首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM: To investigate the possibility of dihydropyridine inhibition of N-type calcium channels. METHODS: Effects of nifedipine and nicardipine on the high K(+)-induced intracellular Ca2+ concentration ([Ca2+]i) increase were studied by measuring [Ca2+]i using the fluorescent indicator Fura-2. RESULTS: Pretreatment of cells with nifedipine 50 mumol.L-1 inhibited the high K(+)-induced [Ca2+]i transient by about 60% (n = 3); however, pretreatment of cells with nicardipine 10 mumol.L-1 completely prevented the high K(+)-evoked [Ca2+]i increase in dibutyryl cyclic AMP (dbcAMP)-differentiated NG 108-15 cells (n = 5). The high K(+)-induced [Ca2+]i increase was mediated by L- and N-type voltage-sensitive calcium channels (VSCC) in NG 108-15 cells. CONCLUSION: Nicardipine at micromolar range inhibited both L- and N-type VSCC in dbcAMP-differentiated NG 108-15 cells whereas nifedipine mainly inhibited L-type calcium channels.  相似文献   

2.
By fura-2 fluorometry, we investigated the direct effects of Ca2+ antagonists including a new benzothiazepine, clentiazem, on the high-K(+)-evoked increase in the concentration of cytosolic free Ca2+ ([Ca2+]i) in rat cerebral synaptosomes and cultured hippocampal neurons. In both preparations, metal ions inhibited the high-K(+)-induced increase in [Ca2+]i, in the following order: La3+ greater than Cd2+ much greater than Ni2+. Although flunarizine and nicardipine inhibited the K(+)-induced increase in [Ca2+]i in synaptosomes, other Ca2+ antagonists, including clentiazem and nitrendipine, had little effect at 10 microM. In hippocampal neurons, clentiazem inhibited the K(+)-induced increase in [Ca2+]i at 10 microM, as did flunarizine and nicardipine. However, nifedipine and nitrendipine had little effect in either cultured neurons or in synaptosomes.  相似文献   

3.
The maintenance of intracellular Ca2+ homeostasis is critical to many cellular functions that rely on the calcium ion as a messenger. While attempting to characterize the effects of lead on intracellular calcium levels ([Ca2+]i) in LLC-MK2 Rhesus Monkey kidney cells, we observed that treatment with the metal chelating drug, meso-2,3-dimer-captosuccinic acid (DMSA) evoked transient increases in [Ca2+]i. Changes in [Ca2+]i were monitored using the Ca2+ indicator dye Fura-2 and a dual wavelength fluorescence imaging system. In the presence of 2 mM extracellular Ca2+, DMSA treatment caused a concentration-dependent (15-500 microM) transient increase in [Ca2+]i returning to baseline levels within 30-60 s. Pharmacologic concentrations of DMSA (30 microM) stimulated a three-fold increase in [Ca2+]i, which was spatiotemporally comparable to Ca2+ transients induced by other calcium agonists. Depletion of inositol trisphosphate (IP3)-sensitive [Ca2+]i stores with the smooth endoplasmic reticulum calcium-ATPase (SERCA) inhibitor thapsigargin did not prevent DMSA-elicited increases in [Ca2+]i, suggesting that Ca2+ mobilized by DMSA was either extracellular or from an non-IP3 releasable Ca2+ pool. Treatment with glutathione, cysteine, or 2-mercaptoethanol caused similar but not identical calcium transients. Adenosine-5'-trisphosphate (ATP) also elicited transient increases in [Ca2+]i similar to those of DMSA. No transient increases in [Ca2+]i were elicited by DMSA or ATP in the absence of extracellular calcium. These data indicate that DMSA and other sulfhydryl compounds trigger an influx of extracellular calcium, suggesting a previously unobserved and unanticipated interaction between DMSA and the Ca2+ messenger system.  相似文献   

