首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
N-[11C]-methyl-hydroxyfasudil was synthesized as a new potential radiotracer for rho-kinases (ROCKs) via a two-step one-pot radiosynthesis. The first step was the methylation of the precursor N-Boc-hydroxyfasudil-sodium salt/benzo-15-crown-5 complex with [11C]methyl iodide. The second step involved deprotection of the tert-butoxycarbonyl protecting group. The radiochemical and chemical purities of N-[11C]-methyl-hydroxyfasudil were >95% and specific radioactivity was 1565–2565 mCi/μmol at the end of the synthesis.  相似文献   

2.
Carbon-11-labeled piperidine ring of N-[ω-(6-methoxynaphthalen-1-yl)alkyl] derivatives were first designed and synthesized as new selective PET σ1 receptor probes. The target tracers were prepared by O-[11C]methylation of their corresponding phenolic hydroxyl precursors using [11C]CH3OTf under basic conditions and isolated by a simplified SPE method in 40–50% radiochemical yields based on [11C]CO2 and decay corrected to EOB. The overall synthesis time from EOB was 15–20 min, the radiochemical purity was >99%, and the specific activity at EOS was 111–185 GBq/μmol.  相似文献   

3.
Cyclooxygenase (prostaglandin endoperoxide synthase or COX) enzyme represents a particularly attractive target in inflammation processes for the development of both therapeutic agents and imaging agents. This study was designed to develop new radioligands for imaging of inflammation using the biomedical imaging technique positron emission tomography (PET). Carbon-11 labeled celecoxib derivatives, [11C]methyl 2-(4-(5-p-tolyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenylsulfonamidooxy)acetate ([11C]6e), [11C]methyl 2-methyl-2-(4-(5-p-tolyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenylsulfonamidooxy)propanoate ([11C]6f), [11C]methyl 2-(4-(5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenylsulfonamidooxy)acetate ([11C]6g), and [11C]methyl 2-methyl-2-(4-(5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)phenylsulfonamidooxy)propanoate ([11C]6h), were prepared by O-[11C]methylation of their corresponding precursors using [11C]CH3OTf under basic condition and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 15–20 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 111–185 GBq/μmol.  相似文献   

4.
IntroductionThe enzyme β-secretase 1 (BACE-1) is associated with the catalytic cleavage of amyloid precursor protein (APP) which leads to the production of amyloid-β, an amyloidogenic peptide that forms insoluble fibrils and is linked to neurodegeneration and Alzheimer's disease (AD). A PET-radioligand for the quantification of BACE-1 would be useful for the understanding of AD. In this report, we describe the synthesis and carbon-11 radiolabeling of a potent hydroxyethylamine BACE-1 enzyme inhibitor (BSI-IV) and its evaluation in vitro and in vivo.Methods11[C]-N1-((2S,3R)-4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethyl-sulfonamido)-N3-((R)-1-phenylethyl)isophthalamide, a β-secretase inhibitor, denoted here as [11C]BSI-IV was synthesized through a palladium-mediated aminocarbonylation with an aryl halide precursor (I or Br) and [11C]CO. The effect of different palladium/ligand-complexes on radiochemical yield in the carbonylative reaction was investigated. The binding of the labeled compound to BACE-1 enzyme was studied in vitro by frozen section autoradiography from brains of healthy rats. Dynamic small animal PET-CT studies and ex vivo biodistribution were performed in male rats.ResultsThe halide precursors were synthesized in six steps starting from methyl-3-nitrobenzoate with an overall yield of 21–26%. [11C]BSI-IV was obtained in 29 ± 12% decay corrected radiochemical yield (n = 12) with a specific activity of 790 ± 155 GBq/μmol at the end of synthesis with a radiochemical purity of > 99%. The preclinical studies showed that [11C]BSI-IV has a rapid metabolism in rat with excretion to the small intestines.Conclusion11[C]BSI-IV was obtained in sufficient amount and purity to enable preclinical investigation. The preclinical studies showed low specific binding in vitro and fast clearance in vivo and a low uptake in the brain. These findings suggests that [11C]BSI-IV has limited use as a PET-ligand for the study of BACE-1 or AD.  相似文献   

