共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, we demonstrated that activation of the protein kinase C (PKC) signalling pathway promoted morphological differentiation of GT1 hypothalamic neurones via an increase in beta-catenin, a cell-cell adhesion molecule, indicating a possible involvement of PKC in cellular motility. In this study, we explored the differential roles of PKC isoforms in GT1 cell migration. First, we transiently transfected GT1 cells with enhanced green fluorescence protein (EGFP)-tagged actin to monitor the dynamic rearrangement of filamentous-actin (F-actin) in living cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a PKC activator, markedly promoted lamellipodia formation, while safingol (a PKC alpha-selective inhibitor) blocked the TPA-induced lamellipodial actin structure. Both wound-healing and Boyden migration assays showed that TPA treatment promoted neuronal migration of GT1 cells; however, cotreatment of TPA with safingol or rottlerin (a PKC delta-selective inhibitor) clearly blocked this TPA effect, indicating that both PKC alpha and PKC delta may be positive regulators of neuronal migration. By contrast, PKC gamma-EGFP-expressing GT1 cells exhibited decreased cellular motility and weak staining for actin stress fibres, suggesting that PKC gamma may act as a negative mediator of cell migration in these neurones. Among the PKC downstream signal molecules, p130Cas, a mediator of cell migration, and its kinase, focal adhesion kinase (FAK), increased following TPA treatment; phosphorylation of p130Cas was induced in a PKC alpha-dependent manner. Together, these results demonstrate that PKC alpha promotes GT1 neuronal migration by activating focal adhesion complex proteins such as p130Cas and FAK. 相似文献
2.
Data from our laboratory and others demonstrate that acetylcholinesterase (AChE) is expressed transiently by neurons during periods of neurite outgrowth preceding synaptogenesis, suggesting an extrasynaptic function for this molecule. These findings, along with reports that AChE shares amino acid sequence homology and structural similarities with known cell adhesion molecules, have led to the theory that, during development, AChE may exert a morphogenic effect through cell adhesion. To further test this hypothesis, we have examined the effects of an AChE monoclonal antibody (MAB304) on neurite outgrowth in primary cultures of rat dorsal root ganglion (DRG) neurons. Short-term, high-concentration antibody treatment produced a rapid detachment of established DRG neurites, which was followed by regrowth upon removal of the antibody from the culture medium. This effect appeared to be site-specific, because other AChE antibodies that were able to detect AChE immunocytochemically failed to produce this disadhesion. Long-term, low-concentration antibody exposure produced a 50% reduction in total area of outgrowth, in which neurites were more densely packed and interlaced compared with the neurites in control cultures. These results extend our previous observations on the outgrowth perturbing effects of AChE inhibitor treatment and provide further evidence that AChE may support neurite outgrowth through a cell adhesive role. J. Neurosci. Res. 53:454–464, 1998. © 1998 Wiley-Liss, Inc. 相似文献
3.
The c-ret protooncogene, RET, encodes a receptor tyrosine kinase. RET is activated by members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands, which include GDNF, neurturin, artemin, and persephin. The ligands bind RET through GDNF family receptor alpha, termed GFRalpha1-4. Despite the importance of RET signaling in the development of the enteric nervous system and the kidney, the differential signaling mechanisms between RET ligands are poorly established. It has been suggested that signal specificity is achieved through binding of the ligand to its preferred GFRalpha. To compare the signaling profiles of GDNF and neurturin, we have identified a cell line, NG108-15, which endogenously expresses RET and GFRalpha1 but not GFRalpha2-4. Immunoblot data showed that GDNF caused a transient activation, whereas neurturin caused a sustained activation, of both p44/p42 MAP kinases and PLCgamma. Under serum starvation, NG108-15 cells differentiate and form neurites. Neurturin but not GDNF stimulated neurite outgrowth, which could be blocked by the selective PLC inhibitor U73122. On the other hand, GDNF but not neurturin promoted cell survival, and this could be blocked by the p44/p42 MAP kinase inhibitor PD98059. Our findings not only show the differential signaling of GDNF and neurturin but also suggest that this can be achieved through binding to the same GFRalpha subtype, leading to distinct biological responses. 相似文献
4.
