首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Exposure of rodents to perfluorooctane sulfonate (PFOS) induces pronounced hepatomegaly associated with significant alterations in hepatic histophysiology and immune status. The present investigation was designed to evaluate the effects of this perfluorochemical on immune-mediated liver damage. Accordingly, the influence of both sub-acute (10 days), moderate-dose (0.004%, w/w = 6 ± 1.3 mg/kg body weight/day) or short-term (28 days), low-dose (0.0001%, w/w = 144 ± 4 μg/kg body weight/day) dietary pretreatment with PFOS on the development of concanavalin A (Con A)-induced liver damage in mice was examined. With either regimen of exposure, PFOS exacerbated the acute liver damage caused by Con A, i.e., elevated serum levels of transaminases and led to more pronounced damage of hepatic tissue. This exacerbation was associated with either reduced (moderate dose) or unaltered (low dose) hepatic levels of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). Moreover, hepatic DNA fragmentation was enhanced, particularly following short-term exposure to a low-dose. Our findings suggest that exposure to PFOS may sensitize hepatic parenchymal cells to other insults that activate the hepatic immune system and thereby exacerbate liver damage during acute inflammation.  相似文献   

2.
Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.  相似文献   

3.
Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood.  相似文献   

4.
Green tea extract (GTE) has been advocated as a hepatoprotective compound and a possible therapeutic agent for acetaminophen (APAP) overdose. This study was conducted to determine if GTE can provide protection against APAP-induced hepatotoxicity. Three different exposure scenarios were tested. The first involved administering APAP (150 mg/kg, orally) to mice followed 6 h later by GTE (500 or 1000 mg/kg). The other two involved administering GTE prior to the APAP dose. GTE (500 or 1000 mg/kg, orally) was administered 3 h prior to APAP (200 mg/kg, orally) or for three consecutive days (once-daily) followed by APAP (300 mg/kg) on the fourth day. Indices of hepatotoxicity were assessed 24 h after the APAP dose. GTE potentiated APAP-induced hepatotoxicity when administered after the APAP dose. GTE caused significant glutathione depletion and this effect likely contributed to the observed potentiation. In contrast, GTE provided protection against APAP-induced hepatotoxicity when administered prior to the APAP dose. GTE dramatically decreased APAP covalent binding to protein indicating that less reactive metabolite was available to cause hepatocellular injury. These results highlight the potential for drug-dietary supplement interactions and the importance of testing multiple exposure scenarios to adequately model different types of potential interactions.  相似文献   

5.
The protective effects of MegaHydrate™ silica hydride against liver damage were evaluated by its attenuation of carbon tetrachloride (CCl4)-induced hepatotoxicity in mice. Male ICR mice were orally treated with silica hydride (104, 208 and 520 mg/kg) or silymarin (200 mg/kg) daily, with administration of CCl4 (1 mL/kg, 20% CCl4 in olive oil) twice a week for eight weeks. The results showed that oral administration of silica hydride significantly reduced the elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), and cholesterol and the level of malondialdehyde (MDA) in the liver that were induced by CCl4 in mice. Moreover, the silica-hydride treatment was also found to significantly increase the activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px), as well as increase the GSH content, in the liver. Liver histopathology also showed that silica hydride reduced the incidence of liver lesions induced by CCl4. The results suggest that silica hydride exhibits potent hepatoprotective effects on CCl4-induced liver damage in mice, likely due to both the increase of antioxidant-defense system activity and the inhibition of lipid peroxidation.  相似文献   

6.
In this study, quantification of phenolic compounds and the investigation of antidiabetic and antioxidant activities of the fruit of Solanum torvum Swartz. are described. S. torvum fruit methanol extract (STMe) was administered orally at a dose of 200 and 400 mg/kg/day to streptozotocin induced diabetic rats for 30 days. The levels of glucose, insulin, total protein, hemoglobin, glycated hemoglobin, liver glycogen and marker enzymes of carbohydrate metabolism, hepatic function and antioxidants were analyzed. High-performance liquid chromatography (HPLC) analysis revealed that STMe contained high levels of phenolic compounds, mainly rutin (1.36% w/w), caffeic acid (12.03% w/w), gallic acid (4.78% w/w) and catechin (0.46% w/w). STMe at 200 and 400 mg/kg reduced blood glucose level by 17.04% and 42.10%, respectively in diabetic rats. The levels and/or activities of other biochemical parameters were restored significantly compared to diabetic control rats due to treatment with fruit extract. Histology of liver and pancreas in STMe treated groups substantiated the cytoprotective action of the drug. Immunohistochemical observation of islets in extract treated diabetic rats showed apparent β-cells regeneration. These findings suggest that S. torvum fruit containing phenolic compounds has great potential as a natural source of antidiabetic and antioxidant drug.  相似文献   