5.
The radiosynthesis of [N-methyl-11C]Org 34850 as a potential brain glucocorticoid receptor (GR)-binding radiotracer is described. The radiosynthesis was accomplished via N-methylation of the corresponding desmethyl precursor with [11C]methyl triflate in a remotely controlled synthesis module to give the desired compound in a radiochemical yield of 23±5% (decay-corrected, based upon [11C]CO2) at a specific activity of 47±12 GBq/μmol (n=15) at the end-of-synthesis (EOS). The radiochemical purity after semi-preparative HPLC purification exceeded 95%. The total synthesis time was 35–40 min after end-of-bombardment (EOB).The radiotracer is rapidly metabolized in rat plasma leading to the formation of two more hydrophilic metabolites as the major metabolites. Radiopharmacological evaluation involving biodistribution and small animal PET imaging in normal Wistar rats showed that the compound [N-methyl-11C]Org 34850 is not able to sufficiently penetrate the blood–brain barrier. Therefore, compound [N-methyl-11C]Org 34850 seems not to be a suitable PET radiotracer for imaging rat brain GRs. However, involvement of Pgp or species differences requires further clarification to establish whether the radiotracer [N-methyl-11C]Org 34850 may still represent a suitable candidate for imaging GRs in humans.  相似文献   

6.
IntroductionSepantronium bromide (YM155) is an antitumor drug in development and is a first-in-class chemical entity, which is a survivin suppressant. We developed a radiosynthesis of [11C]YM155 to non-invasively evaluate its tissue and tumor distribution in mice bearing human prostate tumor xenografts.MethodsMethods utilizing [11C]acetyl chloride and [11C]methyl triflate, both accessible with automated radiosynthesis boxes, were evaluated. The O-methylation of ethanolamine-alkolate with [11C]methyl triflate proved to be the key development toward a rapid and efficient process. The whole-body distribution of [11C]YM155 in PC-3 xenografted mice was examined using a planar positron imaging system (PPIS).ResultsSufficient quantities of radiopharmaceutical grade [11C]YM155 were produced for our PET imaging and distribution studies. The decay corrected (EOB) radiochemical yield was 16–22%, within a synthesis time of 47 min. The radiochemical purity was higher than 99%, and the specific activity was 29–60 GBq/μmol (EOS). High uptake levels of radioactivity (%ID/g, mean ± SE) were observed in tumor (0.0613 ± 0.0056), kidneys (0.0513 ± 0.0092), liver (0.0368 ± 0.0043) and cecum (0.0623 ± 0.0070). The highest tumor uptake was observed at an early time point (from 10 min after) following injection. Tumor-to-blood and tumor-to-muscle uptake ratios of [11C]YM155, at 40 min after injection, were 26.5 (± 2.9) and 25.6 (± 3.6), respectively.ConclusionA rapid method for producing a radiopharmaceutical grade [11C]YM155 was developed. An in vivo distribution study using PPIS showed high uptake of [11C]YM155 in tumor tissue. Our methodology may facilitate the evaluation and prediction of response to YM155, when given as an anti-cancer agent.  相似文献   

