considered in hazard evaluations of this nanoparticle.  相似文献   

3.
The acute and chronic toxic effects of LAS on the cladocerans Daphnia similis, Ceriodaphnia dubia and Ceriodaphnia silvestrii were tested. Both types of toxicity bioassays and the methods of culture and stock maintenance of the test organisms conformed to the recommendations of ABNT (Brazilian Society of Technical Standards), which closely follow the standard methods of USEPA. The results obtained for EC50 (48 h) were: 14.17 mg L−1 for D. similis, 11.84 mg L−1 for C. dubia and 13.52 mg L−1 for C. silvestrii. In the chronic toxicity tests performed on C. dubia and C. silvestrii, there was a significant decrease in the fecundity of the exposed animals; the value of NOEC for C. dubia and C. silvestrii were 1.00 mg L−1 and 2.50 mg L−1, respectively. Cladoceran bioassays provided evidence that LAS concentration as low as 1.00 mg L−1 can damage invertebrate animal life in freshwaters, concentrations that can be found in many eutrophic rivers and reservoirs.  相似文献   

4.
Toxicity tests on effluents from industrial production facilities, municipal and industrial wastewater treatment plants, and stormwater runoff were conducted with the freshwater invertebrate, Ceriodaphnia dubia, and the marine luminescent bacterium, Vibrio fischeri in the MicrotoxR test system (Microtox is a registered trademark of AZUR Environmental, Carlsbad, CA.). Percent mortalities of C. dubia in whole effluent, generated in 24- and 48-h exposure periods during the conductance of static-renewal acute and chronic tests were compared with percent reductions in light output by V. fischeri after 15-min exposure periods in the Microtox Inhibition test. A total of 16 effluent and stormwater samples from seven sources were used in tests conducted over a 3-month period. Results of the Microtox Inhibition tests correctly predicted the results of C. dubia tests for all eight nontoxic samples after both 24- and 48-h exposure periods. Of three samples that were toxic to C. dubia within 24 h, the Microtox test also detected toxicity in two of those samples. Results from tests on the remaining five samples showed that while the Microtox Inhibition test indicated the presence of toxic components after 15 min exposure, C. dubia required exposure to potentially toxic samples for 48 h before producing a toxic response. ©1999 John Wiley & Sons, Inc. Environ Toxicol 14: 375–382, 1999  相似文献   

5.
I tested the hypothesis that if sodium sulfate alters the bioenergetics of Ceriodaphnia dubia, concentrations that cause reduced fecundity in the short (7-day) and long (5 generations) term should also cause changes in feeding rate and/or metabolism, measured as oxygen consumption. In addition, to test the hypothesis that an altered bioenergetic level caused by sodium sulfate exposure will affect the response of that organism to another toxicant, I measured the acute toxicity of phenol to C. dubia in the presence and absence of both food and sodium sulfate. Sodium sulfate reduced the filter-feeding rate of C. dubia, which was associated with significantly reduced oxygen consumption. This decreased energy level appeared to result in a consistent but decreased level of fecundity over a number of generations and the reproductive impairment was dose-dependent. These effects occurred at concentrations much lower than those at which acute (mortality) effects have been observed, a finding that may have regulatory implications. In addition, whereas phenol toxicity to C. dubia was exacerbated by the addition of food, increased phenol toxicity, likely induced by an increase in filtering or metabolic rate due to food addition, was negated when sodium sulfate was added to the test medium.  相似文献   

6.
The study objectives were to shed light on the types of freshwater organism that are sensitive to triphenyltin acetate (TPT) and to compare the laboratory and microcosm sensitivities of the invertebrate community. The responses of a wide array of freshwater taxa (including invertebrates, phytoplankton and macrophytes) from acute laboratory Single Species Tests (SST) were compared with the concentration–response relationships of aquatic populations in two types of freshwater microcosms. Representatives of several taxonomic groups of invertebrates, and several phytoplankton and vascular plant species proved to be sensitive to TPT, illustrating its diverse modes of toxic action. Statistically calculated ecological risk thresholds (HC5 values) based on 96 h laboratory EC50 values for invertebrates were 1.3 μg/l, while these values on the basis of microcosm-Species Sensitivity Distributions (SSD) for invertebrates in sampling weeks 2–8 after TPT treatment ranged from 0.2 to 0.6 μg/l based on nominal peak concentrations. Responses observed in the microcosms did not differ between system types and sampling dates, indicating that ecological threshold levels are not affected by different community structures including taxa sensitive to TPT. The laboratory-derived invertebrate SSD curve was less sensitive than the curves from the microcosms. Possible explanations for the more sensitive field response are delayed effects and/or additional chronic exposure via the food chain in the microcosms.  相似文献   