7.
Consequences of subchronic exposure to aflatoxin B1 (AFB1) on liver monooxygenase and transferase enzymes were compared in control pigs and pigs given 385, 867 or 1,807 microg AFB1/kg of feed for 4 weeks. Animals exposed to the highest dose of toxin developed clinical signs of aflatoxicosis, like liver fibrosis, hepatic dysfunction and decreased weight gain. This group had significantly lower levels of liver cytochrome P450, ethoxyresorufin O-deethylase (EROD) activity, testosterone metabolism, P450 1A and P450 3A protein expression. By comparison, mild degenerative hepatic changes, no hepatic dysfunction but a similar pattern of liver P450 enzymes activity without changes in P450 3A expression were observed in pigs exposed to 867 microg AFB1/kg of feed. Benzphetamine and aminopyrine N-demethylase activities were increased in pigs exposed to 867 or 1,807microg AFB1/kg of feed. Pigs exposed to 385 microg AFB1/kg of feed had low levels of EROD activity and all other biotransformation and clinical parameters remained at control levels. Aniline hydroxylase activity, P450 2C protein expression, UDP-glucuronosyl and glutathione S-transferase activities were unaffected at all doses of AFB1. In conclusion, P450 1A and P450 3A appear to be specific targets of AFB1 even if pig did not display clinical sign of liver toxicosis.  相似文献   

8.
Assessing liver damage in basic toxicology research and in preclinical toxicity testing is usually evaluated by serum biochemical parameters prior to confirmation by histopathology. With the advent of newer methods such as genomics and proteomics, there is increased enthusiasm to generate "novel" predictive markers to detect liver pathology even before the alterations in clinical and histopathology parameters occur. However, serum biochemical parameters (clinical pathology) when employed accurately, can provide important and useful information in assessing not only the extent and severity of liver damage, but also the type of liver damage (membrane injury versus cholestasis and hepatic function). In order to accurately detect hepatobiliary pathologies, it is important to have a basic understanding of liver associated clinical pathology parameters with reference to their exact location, serum half-lives, tissue concentration gradient and species differences. Such understanding as discussed in this article will enable a toxicologist to identify commonly encountered toxic hepatic lesions such as necrosis, cholestasis and compromised liver function by hepatic-associated clinical pathology parameters. In addition, toxicologists will have a better grasp to effectively communicate their clinical pathology findings and interpretations to the target audiences.  相似文献   

9.
Salecan is a novel water-soluble glucan produced by Agrobacterium sp. ZX09. It has potential application as a food additive with a unique chemical composition and excellent physicochemical properties. The objective of this study was to investigate the acute and subchronic toxicity of Salecan. The oral LD50 of Salecan in ICR mice was greater than 3000 mg/kg body weight. In the subchronic study, ICR mice (10/sex/group) were fed diets containing 0%, 1.0%, 2.5% and 5.0% of Salecan (weight/weight) for 13 weeks. Based on the results from the subchronic study, the overall health, body weight gain, food consumption and clinical pathology parameters were comparable between the groups feed Salecan and the control. No dose-related effects were observed in the treated animals. The only exception was the observation that blood glucose in female mice fed Salecan was lower than in the control group. In addition, the fecal matter from Salecan fed mice exhibited increased water content versus the control animals. The no observed adverse effect level (NOAEL) of 14478 mg/kg body weight/day was determined. The results from this study support the conclusion that Salecan is non-toxic at the levels tested and does not pose a risk to human health when used in food.  相似文献   