7.
IntroductionAs a first trial for in vivo imaging of β-secretase (BACE1) in Alzheimer's disease brain, we applied a novel non-peptidergic small molecule which has high affinity to the enzyme, naphthalene-1-carboxylic acid (3′-chloro-4′-fluoro-4-piperazin-1-yl-biphenyl-3-yl)amide (NCFB) into positron emission tomography (PET) probe. In the current study, N-11C-methylated compound of NCFB, [11C]Me-NCFB was synthesized and evaluated for the visualization of BACE1 in brain.MethodsBACE1 inhibitory constant was measured by FRET assay. [11C]Me-NCFB was synthesized from NCFB with [11C]methyl triflate. To evaluate properties of [11C]Me-NCFB, log P value, stability in mouse plasma and brain uptake index were measured. The biodistribution in 6-week-old ddY mice was also studied.ResultsBACE1 inhibitory constant showed an affinity of Me-NCFB to the enzyme (IC50 = 2.3 ± 0.80 μM). [11C]Me-NCFB was synthesized in a 3.0% ± 0.55% decay-corrected radiochemical yield. [11C]Me-NCFB showed high lipophilicity, high stability in mouse plasma and blood–brain barrier (BBB) permeability. Injected to 6-week-old ddY mice, [11C]Me-NCFB penetrated BBB and was retained in the brain (0.79% ± 0.22% ID/g at 2 min and 0.75% ± 0.08% ID/g at 60 min after injection, respectively), moreover, rapid blood clearance was observed.Conclusion[11C]Me-NCFB could have a potential as a PET probe for the imaging of BACE1 in the brain.  相似文献   

8.
IntroductionN-(2-tert-butyl-1-((4,4-difluorocyclohexyl)methyl)-1 H-benzo[d]imidazol-5-yl)ethanesulfonamide (AZD1940) is a candidate drug for treatment of neuropathic pain. As part of the preclinical evaluation of AZD1940, a microdosing study with positron emission tomography (PET) was conducted to assess brain exposure.MethodsAZD1940 was radiolabeled with carbon-11 in the benzimidazole moiety. The radioactive precursor, lithium [11C]pivalate was obtained via 11C-carboxylation of tert-butyl lithium. The target compound, [11C]AZD1940, was in turn obtained by the microwave assisted reaction between lithium [11C]pivalate and the o-phenylene diamine analog of AZD1940 (N-(3-amino-4-((4,4-difluorocyclohexyl)methylamino)phenyl)ethanesulfonamide) in neat phosphorous oxychloride. A brain PET measurement was performed in cynomolgus monkey.ResultsThe overall radiochemical yield of final formulated radiochemically pure (> 99%) [11C]AZD1940 was 0.4% (uncorrected for decay) and the specific radioactivity was 13 GBq/μmol at time of administration (58 min after end of bombardment). After intravenous injection to cynomolgus monkey, the maximum concentration of radioactivity detected in the brain region of interest was 0.7% of the total injected radioactivity. The regional distribution of radioactivity within brain was homogenous.ConclusionsAZD1940 was radiolabelled with carbon-11 and its brain exposure, assessed using PET, was relatively low in comparison to peripheral organ exposure.  相似文献   

9.
Introductionα7-nicotinic acetylcholine receptor (α7-nAChR) is one of the major neuronal nAChR subtypes. α7-nAChR is involved in variety of neuronal processes and disorders including schizophrenia and Alzheimer's disease. A number of α7-nAChR PET radioligands have been developed, but a quality radiotracer remains to be discovered.MethodsHigh binding affinity α7-nAChR ligands A-833834 and A-752274 were radiolabeled with 11C. Baseline and blockade biodistribution studies in the mouse brain of [11C]A-833834 (5-(6-(5-[11C]methylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)pyridazin-3-yl)-1H-indole) and [11C]A-752274 (2-(6-[11C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)-7-(6-methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)-9H-fluoren-9-one) were performed. [11C]A-752274 was evaluated in a baseline baboon PET study.Results[11C]A-833834 and [11C]A-752274 were synthesized by radiomethylation of corresponding des-methyl precursors. The radioligands were prepared with radiochemical yield of 12%–32%, high specific radioactivity (330–403 GBq/μmol) and radiochemical purity > 95%. Dissection studies with [11C]A-833834 demonstrated low specific α7-nAChR binding in the mouse brain. [11C]A-752274 specifically (~ 50%) labeled α7-nAChR in the mouse thalamus. However, [11CA-752274 exhibited low brain uptake in baboon (%SUV < 100).ConclusionTwo novel α7-nAChR ligands radioligands were synthesized and studied in animals. Specific binding of [11C]A-833834 in the mouse brain is low due to the insufficient binding affinity of the radioligand. The very high binding affinity [11C]A-752274 exhibited good specific binding in the α7-nAChR-rich mouse brain regions. The low uptake of [11C]A-752274 in the baboon brain is due to its high hydrophilicity, rapid metabolism or other properties. Future development of α7-nAChR PET radioligands will be based on compounds with high binding affinities and good blood–brain barrier permeability.  相似文献   