George A. McCanney Michael A. McGrath Thomas D. Otto Richard Burchmore Edwin A. Yates Charles D. Bavington Hugh J. Willison Jeremy E. Turnbull Susan C. Barnett 《Glia》2019,67(4):668-687
The lack of endogenous repair following spinal cord injury (SCI) accounts for the frequent permanent deficits for which effective treatments are absent. Previously, we demonstrated that low sulfated modified heparin mimetics (LS-mHeps) attenuate astrocytosis, suggesting they may represent a novel therapeutic approach. mHeps are glycomolecules with structural similarities to resident heparan sulfates (HS), which modulate cell signaling by both sequestering ligands, and acting as cofactors in the formation of ligand–receptor complexes. To explore whether mHeps can affect the myelination and neurite outgrowth necessary for repair after SCI, we created lesioned or demyelinated neural cell co-cultures and exposed them with a panel of mHeps with varying degrees and positions of their sulfate moieties. LS-mHep7 enhanced neurite outgrowth and myelination, whereas highly sulfated mHeps (HS-mHeps) had attenuating effects. LS-mHeps had no effects on myelination or neurite extension in developing, uninjured myelinating cultures, suggesting they might exert their proregenerating effects by modulating or sequestering inhibitory factors secreted after injury. To investigate this, we examined conditioned media from cultures using chemokine arrays and conducted an unbiased proteomics approach by applying TMT-LC/MS to mHep7 affinity purified conditioned media from these cultures. Multiple protein factors reported to play a role in damage or repair mechanisms were identified, including amyloid betaA4. Amyloid beta peptide (1–42) was validated as an important candidate by treating myelination cultures and shown to inhibit myelination. Thus, we propose that LS-mHeps exert multiple beneficial effects on mechanisms supporting enhanced repair, and represent novel candidates as therapeutics for CNS damage. 相似文献
5.
The respective roles of cAMP-dependent protein kinase (protein kinase A [PKA]) and protein kinase C (PKC) in the early stages of neurite outgrowth were examined in SH-SY-5Y human neuroblastoma cells. Forskolin or dbcAMP, agents that increase intracellular cAMP levels, and intracellular delivery of PKA catalytic subunit induced neurite outgrowth. The PKA inhibitor, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), prevented the increases, and decreased further the percentage of cells possessing short, filopodia-like neurites in the absence of inducers. In contrast to effects on PKA activation, PKC activation by 12-0-tetradecanoylphorbol-13-acetate (TPA) reduced the percentage of filopodia-like neurites elaborated by otherwise untreated cells, and prevented neurite outgrowth induced by PKA activators. PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7), staurosporine, and sphingosine induced neurite outgrowth. Neurites induced by PKA activation contained higher levels of tubulin immunoreactivity than those induced by PKC inhibition. Furthermore, PKA-induced neurites rapidly retracted in the presence of colchicine, while those elaborated following PKC inhibition were more resistant. These data suggest that neurites elaborated in response to PKA activation are dependent upon microtubule polymerization, and that neurite induction following PKC inhibition is mediated by a different mechanism. PKA activators and PKC inhibitors exerted additive effects on neurite outgrowth, suggesting that the distinct pathways regulated by these two kinases function cooperatively during neuritogenesis. 相似文献
6.
Mitogen-activated protein kinase mediates purinergic-enhanced nerve growth factor-induced neurite outgrowth in PC12 cells 总被引:2,自引:0,他引:2
In 1999, we reported new observations that several compounds, including ATP, enhance neurite expression in PC12 cells when coapplied with nerve growth factor (NGF). Because purinergic and NGF signaling have several potential interfaces in PC12 cells, a series of experiments was conducted to elucidate the signal mediators contributing to the enhancement. Activities of selected kinases were measured and Western blots evaluated mitogen-activated protein kinase (MAPK) active and nonactive isoforms in lysates of the treated PC12 cells. In terms of purinergic potency, ATP and beta,gamma-methylene ATP elicited the greatest neurite-enhancing effect, whereas adenosine and alpha,beta-methylene ATP elicited the smallest. The effectiveness of a nonhydrolyzable analog such as beta,gamma-methylene ATP indicates that a nonmetabolic process is responsible. In response to ATP, NGF, or NGF + ATP, MAPK activity (measured by 32P incorporation) was maximal within 2 hr and remained statistically elevated over control levels throughout the 24 hr monitored. At maximal 32P incorporation, MAPK activity in response to ATP, NGF, and NGF + ATP was two-, four-, and sixfold higher, respectively, than control values; the observed increase was qualitatively confirmed using Western blots. Short-term inhibition experiments with protein kinase C and MAPK indicated that MAPK transduces the enhancing signal. We conclude from these experiments that ATP coapplied with NGF increases PC12 neurite expression by elevation of MAPK activity, likely by P2 receptor activation, and suggest that combination therapies with NGF and its enhancing adjunct compounds may be plausible for certain degenerative neurological disorders. 相似文献
7.
