首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic (As), a ubiquitous toxic metal, is an important environmental and industrial pollutant throughout the world. Inorganic As (iAs) is usually more harmful than organic ones and with a high risk of diabetes incidence by exposure. However, the toxicological effects of iAs on growth and function of pancreatic β-cells still remain unclear. Here, we found that iAs significantly decreased insulin secretion and cell viability, and increased ROS and MDA formation in pancreatic β-cell-derived RIN-m5F cells. iAs also induced the increases in sub-G1 hypodiploids, annexin V-Cy3 binding, and caspase-3 activity in RIN-m5F cells, indicating that iAs could induce β-cell apoptosis. Moreover, iAs induced MAPKs activation, mitochondria dysfunction, p53 up-regulation, Bcl-2 and Mdm-2 down-regulation, PARP, and caspase cascades, which displayed features of mitochondria-dependent apoptotic signals. In addition, exposure of RIN-m5F cells to iAs, could trigger ER stress as indicated by the enhancement in ER stress-related molecules induction (such as GRP78, GRP94, CHOP, and XBP1), procaspase-12 cleavage, and calpain activation. The iAs-induced apoptosis and its-related signalings could be effectively reversed by antioxidant N-acetylcysteine. We next observed that exposure of mice to iAs in drinking water for 6 consecutive weeks significantly decreased decreased the plasma insulin, elevated glucose intolerance and plasma lipid peroxidation, and induced islet cells apoptosis, which accompanied with arsenic accumulation in the whole blood and pancreas. N-acetylcysteine effectively antagonized the iAs-induced responses in mice. Taken together, these results suggest that iAs-induced oxidative stress causes pancreatic β-cells apoptosis via the mitochondria-dependent and ER stress-triggered signaling pathways.  相似文献   

2.
Arsenic pollution is a major public health problem worldwide. Inorganic arsenic (iAs) is usually more harmful than organic ones. iAs pollution increases the risk of human diseases such as peripheral vascular disease and cancer. However, the toxicological effects of iAs in the brain are mostly unclear. Here, we investigated the toxic effects and possible mechanisms of iAs in the cerebrum of mice after exposure to iAs (0.5 and 5?ppm (mg/l) As(2)O(3), via the drinking water), which was the possible human exposed dose via the ingestion in iAs-contaminated areas, for 6?consecutive weeks. iAs dose-dependently caused an increase of LPO production in the plasma and cerebral cortex. iAs also decreased the reduced glutathione levels and the expressions of NQO1 and GPx mRNA in the cerebral cortex. These impairments in the cerebral cortex caused by iAs exposure were significantly correlated with the accumulation of As. Moreover, iAs induced the production of apoptotic cells and activation of caspase-3, up-regulation of Bax and Bak, and down-regulation of Mcl-1 in the cerebral cortex. Exposure to iAs also triggered the expression of ER stress-related genes, including GRP78, GRP94, and CHOP. Meanwhile, an increase of p38 activation and dephosphorylation of ERK1/2 were shown in the cerebral cortex as a result of iAs-exposed mice. These iAs-induced damages and apoptosis-related signals could be significantly reversed by NAC. Taken together, these results suggest that iAs-induced oxidative stress causes cellular apoptosis in the cerebrum, signaling of p38 and ERK1/2, and ER stress may be involved in iAs-induced cerebral toxicity.  相似文献   