10.
Ellagic acid is a phenolic acid compound, used as a food additive for its antioxidative properties. Because of its chemical characteristics, use is also to be expected in cosmetics. The present 90-day subchronic toxicity study was performed in F344 rats at dose levels of 0, 1.25, 2.5 and 5% in powdered basal diet, with actual doses of 9.4, 19.1, 39.1 g/kg b.w., respectively, in males, and 10.1, 20.1, 42.3 g/kg b.w. in females. No mortality or treatment-related clinical signs were observed throughout the experimental period. Body weight gain was significantly reduced from weeks 3 (5% group), 6 (2.5% group) and 7 (1.25% group) to the end of the experiment (except week 8 in the lowest group) in the treated females, the final body weights being decreased in the 5% (92.5%), 2.5% (94.2%) and 1.25% (94.8%) treated groups as compared to the control. Changes in MCV and serum AST, ALP, Ca, Cl and P were sporadically observed, but these were not considered to be treatment-related alterations. There were no obvious histopathological changes in any of the groups. The no-observed-effect level (NOEL) was estimated to be 5% (3011 mg/kg b.w./day) for males and the no-observed-adverse-effect level (NOAEL) and NOEL in females were estimated to be 5% (3254 mg/kg b.w./day) and <1.25% (778 mg/kg b.w./day), respectively.  相似文献   

11.
The present study was undertaken to evaluate the ameliorative role of α-eleostearic acid and punicic acid, isomers of conjugated linolenic (CLnA) acid, against oxidative stress induced DNA damage. Male albino rats were divided into six groups. Group 1 and 2 were normal control and sodium arsenite treated (Sa; 10 mg/kg BW) control respectively. Group 3–6 were orally treated with different doses of two fatty acids (0.5% and 1.0% of total lipid given for each isomer) along with sodium arsenite (Sa; 10 mg/kg BW). Comet assay of blood leukocytes showed that administration of CLnA reduced DNA damage significantly (P < 0.05) which was determined by tail DNA percent and olive tail moment. Results showed that activity of antioxidant enzymes viz. catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and reduced glutathione (GSH) in plasma, liver and erythrocyte lysate decreased and activity of nitric oxide synthase in plasma and liver increased significantly due to oxidative stress generated by sodium arsenite. Administration of CLnA isomers restored all the altered parameters and also reduced lipid peroxidation and leakage of transaminase enzymes from liver to blood due to liver injury. α-Eleostearic acid was more efficient antioxidant than punicic acid against oxidative DNA damage.  相似文献   

12.
Green tea is believed to be beneficial to health because it possesses antioxidant, antiviral and anticancer properties. The potential toxicity of green tea when administered at high doses via concentrated extracts, however, has not been completely investigated. The objective of the present study was to evaluate the safety of green tea extract in ICR mice using a subacute exposure paradigm. In this study, mice were orally administered (gavage) green tea extract at doses of 0 (as normal group), 625, 1250 and 2500 mg/kg body weight/day for 28 days. The results showed that oral administration of green tea extract did not cause adverse effects on body weight, organ weights, hematology, serum biochemistry, urinalysis or histopathology. Additionally, administering green tea extract via gavage significantly reduced triglyceride and cholesterol levels. These observed effects could be attributed to the high levels of catechins present in green tea as these compounds have been reported to have beneficial health effects. The no-observed-adverse-effect level for green tea extract derived from the results of the present study was 2500 mg/kg body weight/day.  相似文献   

13.
The potential use of pyrroloquinoline quinone disodium salt (BioPQQ™), as a supplemental food ingredient, was evaluated in a range of oral toxicity studies in rats including an acute study, a 14-day preliminary and a 28-day repeated-dose study, and a 13-week subchronic study. The median lethal dose of BioPQQ™ was shown to be 1000–2000 mg/kg body weight (bw) in male and 500–1000 mg/kg bw in female rats. In the 14-day study, high doses of BioPQQ™ resulted in increases in relative kidney weights with associated histopathology in female rats only, while a follow-up 28-day study in female animals resulted in increases in urinary protein and crystals. These findings were reversible, and resolved during the recovery period. In the 13-week study, a number of clinical chemistry findings and histopathological changes were noted, which were deemed to be of no toxicological significance, as the levels were within the historical control range, were not dose-dependent, occurred at a similar frequency in control groups, or only occurred in the control group. Based on these findings, a no-observed-adverse-effect level of 100 mg/kg bw/day was determined for BioPQQ™ in rats, the highest dose tested in the 13-week study.  相似文献   