Richard W. Burry 《Journal of neuroscience research》1998,53(2):214-222
Nerve growth factor (NGF) stimulation of PC12 cells activates signaling pathways leading to new protein expression and growth of neurites. In wild type PC12 cells, incubation with phorbol ester (PMA) will activate protein kinase C (PKC) leading to the expression of many proteins necessary for neurite outgrowth, but this activation of PKC alone will not stimulate growth of long neurites. Here, we show in the subline of PC12-N09, which lacks NGF-stimulated growth of long neurites, that a brief incubation with PKC activators, PMA or bryostatin 1 (bryostatin), before NGF incubation, stimulates the growth of long neurites. However, incubation in the reverse order is ineffective. A short incubation with PMA or bryostatin followed by NGF induced tyrosine phosphorylation of MAP kinase (MAPK), which is of the same duration as that induced by NGF alone. Thus, PMA preincubation did not increase the length NGF activation of MAPK. Twenty-four hr after incubation with PMA or bryostatin, PKC isoforms were downregulated but PKC isoforms δ-, and ϵ- were still present. In these cells chronically treated with either PMA or bryostatin to downregulate PKC, NGF incubation preceded by PMA preincubation still led to long neurite outgrowth. These results suggest that a PMA or bryostatin incubation followed by NGF activates PKC isoforms δ-, and ϵ-leading to outgrowth of long neurites, and that the PMA signaling is independent of the MAPK pathway. J. Neurosci. Res. 53:214–222, 1998. © 1998 Wiley-Liss, Inc. 相似文献
8.
Different Domains of the F3 Neuronal Adhesion Molecule are Involved in Adhesion and Neurite Outgrowth Promotion 总被引:2,自引:0,他引:2
Pascale Durbec Gianfranco Gennarini Mara Buttiglione Sophie Gomez Geneviève Rougon 《The European journal of neuroscience》1994,6(3):461-472
The mouse F3 cell surface protein is preferentially expressed on axons of subpopulations of neurons and is anchored to the membrane by a glycosyl-phosphatidylinositol group. It consists of six immunoglobulin-like domains and four fibronectin type III homologous repeats, and can be found both in membrane-anchored and soluble forms. We have previously established that F3 fulfils the operational criteria of a cell adhesion molecule when anchored to the plasma membrane and that its soluble form stimulates neurite initiation and neurite outgrowth. To further characterize F3-mediated adhesion and to investigate whether adhesion and neurite outgrowth promoting activities are displayed by different parts of the molecule, we (i) selected F3 transfected CHO cells expressing increasing levels of F3 at their surface and (ii) prepared transfectants expressing an F3 molecule with its fibronectin type III repeats deleted. We show that the F3 molecule mediates divalent-cation-independent, temperature-dependent binding. The levels of aggregation of F3 transfectants are proportional to the level of F3 expression. Transfectants expressing F3 deleted of the fibronectin type Ill repeats lose their adhesive properties; conversely, cells expressing wild-type F3 and treated with collagenase, specifically removing the immunoglobulin-like domains, are still able to aggregate. Therefore, in this model adhesion site(s) mapped to the fibronectin type III repeats. By contrast, transfectants expressing deleted F3, as well as the soluble forms of this F3 deleted molecule, were able to stimulate neurite outgrowth of sensory neurons similarly to wild-type F3. Our data indicate that F3 is a multifunctional molecule and that adhesion and neurite outgrowth promoting properties are expressed by distinct and independent domains. 相似文献
9.