3.
Methylmercury (MeHg) is well-known for causing irreversible damage in the central nervous system as well as a risk factor for inducing neuronal degeneration. However, the molecular mechanisms of MeHg-induced neurotoxicity remain unclear. Here, we investigated the effects and possible mechanisms of MeHg in the mouse cerebrum (in vivo) and in cultured Neuro-2a cells (in vitro). In vivo study showed that the levels of LPO in the plasma and cerebral cortex significantly increased after administration of MeHg (50 μg/kg/day) for 7 consecutive weeks. MeHg could also decrease glutathione level and increase the expressions of caspase-3, -7, and -9, accompanied by Bcl-2 down-regulation and up-regulation of Bax, Bak, and p53. Moreover, treatment of Neuro-2a cells with MeHg significantly reduced cell viability, increased oxidative stress damage, and induced several features of mitochondria-dependent apoptotic signals, including increased sub-G1 hypodiploids, mitochondrial dysfunctions, and the activation of PARP, and caspase cascades. These MeHg-induced apoptotic-related signals could be remarkably reversed by antioxidant NAC. MeHg also increased the phosphorylation of ERK1/2 and p38, but not JNK. Pharmacological inhibitors NAC, PD98059, and SB203580 attenuated MeHg-induced cytotoxicity, ERK1/2 and p38 activation, MMP loss, and caspase-3 activation in Neuro-2a cells. Taken together, these results suggest that the signals of ROS-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic pathways that are involved in MeHg-induced neurotoxicity.  相似文献   

4.
5.
Genipin, the aglycone of geniposide, exhibits anti-inflammatory and anti-angiogenic activities. Here we demonstrate that genipin induces apoptotic cell death in FaO rat hepatoma cells and human hepatocarcinoma Hep3B cells, detected by morphological cellular changes, caspase activation and release of cytochrome c. During genipin-induced apoptosis, reactive oxygen species (ROS) level was elevated, and N-acetyl-l-cysteine (NAC) and glutathione (GSH) suppressed activation of caspase-3, -7 and -9. Stress-activated protein kinase/c-Jun NH2-terminal kinase 1/2(SAPK/JNK1/2) but neither MEK1/2 nor p38 MAPK was activated in genipin-treated hepatoma cells. SP600125, an SAPK/JNK1/2 inhibitor, markedly suppressed apoptotic cell death in the genipin-treated cells. The FaO cells stably transfected with a dominant-negative c-Jun, TAM67, was less susceptible to apoptotic cell death triggered by genipin. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, inhibited ROS generation, apoptotic cell death, caspase-3 activation and JNK activation. Consistently, the stable expression of Nox1-C, a C-terminal region of Nox1 unable to generate ROS, blocked the formation of TUNEL-positive apoptotic cells, and activation of caspase-3 and JNK in FaO cells treated with genipin. Our observations imply that genipin signaling to apoptosis of hepatoma cells is mediated via NADPH oxidase-dependent generation of ROS, which leads to downstream of JNK.  相似文献   

6.
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease.  相似文献   

7.
Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used in chemical industries as an herbicide, detergent, and disinfectant, and chemical intermediates that are formed during the synthesis of various products. In addition, CA has been found as a by-product of chlorination disinfection of drinking water. However, there is little known about neurotoxic injuries of CA on the mammalian, the toxic effects and molecular mechanisms of CA-induced neuronal cell injury are mostly unknown. In this study, we examined the cytotoxicity of CA on cultured Neuro-2a cells and investigated the possible mechanisms of CA-induced neurotoxicity. Treatment of Neuro-2a cells with CA significantly reduced the number of viable cells (in a dose-dependent manner with a range from 0.1 to 3 mM), increased the generation of ROS, and reduced the intracellular levels of glutathione depletion. CA also increased the number of sub-G1 hypodiploid cells; increased mitochondrial dysfunction (loss of MMP, cytochrome c release, and accompanied by Bcl-2 and Mcl-1 down-regulation and Bax up-regulation), and activated the caspase cascades activations, which displayed features of mitochondria-dependent apoptosis pathway. These CA-induced apoptosis-related signals were markedly prevented by the antioxidant N-acetylcysteine (NAC). Moreover, CA activated the JNK and p38-MAPK pathways, but did not that ERK1/2 pathway, in treated Neuro-2a cells. Pretreatment with NAC and specific p38-MAPK inhibitor (SB203580), but not JNK inhibitor (SP600125) effectively abrogated the phosphorylation of p38-MAPK and attenuated the apoptotic signals (including: decrease in cytotoxicity, caspase-3/-7 activation, the cytosolic cytochrome c release, and the reversed alteration of Bcl-2 and Bax mRNA) in CA-treated Neuro-2a cells. Taken together, these data suggest that oxidative stress-induced p38-MAPK activated pathway-regulated mitochondria-dependent apoptosis plays an important role in CA-caused neuronal cell death.  相似文献   