10.
Carbon-11-labeled tariquidar derivatives were first designed and synthesized as new PET agents for imaging of breast cancer resistance protein. The target tracers were prepared by O-[11C]methylation of their corresponding acid precursors using [11C]CH3OTf under basic conditions and isolated by a simplified solid-phase extraction (SPE) method in 50–60% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 15–20 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 111–185 GBq/μmol.  相似文献   

11.
Carbon-11-labeled tricyclic necroptosis inhibitors were first designed and synthesized as new potential PET agents for imaging of tumor necrosis factor α (TNF-α). The target tracers were prepared by O-[11C]methylation of their corresponding precursors using [11C]CH3OTf under basic conditions and isolated by a simplified SPE method in 50–60% radiochemical yields based on [11C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 15–20 min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 111–185 GBq/μmol.  相似文献   

12.
An improved synthesis of N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, 2) as a potent serotonin transporter (SERT) imaging agent is described. Molecular orbital (MO) calculation predicts that N,N-dimethyl-2-(2-nitro-4-trimethylammoniumtrifluoromethanesulfonylphenylthio)benzamide (8) is probably a better precursor than N,N-dimethyl-2-(2,4-dinitrophenylthio)benzylamine (1) for preparing 2. Radioligand 2 was synthesized by the reaction of either precursor 1 or precursor 8 with K[18F]/K2.2.2 at 120 °C followed by reduction with BH3 at 80 °C. The radiochemical yield (EOB) of 2 synthesized from precursor 1 and 8 was 5.7±2.4% (n=6) and 14.8±4.0% (n=5), respectively, in a synthesis time of 120 min from EOB. The specific activity of 2 was 3 Ci/μmol or 111 GBq/μmol (EOB). Thus, this new synthetic method has significantly improved the radiochemical yield of 4-[18F]-ADAM and makes this radioligand more accessible to PET Centers without a cyclotron.  相似文献   

13.
This study reports the synthesis and characterization of N-(3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl-4-[18F]fluorobenzamide ([18F]MPP3F). The total reaction time for [18F]MPP3F, including final high-performance liquid chromatography purification, was about 3 h. Typical decay-corrected radiochemical yield was 18.4±3.1%. The radiochemical purity was >98%. Biodistribution in mice showed that [18F]MPP3F is a potential brain imaging agent for positron emission tomography. The brain uptake of [18F]MPP3F was 6.59±0.77% Injected Dose/g at 2 min post-injection time. A brain-to-blood ratio of 3.67 was reached at 15 min after injection.  相似文献   

14.
IntroductionRhodamine-123 is a known substrate for the efflux transporter, P-glycoprotein (P-gp). We wished to assess whether rhodamine-123 might serve as a useful substrate for developing probes for imaging efflux transporters in vivo with positron emission tomography (PET). For this purpose, we aimed to label rhodamine-123 with carbon-11 (t1/2 = 20.4 min) and to study its biodistribution in rodents.Methods[11 C]Rhodamine-123 was prepared by treating rhodamine-110 (desmethyl-rhodamine-123) with [11 C]methyl iodide. The biodistribution of this radiotracer was studied with PET in wild-type mice and rats, in efflux transporter knockout mice, in wild-type rats pretreated with DCPQ (an inhibitor of P-gp) or with cimetidine (an inhibitor of organic cation transporters; OCT), and in P-gp knockout mice pretreated with cimetidine. Unchanged radiotracer in forebrain, plasma and peripheral tissues was also measured ex vivo at 30 min after radiotracer administration to wild-type and efflux transporter knockout rodents.Results[11 C]Rhodamine-123 was obtained in 4.4% decay-corrected radiochemical yield from cyclotron-produced [11 C]carbon dioxide. After intravenous administration of [11 C]rhodamine-123 to wild-type rodents, PET and ex vivo measurements showed radioactivity uptake was very low in brain, but relatively high in some other organs such as heart, and especially liver and kidney. Inhibition of P-gp increased uptake in brain, heart, kidney and liver, but only by up to twofold. Secretion of radioactivity from kidney was markedly reduced by OCT knockout or pretreatment with cimetidine.Conclusions[11 C]Rhodamine-123 was unpromising as a PET probe for P-gp function and appears to be a strong substrate of OCT in kidney. Cimetidine appears effective for blocking OCT in kidney in vivo.  相似文献   