von Schassen C Fester L Prange-Kiel J Lohse C Huber C Böttner M Rune GM 《Journal of neuroendocrinology》2006,18(11):847-856
Ovarian oestrogens have been postulated to be neuroprotective. It has also been shown that considerable amounts of oestrogens are synthesised in hippocampal neurones. In the present study, we focused on a potential role of hippocampus-derived oestradiol compared to gonad-derived oestradiol on axon outgrowth of hippocampal neurones. To address the role of hippocampus-derived oestradiol, we inhibited oestrogen synthesis by treatment of neonatal hippocampal cell cultures with letrozole, a specific aromatase inhibitor. As an alternative, we used siRNA against steroidogenic acute regulatory protein (StAR). Axon outgrowth and GAP-43 expression were significantly down-regulated in response to letrozole and in siRNA-StAR transfected cells. The effects after inhibition of oestrogen synthesis in response to letrozole and in siRNA-StAR transfected cells were reversed by oestrogen supplementation. No difference was found between ovariectomised animals, cycling animals at pro-oestrus and ovariectomised and subsequently oestradiol-treated animals. However, high pharmacological doses of oestradiol promoted axon outgrowth, which was possible to abolish by the oestrogen receptor antagonist ICI 182,780. Our results show that oestradiol-induced neurite outgrowth is very likely mediated by genomic oestrogen receptors and requires higher doses of oestradiol than physiological serum concentrations derived from the gonads. 相似文献
10.
S.K. Powell C.C. Williams M. Nomizu Y. Yamada H.K. Kleinman 《Journal of neuroscience research》1998,54(2):233-247
The basement membrane glycoprotein laminin-1 is a potent stimulator of neurite outgrowth. Although a variety of laminin isoforms have been described in recent years, the role of alternative laminin isoforms in neural development remains largely uncharacterized. We found that a polyclonal antibody raised against the α1, β1, and γ1 chains of laminin-1 and a monoclonal antibody raised against the α2 chain of laminin-2 detect immunoreactive material in neuronal cell bodies in the developing mouse cerebellum. In addition, laminin-1-like immunoreactivity was found in cell types throughout the cerebellum, but laminin-α2-like immunoreactivity was restricted to the Purkinje cells. Purified laminin-1 and laminin-2 stimulated neurite outgrowth in primary cultures of mouse cerebellar granule neurons to a similar extent, whereas the synthetic peptides tested appeared to be active only for cell adhesion and not for stimulation of neurite outgrowth. The E8 proteolytic fragment of laminin-1 contained full neurite outgrowth activity. The identity of laminins expressed in granule neurons was also examined by Western blotting; laminin-like complexes were associated with the cell and appeared to have novel compositions. These results suggest that laminin-like complexes play important roles in cerebellar development. J. Neurosci. Res. 54:233–247, 1998. © 1998 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
11.
Min JY Park MH Park MK Park KW Lee NW Kim T Kim HJ Lee DH 《Journal of neural transmission (Vienna, Austria : 1996)》2006,113(11):1821-1826
Summary. Staurosporin, a specific inhibitor of PKC, is widely used in studies of signal transduction pathways. Previous studies have
shown that staurosporin induces neurite outgrowth, but the underlying mechanisms remain unclear. Here we report that staurosporin
induces neurite outgrowth in HN33 hippocampal cells. Two other PKC inhibitors, Go 6976 (specific for α- and β-isoforms) and
rotterlin (a selective inhibitor of PKC δ), have no neuritogenic effect. In addition, staurosporin specifically increases
ROS generation. NAC, which inhibits the generation of ROS, suppresses the staurosporin-induced neurite outgrowth in HN33 cells.
Further, H2O2 causes neurite outgrowth. Taken together, these results confirm a neuritogenic effect of staurosporin and point to ROS as
the signal mediator of staurosporin-induced neurite outgrowth in HN33 hippocampal cells.
Theme: Development and regeneration
Topic: Neurotrophic factors: receptors and cellular mechanisms 相似文献
12.
Sakurai T Gil OD Whittard JD Gazdoiu M Joseph T Wu J Waksman A Benson DL Salton SR Felsenfeld DP 《Journal of neuroscience research》2008,86(12):2602-2614
An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1. 相似文献
13.