8.
The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. ER stress has been implicated in a variety of common diseases, such as diabetes, ischemia and neurodegenerative disorders. Withaferin A, a major chemical constituent of Withania somnifera, has been reported to inhibit tumor cell growth. We show that withaferin A induced a dose-dependent apoptotic cell death in several types of human cancer cells, as measured by FACS analysis and PARP cleavage. Treatment of Caki cells with withaferin A induced a number of signature ER stress markers, including phosphorylation of eukaryotic initiation factor-2α (eIF-2 α), ER stress-specific XBP1 splicing, and up-regulation of glucose-regulated protein (GRP)-78. In addition, withaferin A caused up-regulation of CAAT/enhancer-binding protein-homologous protein (CHOP), suggesting the induction of ER stress. Pretreatment with N-acetyl cysteine (NAC) significantly inhibited withaferin A-mediated ER stress proteins and cell death, suggesting that reactive oxygen species (ROS) mediate withaferin A-induced ER stress. Furthermore, CHOP siRNA or inhibition of caspase-4 activity attenuated withaferin A-induced apoptosis. Taken together, the present study provides strong evidence supporting an important role of the ER stress response in mediating withaferin A-induced apoptosis.  相似文献   

9.
Exposure of human Jurkat T cells to MG132 caused apoptosis along with upregulation of Grp78/BiP and CHOP/GADD153, activation of JNK and p38MAPK, activation of Bak, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of caspase-12, -9, -3, -7, and -8, cleavage of Bid and PARP, and DNA fragmentation. However, these MG132-induced apoptotic events, with the exceptions of upregulation of Grp78/BiP and CHOP/GADD153 and activation of JNK and p38MAPK, were abrogated by overexpression of Bcl-xL. Pretreatment with the pan-caspase inhibitor z-VAD-fmk prevented MG132-induced apoptotic caspase cascade, but allowed upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of JNK and p38MAPK, Δψm loss, and cleavage of procaspase-9 (47 kDa) to active form (35 kDa). Further analysis using selective caspase inhibitors revealed that caspase-12 activation was required for activation of caspase-9 and -3 to the sufficient level for subsequent activation of caspase-7 and -8. MG132-induced cytotoxicity, apoptotic sub-G1 peak, Bak activation, and Δψm loss were markedly reduced by p38MAPK inhibitor, but not by JNK inhibitor. MG132-induced apoptotic changes, including upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of caspase-12, p38MAPK and Bak, and mitochondria-dependent activation of caspase cascade were more significant in p56lck-stable transfectant JCaM1.6/lck than in p56lck-deficient JCaM1.6/vector. The cytotoxicity of MG132 toward p56lck-positive Jurkat T cell clone was not affected by the Src-like kinase inhibitor PP2. These results demonstrated that MG132-induced apoptosis was caused by ER stress and subsequent activation of mitochondria-dependent caspase cascade, and that the presence of p56lck enhances MG132-induced apoptosis by augmenting ER stress-mediated apoptotic events in Jurkat T cells.  相似文献   