15.
IntroductionPreclinical studies and first positron emission tomography (PET) imaging studies were performed using N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-N-methylbenzamide ([11C]ITMM) to map metabotropic glutamate receptor type 1 (mGluR1) in the human brain.Methods[11C]ITMM was synthesized by O-methylation of the desmethyl precursor with [11C]methyl triflate in the presence of NaOH at room temperature. In vitro selectivity and brain distributions of [11C]ITMM in mice were characterized. Radiation absorbed-dose by [11C]ITMM in humans was calculated from mouse distribution data. Acute toxicity of ITMM at 4.72 mg/kg body weight (> 74,000-fold clinical equivalent dose of [11C]ITMM) was evaluated. Mutagenicity of ITMM was studied by the Ames test. Clinical PET imaging of mGluR1 with [11C] ITMM was performed in a healthy volunteer.ResultsITMM had low activity for a 28-standard receptor binding profile. Regional brain uptake of [11C]ITMM in mice was heterogeneous and consistent with known mGluR1 distributions. The radiation absorbed-dose by [11C]ITMM in humans was sufficiently low for clinical use, and no acute toxicity or mutagenicity of ITMM occurred. A 90-min dynamic PET scan with [11C]ITMM in a healthy volunteer showed a gradual increase of radioactivity in the cerebellum. Total distribution volume of [11C]ITMM was highest in the cerebellum, followed by thalamus, cerebral cortex, and striatum; regional differences in brain radioactivity corresponded to the mGluR1 distribution in the brain. Peripherally, [11C]ITMM was stable in humans: 60% of the plasma radioactivity remained in the unchanged form for 60 min.Conclusions[11C] ITMM is a suitable radioligand for imaging mGluR1 in the human brain providing acceptable dosimetry and pharmacological safety at the dose required for PET.  相似文献   

16.
The CGS 27023A derivative (R)-2-(N-((6-fluoropyridin-3-yl)methyl)-4-methoxyphenyl-sulphonamido)-N-hydroxy-3-methylbutanamide 1a was identified as a very potent matrix metalloproteinase inhibitor. Here, we describe a one-step radiosynthesis of the target compound [18F]1a. The syntheses of [18F]1a resulted in a radiochemical yield of 12.1±5.9% (decay-corrected), a radiochemical purity of 98.8±0.6%, and a specific activity of 39±27 GBq/μmol at the end of synthesis within 160±18 min from the end of radionuclide production (n=5). Initial small-animal PET studies in wild-type mice (C57/BL6) showed no unfavourable tissue accumulation of [18F]1a.  相似文献   

17.
A simple modification of the GE Tracerlab FX C Pro system which enabled performance of both solvent capture (loop method) and conventional solution phase [11C]methylation in the same module is described. By the quick setup and automated method, [11C]carfentanil and [11C]raclopride could be prepared in rapid succession without opening the hot cell. The radiochemical yields were over 40% and 30% (decay-corrected and based on [11C]methyl iodide) for [11C]carfentanil and [11C]raclopride, respectively. The radiochemical purities were greater than 95% and specific activities over 5 Ci/mmol for both tracers. The modification is extremely easy and can be utilized for multiple syntheses of other 11C-labeled radiopharmaceuticals in a fast and reliable manner.  相似文献   