Abnormalities in interactions of Rho GTPases with scaffolding proteins contribute to neurodevelopmental disorders 下载免费PDF全文
Alexandra Reichova Martina Zatkova Zuzana Bacova Jan Bakos 《Journal of neuroscience research》2018,96(5):781-788
Accumulating evidence suggests that Rho GTPases, together with scaffolding SHANK proteins, and associated signaling pathways play a role in the development of autism symptoms in various conditions. Research data have brought information on multiple intracellular signaling pathways, including Rho‐associated protein kinases and serine/threonine‐protein kinases involved in cytoskeleton rearranging. Alterations in downstream effectors of GTPase signaling pathways are associated with neurodevelopmental disorders. Bioinformatics and experimental data show that complex genetic and molecular defects (GTPases, actin‐binding proteins, kinases, neuropeptides) can result in neuronal remodeling, leading to the functional connectivity deficits that manifest as the heterogeneous autism spectrum phenotype. Finally, the known hormone and neuropeptide oxytocin appears to be a factor for consideration in therapeutic intervention. 相似文献
14.
Pedersen MV Køhler LB Ditlevsen DK Li S Li S Berezin V Bock E 《Journal of neuroscience research》2004,75(1):55-65
The neural cell adhesion molecule (NCAM) plays a pivotal role in neural development, regeneration, and plasticity. NCAM mediates adhesion and subsequent signal transduction through NCAM-NCAM binding. Recently, a peptide ligand termed P2 corresponding to a 12-amino-acid sequence in the FG loop of the second Ig domain of NCAM was shown to mimic NCAM homophilic binding as reflected by induction of neurite outgrowth in hippocampal neurons. We demonstrate here that in concentrations between 0.1 and 10 microM, P2 also induced neuritogenesis in primary dopaminergic and cerebellar neurons. Furthermore, it enhanced the survival rate of cerebellar neurons although not of mesencephalic dopaminergic neurons. Moreover, our data indicate that the protective effect of P2 in cerebellar neurons was due to an inhibition of the apoptotic process, in that caspase-3 activity and the level of DNA fragmentation were lowered by P2. Finally, treatment of neurons with P2 resulted in phosphorylation of the ser/thr kinase Akt. Thus, a small peptide mimicking homophilic NCAM interaction is capable of inducing differentiation as reflected by neurite outgrowth in several neuronal cell types and inhibiting apoptosis in cerebellar granule neurons. 相似文献
15.
Scarisbrick IA Sabharwal P Cruz H Larsen N Vandell AG Blaber SI Ameenuddin S Papke LM Fehlings MG Reeves RK Blaber M Windebank AJ Rodriguez M 《The European journal of neuroscience》2006,24(5):1457-1469
Kallikrein 6 (K6) is a member of the kallikrein gene family that comprises 15 structurally and functionally related serine proteases. In prior studies we showed that, while this trypsin-like enzyme is preferentially expressed in neurons and oligodendroglia of the adult central nervous system (CNS), it is up-regulated at sites of injury due to expression by infiltrating immune and resident CNS cells. Given this background we hypothesized that K6 is a key contributor to the pathophysiology of traumatic spinal cord injury (SCI), influencing neural repair and regeneration. Examination of K6 expression following contusion injury to the adult rat cord, and in cases of human traumatic SCI, indicated significant elevations at acute and chronic time points, not only at the injury site but also in cord segments above and below. Elevations in K6 were particularly prominent in macrophages, microglia and reactive astrocytes. To determine potential effects of elevated K6 on the regeneration environment, the ability of neurons to adhere to and extend processes on substrata which had been exposed to recombinant K6 was examined. Limited (1 h) or excess (24 h) K6-mediated proteolytic digestion of a growth-facilitatory substrate, laminin, significantly decreased neurite outgrowth. By contrast, similar hydrolysis of a growth-inhibitory substrate, aggrecan, significantly increased neurite extension and cell adherence. These data support the hypothesis that K6 enzymatic cascades mediate events secondary to spinal cord trauma, including dynamic modification of the capacity for axon outgrowth. 相似文献
16.
The neuronal microtubule-associated protein tau promotes microtubule assembly and has been implicated in the development of axonal morphology. In this study, PC12 cells were transiently transfected with constructs coding fusion proteins of human tau with green fluorescent protein (GFP). Expression of tau constructs actively stabilized microtubules. Expression of the C-terminus of tau can mimic this effect in living cells, though to a lesser extent because of the absence of the tau N-terminus. However, tau colocalization with microtubules did not require the presence of the tau N-terminus. Transient expression of tau (including tau24, a four-repeat human tau isoform encoded in 383 residues, and tau23, human fetal tau isoform encoded in 352 residues) stimulated process formation in PC12 cells, and this occurred faster with tau24 than with tau23. The residues (residues 154-172 in tau23) that confer microtubule nucleation activity of tau in vitro are not required for tau-directed process formation. However, when tau induces the formation of cellular processes in response to cortical breakdown by cytochalasin B, residues 154-172 must be present. Thus, it appears that tau may serve to promote cellular process outgrowth in cultured neuronal cells and that C-terminus of tau is essential to this process. 相似文献
17.