10.
Studies on chemoprevention of cancer are generating increasing interest. The anti-neoplastic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) involves cyclooxygenase (COX)-dependent and COX-independent mechanisms. Evidence suggests that mitogen-activated protein kinases (MAPKs) may mediate apoptotic signaling induced by anti-neoplastic agents. While many reports have revealed the existence of MAPK activation in apoptosis induced by various stimuli, the signaling transduction pathways used by NSAIDs to trigger apoptosis in human renal cell carcinoma (RCC) remain largely unknown. Treatment of RCC 786-O cells with indomethacin resulted in growth regression and apoptosis. Caspase-dependent apoptosis was evidenced by the detection of enzymatic activities of caspase-3, caspase-6, and caspase-9 and suppression of toxicity using a caspase inhibitor. Indomethacin treatment was associated with increased expression of glucose-regulated protein 78 (GRP78) and C/EBP homologus protein (CHOP) and activation of ATF-6, characteristics of endoplasmic reticulum stress. In addition, the concomitant induction of peroxisome proliferator-activated receptor (PPAR), especially PPAR-beta, was apparent in treated cells. Western blotting revealed the activation of extracellular signal-regulated kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK) with indomethacin treatment. Selective inhibitors of ERK, p38 MAPK, and JNK suppressed the induction of GRP78, CHOP, and PPAR-beta, attenuated indomethacin-induced cytotoxicity and reduced increased caspase activity. LY294002, a phosphoinositide-3 kinase (PI3K)/AKT inhibitor, and Trolox, an antioxidant, suppressed indomethacin-induced cytotoxicity and caspase activation. Furthermore, Trolox attenuated indomethacin-induced increased phosphorylation in ERK, p38 MAPK, JNK, and AKT. In conclusion, our findings establish a mechanistic link between the oxidative stress, PI3K/AKT pathway, MAPK pathway and indomethacin-induced cellular alterations and apoptosis in 786-O cells.  相似文献   

11.
Exposure of human Jurkat T cells to MG132 caused apoptosis along with upregulation of Grp78/BiP and CHOP/GADD153, activation of JNK and p38MAPK, activation of Bak, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of caspase-12, -9, -3, -7, and -8, cleavage of Bid and PARP, and DNA fragmentation. However, these MG132-induced apoptotic events, with the exceptions of upregulation of Grp78/BiP and CHOP/GADD153 and activation of JNK and p38MAPK, were abrogated by overexpression of Bcl-xL. Pretreatment with the pan-caspase inhibitor z-VAD-fmk prevented MG132-induced apoptotic caspase cascade, but allowed upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of JNK and p38MAPK, Δψm loss, and cleavage of procaspase-9 (47kDa) to active form (35kDa). Further analysis using selective caspase inhibitors revealed that caspase-12 activation was required for activation of caspase-9 and -3 to the sufficient level for subsequent activation of caspase-7 and -8. MG132-induced cytotoxicity, apoptotic sub-G(1) peak, Bak activation, and Δψm loss were markedly reduced by p38MAPK inhibitor, but not by JNK inhibitor. MG132-induced apoptotic changes, including upregulation of Grp78/BiP and CHOP/GADD153 levels, activation of caspase-12, p38MAPK and Bak, and mitochondria-dependent activation of caspase cascade were more significant in p56(lck)-stable transfectant JCaM1.6/lck than in p56(lck)-deficient JCaM1.6/vector. The cytotoxicity of MG132 toward p56(lck)-positive Jurkat T cell clone was not affected by the Src-like kinase inhibitor PP2. These results demonstrated that MG132-induced apoptosis was caused by ER stress and subsequent activation of mitochondria-dependent caspase cascade, and that the presence of p56(lck) enhances MG132-induced apoptosis by augmenting ER stress-mediated apoptotic events in Jurkat T cells.  相似文献   

12.
Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 microM)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 microM) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.  相似文献   

13.
Jiang C  Zhang S  Liu H  Zeng Q  Xia T  Chen Y  Kuang G  Zhao G  Wu X  Zhang X  Wang A 《Toxicology letters》2012,211(3):325-333
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants. As one of the dominant congeners, 2,2', 4,4'-tetrabromodiphenyl ether (PBDE-47) has been shown to be neurotoxic to neuronal cells although the mechanisms remain unclear. To test whether PBDE-47's toxicity was related to endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), human neuroblastoma cells (SH-SY5Y cells) were treated with different concentrations of PBDE-47. Reactive oxygen species (ROS), apoptosis and the expressions of the inositol-requiring enzyme 1 (IRE1) pathway-related molecules were detected. PBDE-47 exposure increased ROS production and activated the UPR by increasing the expressions of glucose-regulated protein 78 (GRP78), IRE1, X-box-binding protein-1 (XBP1), phosphorylation of c-jun N-terminal kinase (JNK) and GADD153/C/EBP homologous protein (CHOP) genes in SH-SY5Y cells. The apoptotic rate increased with the remarkable up-regulation of the Bax/Bcl-2 ratio after IRE1 knockdown, demonstrating the anti-apoptotic role of IRE1. Furthermore, the expressions of CHOP, XBP1 and JNK were down-regulated indicating that IRE1 may activate these key molecules related to apoptosis. PBDE-47 exposure can increase ROS production and activate the IRE1 pathway of the UPR in SH-SY5Y cells contributing to its toxicity. The IRE1 pathway may have both protective and proapoptotic effects on SH-SY5Y cells.  相似文献   