7.
Boric acid (BA) has been successfully used as reference substance in some standard test guidelines. Due to the fact that previously selected reference substances present a significant risk to human health and/or are banned for environmental reasons, BA is being discussed for broader adoption in OECD or ISO guidelines. To provide input on BA data and contribute to the discussion on its suitability as a reference substance, in the present study BA was tested with two standard soil organisms, Enchytraeus albidus and Folsomia candida, in terms of survival, reproduction and avoidance. Additionally, published data on other organisms was analysed to derive the most sensitive soil dwelling invertebrate (hazard concentration–HC5). Results showed that BA affected the tested organisms, being two times more toxic for collembolans (LC50 = 96; EC50 = 54 mg/kg) than for enchytraeids (LC50 = 325; EC50 = 104 mg/kg). No avoidance behaviour occurred despite the fact that BA affects earthworms. Actually, it is the recommended reference substance for the earthworm avoidance test. Clearly, the suitable performance of BA in one species should not be generalized to other species. Absolute toxicity is not an important criterion for the selection of a reference substance, but it has been proposed that effects should occur within a reasonable range, i.e. <1,000 mg/kg. We could confirm, compiling previous data that for most soil invertebrates, the EC50 is expected to be below 1,000 mg/kg. From these data it could be derived that the most sensitive soil dwelling invertebrate (HC5, 50%) is likely to be affected (EC10) at 28 (8–53) mg H3BO3/Kg, equivalent to 4.6 (1.4–8.7) mg boron/kg.  相似文献   

8.
While it has been well established that increasing chloride concentration in water reduces the toxicity of nitrite to freshwater species, little work has been done to investigate the effect of chloride on nitrate toxicity. We conducted acute and chronic nitrate (as sodium nitrate) toxicity tests with the cladoceran Ceriodaphnia dubia and the amphipod Hyalella azteca (chronic tests only) over a range of chloride concentrations spanning natural chloride levels found in surface waters representative of watersheds of the Great Lakes Region. Chronic nitrate toxicity test results with both crustaceans were variable, with H. azteca appearing to be one of the more sensitive invertebrate species tested and C. dubia being less sensitive. While the variability in results for H. azteca were to an extent related to chloride concentration in test water that was distinctly not the case for C. dubia. We concluded that the chloride dependent toxicity of nitrate is not universal among freshwater crustaceans. An additional sodium chloride chronic toxicity test with the US Lab strain of H. azteca in the present study suggested that when present as predominantly sodium chloride and with relatively low concentrations of other ions, there is a narrow range of chloride concentrations over which this strain is most fit, and within which toxicity test data are reliable.  相似文献   

9.
Chronic toxicity of chlordane, an organochlorine insecticide, was assessed on Ceriodaphnia dubia under standardized conditions of testing. Results were compared to Daphnia magna to determine the sensitivity of the two freshwater cladoceran species to this persistent organic pollutant (POP) and to explore the possibility of using the 7‐day C. dubia test as an alternative to the 21‐day D. magna test in chronic toxicity assessment of POPs. The NOEC‐7d value of chlordane on reproduction of C. dubia (2.9 μg/L) was much higher than the NOEC‐21d value of D. magna (0.18 μg/L), attesting that the 7‐day test on C. dubia was less sensitive than the 21‐day reproduction test on D. magna to chlordane. However, extending the period of exposure of C. dubia to chlordane from 7 to 14 days led to a NOEC‐14d value similar to the NOEC‐21d value in D. magna (0.18 μg/L). This study highlights the usefulness of prolonging the exposure time of the reproduction test in C. dubia from 7 to 14 days to increase the performances of the reproduction test on C. dubia for assessing chronic toxicity of POPs. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.  相似文献   