18.
IntroductionIrinotecan is a semisynthetic derivative of camptothecin that exerts potent antitumor activity by inhibiting topoisomerase I. Despite much research into the complex pharmacokinetic profile and pharmacodynamic effects of irinotecan, unpredictable and severe side effects are still commonly observed. In this study, we synthesized [11C]irinotecan as a positron emission tomography (PET) probe, performed the metabolite analysis, and evaluated the biodistribution and kinetics of [11C]irinotecan using small animal PET.Methods[11C]Irinotecan was synthesized by two routes using [11C]phosgene and [11C]carbon dioxide fixation. Metabolites in the plasma of mice following injection of [11C] irinotecan were investigated using a combination of column-switching high-performance liquid chromatography (HPLC) and on-line solid-phase extraction (SPE). Whole-body PET studies were conducted in wild-type mice and P-glycoprotein and breast cancer resistance protein (Pgp/Bcrp) knockout mice.Results[11C]Irinotecan was successfully synthesized by the two abovementioned routes. Decay-corrected radiochemical yields based on [11C]carbon dioxide using [11C]phosgene and [11C]carbon dioxide fixation were 8.8 ± 2.0% (n = 8) and 16.9 ± 2.9 % (n = 5), respectively. Metabolite analysis of the plasma of mice following injection of [11C]irinotecan was successfully performed using the column-switching HPLC and on-line SPE combination resulting in greater than 87 % recovery of radioactivity from HPLC. In the PET study in mice, the radioactivity levels in the brain, liver, and small intestine were slightly increased by inhibition of the Pgp/Bcrp function for more than 30 min after [11C]irinotecan injection. This result demonstrated that in vivo behavior of [11C] irinotecan and radioactive metabolites are influenced by the Pgp/Bcrp function.ConclusionPET studies using [11C]irinotecan combined with metabolite analysis may be a useful tool for evaluating irinotecan pharmacokinetics and toxicity.  相似文献   

19.
IntroductionThe N-methyl-D-Aspartate (NMDA) receptor plays an important role in learning and memory. Overactivation is thought to play an important role in neurodegenerative disorders such as Alzheimer's disease. Currently, it is not possible to assess N-methyl-D-aspartate receptor (NMDAr) bio-availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NR2B binding site of the NMDA receptor.MethodsN-((5-(4-fluoro-2-methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine was radiolabelled with carbon-11 in the phenyl moiety. Biodistribution and blocking studies were carried out in anaesthetized mice and in non-anaesthetized rats.ResultsN-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine was prepared in 49 ± 3% (decay-corrected) yield, affording 4.1 ± 0.3 GBq of formulated product at the end of synthesis with a radiochemical purity of > 99% and with a specific activity of 78 ± 10 GBq/μmol.ConclusionA new NR2B PET ligand was developed in high yield. [11C]4 readily enters the brain and binds to the NR2B subunit-containing NMDAr in the rodent brain. High sigma-1 receptor binding may, however, limit its future application as a PET probe for imaging the NR2B subunit-containing NMDAr. Anaesthesia has an effect on NMDAr function and therefore can complicate interpretation of preclinical in vivo results. In addition, effects of endogenous compounds cannot be excluded. Despite these potential limitations, further studies are warranted to investigate the values of [11C]4 as an NR2B PET ligand.  相似文献   

20.
IntroductionFatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [11C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor.MethodsPF-04457845 was radiolabeled at the carbonyl position via automated [11C]CO2-fixation. Ex vivo brain biodistribution of [11C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [11C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma.ResultsThe title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [11C]CO2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [11C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [11C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted.Conclusions[11C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in conscious rodents demonstrate that [11C PF-04457845 is a promising candidate radiotracer for imaging FAAH in the brain with PET. These results coupled with the known pharmacology and toxicology of PF-04457845 should facilitate clinical translation of this radiotracer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号