14.
Wu CC  Yen CC  Lee I  Su CC  Tang FC  Chen KL  Su YC  Chen YW 《Toxicology letters》2012,208(3):275-285
Oxidative stress was demonstrated to promote the progression of diabetes mellitus (DM). It has been suggested that copper may play a specific role in the progression and pathogenesis of DM. Pyrrolidine dithiocarbamate (PDTC), a widely apply to the medicine, was known to be capable of enhancing copper accumulation. In this study, we investigated the effect of submicromolar-concentration Cu2+/PDTC complex on pancreatic β-cell damage and evaluated the role of oxidative stress in this effect. CuCl2 (0.01-300 μM) did not affect the cell viability in β-cell line RIN-m5F cells. However, combination of CuCl2 (0.5 μM) and PDTC (0.3 μM) markedly reduced RIN-m5F cell viability. Cu2+/PDTC complex could also increase the LPO and decrease the intracellular reduced GSH levels, and display several features of apoptosis signals including: increase in sub-G1 cell population, annexin-V binding, and caspase-3 activity, mitochondrial dysfunctions, and the activation of PARP and caspase cascades, which accompanied with the marked increase the intracellular Cu2+ levels. These apoptotic-related responses of Cu2+/PDTC complex-induced could be effectively prevented by antioxidant N-acetylcysteine (NAC). Furthermore, Cu2+/PDTC complex was capable of increasing the phosphorylations of ERK1/2 and JNK, and its upstream kinase MEK1/2 and MKK4, which could be reversed by NAC. Transfection with ERK2- and JNK-specific si-RNA and specific inhibitors SP600125 and PD98059 could inhibit ERK1/2 and JNK activation and attenuate MMP loss and caspase-3 activity induced by the Cu2+/PDTC complex. Taken together, these results are the first report to demonstrate that the Cu2+/PDTC complex triggers a mitochondria-regulated apoptosis via an oxidative stress-induced ERK/JNK activation-related pathway in pancreatic β-cells.  相似文献   

15.
Cadmium is a toxic heavy metal that accumulates in the environment and is commonly found in cigarette smoke and industrial effluents. This study was designed to determine the role of reactive oxygen species (ROS) generation, and its antagonism by antioxidants, in cadmium-mediated cell signaling and apoptosis in murine macrophage cultures. Cadmium-generated ROS production was observed in J774A.1 cells at 6 h, reverting to control levels at 16 and 24 h. The ROS production was concentration related between 20 and 500 microM cadmium. Activation of caspase-3 was observed at 8 h and DNA fragmentation at 16 h in the presence of 20 microM cadmium, suggesting that caspase-3 activation is a prior step to DNA fragmentation in cadmium-induced apoptosis. Inhibitors of caspase-3, -8, -9, and a general caspase inhibitor suppressed cadmium-induced caspase-3 activation and apoptosis indicating the importance of caspase-3 in cadmium-induced toxicity in these cells. Protection against the oxidative stress with N-acetylcysteine (NAC) and silymarin (an antioxidant flavonoid) blocked cadmium-induced apoptosis. Pretreatment of cells with NAC and silymarin prevented cadmium-induced cell injury, including growth arrest, mitochondrial impairment, and necrosis, and reduced the cadmium-elevated intracellular calcium ([Ca2+]i), suggesting that the oxidative stress is a source of increased [Ca2+]i. NAC inhibited cadmium-induced activation of mitogen-activated protein kinases, the c-Jun NH2-terminal protein kinase (JNK) and extracellular signal-regulated kinase (ERK). However, silymarin provided only a partial protection for JNK activation, and only at the low concentration did it inhibit cadmium-induced ERK activation. Inhibition of caspase-3 protected oxidative stress produced by cadmium, suggesting that the activation of caspase-3 also contributes to generation of reactive oxygen species (ROS). Results emphasized the role of ROS, Ca2+ and mitogen-activated protein kinases in cadmium-induced cytotoxicity in murine macrophages.  相似文献   