10.
Acute pass/fail, multi-concentration tests, and 3-brood chronic toxicity tests with Daphnia magna Straus (Cladocera, Crustacea) were used to characterise industrial and municipal effluents from various sources. The effluents that “passed” the pass/fail tests had 48-h EC50 values >100% and reproduction No Observed Effect Concentration (NOECs) ≥100%, except for one effluent that had a reproduction NOEC of 31.6%. The acute multi-concentration toxicity tests allowed a rapid classification of effluents from Very Toxic (48-h EC50<25%), to Non-Toxic (48-h EC50 >100%). The acute-to-chronic ratio (ACR: 48-h EC50 divided by the NOEC for reproduction) in the studied effluents ranged from 5 to about 100. From these results, we propose a step-wise protocol for assessing effluent toxicity. First, effluent is evaluated by means of simple and rapid pass/fail acute toxicity tests, to discriminate Non-Toxic from potentially Toxic effluents, thus facilitating the establishment of priority actions. Second, 48-h EC x is estimated to classify effluents on a toxicity scale from Non-Toxic to Very Toxic. Third, chronic multi-concentration tests are used to calculate reproduction NOECs. These parameters combined with data on effluent chemical composition, chemical and hydrological characteristics of receiving waters, and biological quality criteria can be jointly used for more rational regulatory practices and risk assessment of effluents.  相似文献   

11.
Acute toxicities of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were tested on four freshwater species and three plant species. PFOS was more toxic than PFOA for all species tested in this study. Similar time-response patterns of PFOS and PFOA toxicity were observed for each tested species. Values of the 48-h LC(50) of PFOS for all test species ranged from 27 to 233 mg/L and values of the 96-h LC(50) for three of the species ranged from 10 to 178 mg/L. Values of the 48-h LC(50) of PFOA for all test species ranged from 181 to 732 mg/L and values of the 96-h LC(50) for three of the species ranged from 337 to 672 mg/L. The most sensitive freshwater species to PFOS was green neon shrimp (Neocaridina denticulate) with a 96-h LC(50) of 10 mg/L. Of the aquatic organisms tested, the aquatic snail (Physa acuta) always has the highest resistance to PFOS or PFOA toxicity over each exposure period. Both PFOS and PFOA had no obvious adverse effect on seed germination for all three plant species. Five-day EC(50) of root elongation was more sensitive to LC(50) of seed germination in this study. Based on EC(10), EC(50), and NOECs, the 5-day root elongation sensitivity of test plants to both PFOS and PFOA was in the order of lettuce (Lactuca sativa) > pakchoi (Brassica rapa chinensis) > cucumber (Cucumis sativus). Based on the results of this study and other published literature, it is suggested that current PFOS and PFOA levels in freshwater may have no acute harmful ecological impact on the aquatic environment. However, more research on the long-term ecological effects of PFOS and PFOA on aquatic fauna are needed to provide important information to adequately assess ecological risk of PFOS and PFOA.  相似文献   

12.
Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC50 values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC50 value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC50 values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.  相似文献   

13.
The effects of the tetramic acid insecticide, spirotetramat and the agricultural adjuvant, Destiny, were evaluated on the Cladoceran, Ceriodaphnia dubia. These compounds were evaluated separately and as a mixture because they can be applied together for control of certain crop pests and therefore have the potential to enter surface water as a binary mixture. Acute mortality estimates (48 h) were developed followed by chronic exposure (8 days) studies where several population parameters were recorded. Acute LC50 and 95% CL for spirotetramat and Destiny were estimated to be 23.8 (14.5–35.4) and 26.71 (20.8–34.0) mg/l, respectively. Thus, spirotetramat and Destiny were equitoxic to C. dubia at LC50. For the chronic population study, C. dubia populations were exposed to a range of concentrations for spirotetramat and Destiny singly and as a mixture. Each chemical alone reduced the number of founding individuals, offspring/female, final population size, and population growth rate in a concentration-dependent manner. However, exposure to the mixture caused significantly greater reductions in these parameters than either compound alone. These results indicate that agricultural adjuvants and pesticides may cause more damage to aquatic organisms as a mixture than either product alone. Therefore, future evaluations of pesticide effects should consider the effects of adjuvants as a mixture with pesticides when these products are recommended to be applied together for pest control.  相似文献   