14.
BackgroundThe significance of the free radicals is emphasized in the pathophysiology of diabetes and the progression of chronic diabetic complications. Smoking cigarettes increases the risk of developing type II diabetes and intensifies pathophysiological processes during the development of type I diabetes. Tobacco smoke is also additional source of free radicals. Moreover, smoking causes variety of adverse effects on organs, that have no direct contact with the tobacco smoke itself. The objective of the study was to examine the effects of tobacco smoke on the serum concentrations of relevant oxidative stress markers such as total protein (TP), reduced glutathione (GSH), glutathione S-transferase (GST) and thiobarbituric acid reactive substances (TBARS), as well as renal (creatinine, urea) and liver function (alkaline phosphatase, ALP; alanine aminotransferase, ALT; aspartate aminotransferase, AST) among animals with induced diabetes after administration of a single dose of streptozotocin (65 mg/kg, ip).MethodsThe markers of oxidative stress and biochemical parameters were determined using spectrophotometric methods. As a biomarker of exposure to tobacco smoke, cotinine was determined using high-performance liquid chromatography with diode array detection (HPLC-DAD).ResultsTobacco smoke exposure of diabetic rats was manifested by significantly elevated liver enzymes activity - ALT (p < 0.05) and ALP (p < 0.01), higher creatinine and urea concentration (p < 0.01), lower GSH amount (p < 0.05), and higher GST activity (p < 0.05).ConclusionsTobacco smoking induce liver and renal damage through the mechanisms including increased oxidative stress.  相似文献   

15.
The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (six/group) received one of four Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. However, the combination diet produced massive steatosis with minor necrosis and inflammation. MCD and combination diets, but not ethanol, induced serum ALT levels by 1.6- and 10-fold, respectively. MCD diet, but not ethanol, also induced serum alkaline phosphatase levels suggesting bile duct injury. Ethanol increased liver fatty acid binding protein (L-FABP) mRNA and protein levels. In contrast, the combination diet decreased L-FABP mRNA and protein levels and increased hepatic free fatty acid and lipid peroxide levels. Ethanol, but not MCD, reduced hepatic S-adenosylmethionine (SAM) and GSH levels. Hepatic TNFalpha protein levels were increased in all treatment groups, however, IL-6, a hepatoprotective cytokine which promotes liver regeneration was increased in ethanol-fed mice (2-fold), but decreased in the combination diet-treated mice. In addition, the combination diet reduced phosphorylated STAT3 and Bcl-2 levels. While MCD diet might cause bile duct injury and cholestasis, ethanol preferentially interferes with the SAM-GSH oxidative stress pathway. The exacerbated liver injury induced by the combination diet might be explained by reduced L-FABP, increased free fatty acids, oxidative stress, and decreased IL-6 protein levels. The combination diet is an efficient model of steatohepatitis.  相似文献   

16.
17.
18.
Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA in vivo remain unclear. We generated a mouse model lacking the initiating enzymes, CYP7A1 and CYP27A1, in the two main pathways of BA synthesis. Because females are more susceptible to BA related diseases, such as intrahepatic cholestasis of pregnancy, we expanded this model into female mice. The null mice of Cyp7a1 and Cyp27a1 were crossbred to create double knockout (DKO) mice. BA concentrations in female DKO mice had reductions in serum (63%), liver (83%), gallbladder (94%), and small intestine (85%), as compared to WT mice. Despite low BA levels, DKO mice had a similar expression pattern to that of WT mice for genes involved in BA regulation, synthesis, conjugation, and transport. Additionally, through treatment with a synthetic FXR agonist, GW4064, female DKO mice responded to FXR activation similarly to WT mice.  相似文献   

19.
Timosaponin BII (TBII), a major steroidal saponin isolated from Anemarrhena asphodeloides Bge., displays a variety of promising pharmacological activities, such as neuroprotection, enhancement of learning and memory, vascular protection and inhibition of platelet aggregation; therefore, it has been developed as a pharmaceutical for prevention or treatment of dementia. Given the safety concerns surrounding timosaponins and the absence of studies on the safety of TBII, the potential toxicity of TBII was evaluated in toxicity and toxicokinetic studies in rats. In the acute oral toxicity study, loose stools were observed in rats receiving 4000 mg/kg, and the symptoms recovered within 1 day. In the 28-day repeated-dose oral toxicity and toxicokinetic study, rats receiving 540 mg/kg showed loose stools and a slight deceleration of body weight growth in both sexes, and the females also showed a slight decrease in food consumption. Moreover, urinalysis indicated reversible treatment-related toxicity in rats receiving 540 mg/kg. The toxicokinetic study demonstrated a dose-dependent increase in systematic exposure to TBII after 28 successive days of oral treatment with TBII. The accumulation coefficients of TBII were 4.35, 1.70 and 1.81, respectively, in rats that received 60, 180 and 540 mg/kg. The no-observed-adverse-effect level (NOAEL) is proposed to be 180 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号