16.
目的探讨内质网应激是否参与亚砷酸钠(NaAsO2)神经毒性损伤,明确3-巯基丙酮酸硫转移酶(3-mercaptopyruvate sulfurtransferase,MPST)过表达是否调节砷诱导的内质网应激。方法通过构建MPST基因慢病毒表达载体来获得稳定表达外源MPST基因的SH-SY5Y细胞株作为SH-MPST过表达组,另设空载体转染细胞为SH-PEB组,染砷组(NaAsO2组),内质网应激阻断剂TUDCA组,TUDCA预处理染砷组。Western blot法分别检测过表达MPST、染砷及TUDCA预处理后细胞内GRP78和CHOP蛋白表达的变化。结果单纯MPST过表达不影响SH-SY5Y细胞内GRP78、CHOP蛋白的表达水平;经NaAsO2处理后,SH-PEB细胞内GRP78、CHOP蛋白明显上调(P<0.01),而被内质网应激阻断剂TUDCA所拮抗;MPST过表达则抑制砷对GRP78、CHOP蛋白的上调(P<0.01);然而,TUDCA预处理则明显逆转MPST过表达对GRP78、CHOP蛋白的影响(P<0.01)。结论GRP78/CHOP内质网应激通路参与了砷诱导的神经毒性损伤;MPST过表达可降低砷诱导的内质网应激水平。  相似文献   

17.
目的:研究丙泊酚对苯肾上腺素(phenylephrine, PE)诱导H9C2心肌细胞的影响及机制。方法:H9C2细胞均分为5组,PE诱导细胞凋亡模型,用0.5,1,1.5 mmol·L-1丙泊酚预处理。采用流式细胞术检测凋亡率;RT-qPCR检测GRP78/PERK/CHOP通路的mRNA表达;蛋白质印迹检测GRP78/PERK/CHOP通路蛋白、caspase-12、caspsae-3、SERCA2a的表达;定磷法检测SERCA2a活性。结果:PE诱导心肌细胞凋亡率升高,GRP78/PERK/CHOP通路mRNA及蛋白表达升高,caspase-12、caspsae-3表达升高,SERCA2a蛋白表达及活性降低,差异有统计学意义(P均<0.05)。中、高浓度的丙泊酚可明显逆转PE诱导的上述指标变化,且差异有统计学意义(P均<0.05)。结论:丙泊酚通过恢复SERCA2a的活性及表达量、抑制GRP78/PERK/CHOP通路,降低PE诱导的心肌细胞凋亡。  相似文献   