14.
The risk assessment of pesticides for freshwater ecosystems in the Amazon has relied on the use of toxicity data and water quality criteria derived for temperate regions due to a lack of ecotoxicological studies performed with indigenous species. This leaves an unknown margin of uncertainty for the protection of Amazonian ecosystems, as differences in environmental conditions and species sensitivity are not taken into account. To address this issue, the acute toxic effects of malathion (an organophosphorus insecticide) and carbendazim (a benzimidazole fungicide) were assessed on five fish and five freshwater invertebrates endemic to the Amazonian region. Subsequently, the intrinsic sensitivity of Amazonian and temperate freshwater species was compared using the species sensitivity distribution (SSD) concept. Amazonian species sensitivity to malathion was found to be similar to that of their temperate counterparts, with LC50 values ranging between 111 and 1507 μg/l for fish species and 2.1–426 μg/l for arthropod species. However, Amazonian fish appeared to be slightly less sensitive for carbendazim than temperate fish with LC50 values ranging between 1648 and 4238 μg/l, and Amazonian invertebrates were found to be significantly more resistant than their temperate counterparts, with LC50 values higher than 16000 μg/l. The results of this study suggest that for these compounds, the use of water quality criteria derived with laboratory toxicity data for temperate species will result in a sufficient protection level for Amazonian freshwater organisms. Recommendations for further research include the validation of threshold concentrations derived with temperate standard test species and with the SSD model with semi-field experiments considering larger assemblages of indigenous species under local environmental conditions.  相似文献   

15.
The biology of ostracod crustaceans suggests that this group could be a useful model for sediment toxicity testing. We examined life history characteristics of the freshwater ostracod Cyprinotus incongruens in the laboratory (25°C), then used length after 10 days as a response variable in a sediment toxicity test. Life history results indicated that both fecundity (0–64 total eggs per female), and egg development time (1->157 days), were highly variable. In contrast, juvenile development time showed less variation (7–16 days), and thus body length after 10 days was chosen as a sublethal bioassay character. A bioassay experiment using sediments isolated from mine-impacted cobble streams indicated that C. incongruens had a higher sensitivity to variation in sediment quality than the cladoceran Ceriodaphnia dubia. Surprisingly, the results indicated no correspondence between concentration of metals and toxicity in either C. incongruens or C. dubia. Overall our results indicate that ostracods are a good candidate taxon for sublethal toxicity tests of contaminated sediments.  相似文献   

16.
Abamectin effects on rainbow trout (Oncorhynchus mykiss)   总被引:1,自引:0,他引:1  
The effect of abamectin (ABM) on rainbow trout (Oncorhynchus mykiss) was studied. The acute toxicity of ABM on rainbow trout was established, following the target 58-h water bath exposure of ABM concentrations from 0.6 to 4.5 μg/l, on the basis of which LD75 (4.0 μg/l) was calculated. The histological changes in organs showed a direct toxicity of ABM for rainbow trout since degenerative changes in brain and kidney and—to a minor extent—in liver were established. The values of the ABM residues in fish muscle tissue with skin were proportional to the exposed concentrations of ABM.  相似文献   

17.
This study aimed to investigate the compound effect of environmentally relevant 4-nonylphenol (NP) concentrations and natural stressors—namely fish predation and food availability—on Daphnia magna, which were exposed to four NP concentrations (0, 1, 5 and 10 μg l−1) under optimum or low food concentrations (1.00 and 0.075 mg C l−1, respectively) in water (un)conditioned by a fish predator (Alburnus alburnus). A(n) “environmentally relevant” and “no observable effect” concentration (NOEC) of NP (10 μg l−1) resulted in a significant reduction (P < 0.01**) in daphnids’ survival when it was encountered concurrently with conditions of low food availability and presence of fish predation. The significance of the results lies in the observation that not only environmentally relevant concentrations of NP but also NP concentrations reported to have no observable effect on daphnids may in reality have unexpected critical effects on D. magna survival under conditions more parallel to natural ecosystems. The deterioration of the life-history traits—namely, NP-induced delay in the age at first reproduction (P < 0.001***) and fish kairomone-induced reduction in the size at first reproduction (P < 0.001***)—of the D. magna individuals is also crucial, as such alterations could significantly influence future generations and result in ultimate adverse effects at the community level because large-bodied daphnids are key-stone species in freshwater ecosystems. The results of this study demonstrate the importance of taking into account environmentally realistic conditions while investigating the effects of NOEC levels of toxicants on non-target aquatic species.  相似文献   