目的关于蛋白激酶C(PKC)在神经元突起生长和神经再生中的作用,目前仍存有争议。本研究主要观察PKC对离体培养的脊髓神经元生长的调节作用,旨在阐明PKC对突起生长的调节作用。方法分离纯化胎龄14天(E14)的SD胎鼠的脊髓前角神经元,进行原代培养,并检测不同时相点膜/浆PKC活性(m/c-PKCactivity)的比值。结果神经元培养3-11d期间,神经元内m/c-PKC比值以及PKC-βII在突起中的表达水平均与突起生长呈显著相关关系(r=0.95,P<0.01;r=0.73,P<0.01)。此外,PKC激动剂PMA能显著提高m/c-PKC比值,且与神经突起的生长一致(r=0.99,P<0.01)。而PKC抑制剂GF109203X则能显著抑制突起生长,且不被PMA作用所逆转。结论PKC的活性在脊髓神经元突起生长调节中具有重要作用,其中βII亚型可能扮演重要角色。 相似文献
18.
19.
We have used monoclonal antibodies to study the distribution of three developmentally regulated microtubule-associated proteins-MAP2, MAP5, and tau-during the morphogenesis of the thoracic spinal cord and peripheral nervous system in the quail. MAP5 is the only one of the three that is present in growing motor neuron processes in the day 3 embryo. The low-molecular weight form of MAP2, MAP2c, is found in motor neuron cell bodies at embryonic day 3. At later stages MAP2c appears in axons and in glia; it decreases in abundance between embryonic days 5 and 7. High-molecular weight MAP2 appears in motor neuron cell bodies and spinal cord gray matter at embryonic day 4, and is never encountered in axons. Tau is found in axons, but only at embryonic day 3.5, after they have commenced active extension. The molecular form and patterns of intracellular compartmentalization of each of the microtubule-associated proteins studied is conserved in mammalian and avian neurons. We conclude that MAP5 may be involved in the active growth of neuronal processes, whereas MAP2 and tau are not, and that high-molecular weight MAP2 and tau may stabilize dendritic and axonal processes, respectively. 相似文献
20.
Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line 下载免费PDF全文
Rukmani Lekhraj Deborah E. Cynamon Stephanie E. DeLuca Eric S. Taub Arthur A. Pilla Diana Casper 《Journal of neuroscience research》2014,92(6):761-771
Pulsed electromagnetic fields (PEMF) exert biological effects and are in clinical use to facilitate bone repair and wound healing. Research has demonstrated that PEMF can induce signaling molecules and growth factors, molecules that play important roles in neuronal differentiation. Here, we tested the effects of a low‐amplitude, nonthermal, pulsed radiofrequency signal on morphological neuronal differentiation in MN9D, a dopaminergic cell line. Cells were plated in medium with 10% fetal calf serum. After 1 day, medium was replaced with serum‐containing medium, serum‐free medium, or medium supplemented with dibutyryl cyclic adenosine monophosphate (Bt2cAMP), a cAMP analog known to induce neurite outgrowth. Cultures were divided into groups and treated with PEMF signals for either 30 min per day or continuously for 15 min every hour for 3 days. Both serum withdrawal and Bt2cAMP significantly increased neurite length. PEMF treatment similarly increased neurite length under both serum‐free and serum‐supplemented conditions, although to a lesser degree in the presence of serum, when continuous treatments had greater effects. PEMF signals also increased cell body width, indicating neuronal maturation, and decreased protein content, suggesting that this treatment was antimitotic, an effect reversed by the inhibitor of cAMP formation dideoxyadenosine. Bt2cAMP and PEMF effects were not additive, suggesting that neurite elongation was achieved through a common pathway. PEMF signals increased cAMP levels from 3 to 5 hr after treatment, supporting this mechanism of action. Although neuritogenesis is considered a developmental process, it may also represent the plasticity required to form and maintain synaptic connections throughout life. © 2014 Wiley Periodicals, Inc. 相似文献