18.
We previously found that human chymase cleaves big endothelins (ETs) at the Tyr(31)-Gly(32) bond and produces 31-amino acid ETs (1-31), without any further degradation products. In the present study, we investigated the effects of various antioxidants on the ET-1 (1-31)-induced change in intracellular signaling and proliferation of cultured rat aortic smooth muscle cells (RASMC). ET-1 (1-31) stimulated rapid and significant activation of the mitogen-activated protein (MAP) kinase family, i.e. extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK, in RASMC to an extent similar to that of ET-1. All of the antioxidants examined, i.e. N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), and L-(+)-ascorbic acid (ascorbic acid), inhibited both ET-1 (1-31)- and ET-1-induced JNK and p38 MAPK activation but not ERK1/2 activation. Electron paramagnetic resonance (EPR) spectroscopy measurements revealed that NAC, DPI, and ascorbic acid inhibited xanthine oxidase-induced superoxide (O(2)(.-)) generation in a cell-free system. ET-1 (1-31) in addition to ET-1 increased the generation of cellular reactive oxygen species (ROS) in RASMC. ET-1 (1-31)- and ET-1-induced cellular ROS generation was inhibited similarly by NAC, DPI, and ascorbic acid in RASMC. Gel-mobility shift analysis showed that ET-1 (1-31) and ET-1 caused an increase in activator protein-1 (AP-1)-DNA binding activity in RASMC that was inhibited by the above three antioxidants. ET-1 (1-31) increased [3H]thymidine incorporation into cells to an extent similar to that of ET-1. This ET-1 (1-31)-induced increase in [3H]thymidine incorporation was also inhibited by NAC and DPI, but not by ascorbic acid. These results suggest that antioxidants inhibit ET-1 (1-31)-induced RASMC proliferation by inhibiting ROS generation within the cells. The underlying mechanisms of the inhibition of cellular proliferation by antioxidants may be explained, in part, by the inhibition of JNK activation and the resultant inhibition of AP-1-DNA binding.  相似文献   

19.
Monosodium glutamate (MSG) is a flavor enhancer, largely used in the food industry and it was reported to have excitotoxic effects. Higher amounts of MSG consumption have been related with increased risk of many diseases, including Chinese restaurant syndrome and metabolic syndromes in human. This study investigated the protective effects of N-acetylcysteine (NAC) on MSG-induced cytotoxicity in C6 astrocytic cells. MSG (20 mM)-induced reactive oxygen species (ROS) generation and apoptotic cell death were significantly attenuated by NAC (500 μM) pretreatment. NAC effectively inhibited the MSG-induced mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. In addition, NAC significantly attenuated MSG-induced endoplasmic reticulum (ER) stress markers, such as XBP1 splicing and CHOP, PERK, and GRP78 up-regulation. Furthermore, NAC prevented the changes of MSG-induced Bcl-2 expression level. These results suggest that NAC can protect C6 astrocytic cells against MSG-induced oxidative stress, mitochondrial dysfunction, and ER stress.  相似文献   

20.
Many anticancer agents as well as ionizing radiation have been shown to induce autophagy which is originally described as a protein recycling process and recently reported to play a crucial role in various disorders. In HCT116 human colon cancer cells, we found that curcumin, a polyphenolic phytochemical extracted from the plant Curcuma longa, markedly induced the conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II and degradation of sequestome-1 (SQSTM1) which is a marker of autophagosome degradation. Moreover, we found that curcumin caused GFP-LC3 formation puncta, a marker of autophagosome, and decrease of GFP-LC3 and SQSTM1 protein level in GFP-LC3 expressing HCT116 cells. It was further confirmed that treatment of cells with hydrogen peroxide induced increase of LC3 conversion and decrease of GFP-LC3 and SQSTM1 levels, but these changes by curcumin were almost completely blocked in the presence of antioxidant, N-acetylcystein (NAC), indicating that curcumin leads to reactive oxygen species (ROS) production, which results in autophagosome development and autolysosomal degradation. In parallel with NAC, SQSTM1 degradation was also diminished by bafilomycin A, a potent inhibitor of autophagosome-lysosome fusion, and cell viability assay was further confirmed that cucurmin-induced cell death was partially blocked by bafilomycin A as well as NAC. We also observed that NAC abolished curcumin-induced activation of extracelluar signal-regulated kinases (ERK) 1/2 and p38 mitogen-activated protein kinases (MAPK), but not Jun N-terminal kinase (JNK). However, the activation of ERK1/2 and p38 MAPK seemed to have no effect on the curcumin-induced autophagy, since both the conversion of LC3 protein and SQSTM1 degradation by curcumin was not changed in the presence of NAC. Taken together, our data suggest that curcumin induced ROS production, which resulted in autophagic activation and concomitant cell death in HCT116 human colon cancer cell. However, ROS-dependent activation of ERK1/2 and p38 MAPK, but not JNK, might not be involved in the curcumin-induced autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号