18.
Global warming is already causing salinization of freshwater ecosystems located in semi-arid regions, including Turkey. Daphnids, which are important grazers on phytoplankton and a major food source for fish and invertebrates, are sensitive to not only changes in salinity levels, but also presence of predators. In this study, the interactive effect of salinity toxicity (abiotic factor) with predation pressure mimicked by the fish-exuded kairomone (biotic factor) and the effect of salt acclimation on daphnids were investigated. Impacts of these stressors on daphnid survival, life history and molecular profile were observed. The presence of the kairomone antagonistically alters the effect of salinity, as observed from the 24- and 48-h LC50 values and survival results. Molecular findings provided solid evidence to this antagonism at even lower salt concentrations, for which antagonism was not evident with organismal data. Fish predation counterbalances the negative effect of salinity in terms of reserve energy density. Therefore, it is important to investigate multiple stressor effects in ecotoxicological bioassays complemented with molecular techniques. The single effect of increasing salinity resulted in increased mortality, decreased fecundity, and slower somatic growth in Daphnia, despite their acclimation to salinity. This insignificance of acclimation indicates that Daphnia do not have any physiological mechanisms to buffer the adverse effects of salinity, making it a very crucial factor. Salinity-induced reduction in population growth rate of freshwater keystone species Daphnia—despite acclimation—indicates that global warming-induced salinity may cascade through the food web and lead to dramatic environmental consequences in the structure of lake ecosystems.  相似文献   

19.
Siriella armata (Crustacea, Mysidacea) is a component of the coastal zooplankton that lives in swarms in the shallow waters of the European neritic zone, from the North Sea to the Mediterranean. Juveniles of this species were examined as standard test organisms for use in marine acute toxicity tests. The effects of reference toxicants, three trace metals (Copper, Cadmium and Zinc), and one surfactant, sodium dodecyl sulfate (SDS) were studied on S. armata neonates (<24 h) reared in the laboratory. Acute toxicity tests were carried out with filtered sea water on individual chambers (microplate wells for metals or glass vials for SDS) incubated in an isothermal room at 20°C, with 16 h light: 8 h dark photoperiod for 96 h. Each neonate was fed daily with 10–15 nauplii of Artemia salina. Acute (96 h) LC50 values, in increasing order, were 46.9 μg/L for Cu, 99.3 μg/L for Cd, 466.7 μg/L for Zn and 8.5 mg/L for SDS. The LC10, NOEC and LOEC values were also calculated. Results were compared with Daphnia magna, a freshwater cladoceran widely used as a standard ecotoxicological test organism. Acute (48 h) LC50 values were 56.2 μg/L for Cu, 571.5 μg/L for Cd, 1.3 mg/L for Zn and 27.3 mg/L for SDS. For all the reference toxicants studied, the marine mysid Siriella armata showed higher sensitivity than the freshwater model organism Daphnia magna, validating the use of Siriella mysids as model organisms in marine acute toxicity tests.  相似文献   

20.
Early life stages of fishes have been shown to be especially susceptible to the toxic effects of heavy metal pollution. In this study, fathead minnow (Pimephales promelas) embryos were exposed in the laboratory to a graded series of aqueous methyl mercury concentrations under continuous-flow conditions. A number of toxicological endpoints were examined including; acute toxicity, bioaccumulation, protein production, impact on mitosis, gross and histopathology. Acute toxicity, reported as LC50 values of methyl mercury, ranged from 221 μg/l (95% C.I. 246–196 μg/l) for 24-h tests to 39 μg/l (95% C.I. 54–24 μg/l) for 96-h exposures. Fathead minnow embryos were shown to rapidly take up mercury from the surrounding water. Mercury levels in embryos reached levels of 2.80 μg/g wet weight after 96 h exposure to 40 μg/l methyl mercury. An initial elevation of total protein in embryo was observed in embryos exposed to 25 μg/l methyl mercury during the first 12 h of development. At later stages, significantly lower levels of protein/μg embryo were observed. Methyl mercury had no effect on mitotic stages (p=0.05) in early, cleaving blastula-stage embryos. Live embryos and serial sections were utilized to characterize changes in embryo morphology and histopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号