4.
We investigated the involvement of reactive oxygen species (ROS) and intracellular calcium in nephrotoxicity related to an antitumor agent, cisplatin. In this study, we employed cultured renal epithelial cells (LLC-PK1). Cisplatin at 500 microM significantly increased the production of ROS 5 h and caused cell injury. This agent significantly increased the intracellular calcium level ([Ca2+]i) in a dose-dependent manner 1 h or more after exposure. DPPD (N,N'-diphenyl-p-phenylenediamine), an antioxidant, inhibited a cisplatin-related increase in active oxygen production and cell injury but did not inhibit an early increase in the [Ca2+]i level. An intracellular calcium-chelating compound BAPTA-AM (1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester) inhibited an increase in ROS production and cell injury induced by cisplatin. Furthermore, BAPTA-AM suppressed the rise of [Ca2+]i level in 1 h after exposure; however, an extracellular calcium chelator EGTA and a calcium antagonist nicardipine did not inhibit the rise in [Ca2+]i level in the early phase. An NADPH oxidase inhibitor inhibited a cisplatin-related increase in ROS production and cell disorder. These results suggest that cisplatin-related calcium release from the site of intracellular calcium storage in the early phase causes oxidative stress in renal tubular epithelial cells. Cisplatin may increase the intracellular production of ROS via NADPH oxidase.  相似文献   

5.
We investigated the effects of levcromakalim, a K+ channel opener, on [Ca2+]i and the contractile force of basilar arteries obtained from normal dogs and subarachnoid hemorrhage (SAH) dogs. The responsiveness to serotonin was increased more in the SAH group than in the control group. Levcromakalim decreased the resting [Ca2+]i and force more profoundly than did a Ca2+ channel blocker, nicardipine, and these effects were more prominent in the SAH group than in the control group. Levcromakalim diminished the increases in [Ca2+]i and contractile force induced by serotonin more profoundly than nicardipine did, and these effects were equal in both groups. The effects of levcromakalim were not inhibited by iberiotoxin but were antagonized completely by glibenclamide. These results suggest that levcromakalim-induced opening of adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels reduces [Ca2+]i more effectively than does nicardipine and that levcromakalim exerts the vasodilator effects under the condition in which large conductance Ca2+-activated K+ (BK) channels are blocked with iberiotoxin. Consequently, K+ channel openers like levcromakalim may be useful drug candidates to treat delayed cerebral vasospasm after SAH.  相似文献   

6.
1. The effect of maprotiline, an antidepressant, on human prostate cells is unclear. In the present study, the effect of maprotiline on [Ca2+]i and growth in PC3 human prostate cancer cells was measured using the fluorescent dyes fura-2 and tetrazolium, respectively. 2. Maprotiline caused a rapid, concentration-dependent increase in [Ca2+]i (EC50 = 200 micromol/L). The maprotiline-induced [Ca2+]i increase was reduced by removal of extracellular Ca2+ or pretreatment with nicardipine. 3. The maprotiline-induced Mn2+ influx-associated fura-2 fluorescence quench directly suggests that maprotiline caused Ca2+ influx. 4. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i increase, after which the effects of maprotiline of increasing [Ca2+]i were abolished. In addition, pretreatment with maprotiline reduced a major portion of the thapsigargin-induced increase in [Ca2+]i. 5. U73122, an inhibitor of phospholipase C, abolished the ATP (but not maprotiline)-induced increase in [Ca2+]i. 6. Overnight incubation with 1-10 micromol/L maprotiline did not alter cell proliferation, although incubation with 30-50 micromol/L maprotiline decreased cell proliferation. 7, These findings suggest that maprotiline rapidly increases [Ca2+]i in human prostate cancer cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release and that it may modulate cell proliferation in a concentration-dependent manner.  相似文献   

7.
Nordihydroguaiaretic acid (NDGA) is widely used as a pharmacological tool to inhibit lipoxygenases; however, recent evidence suggests that it increases renal intracellular [Ca2+]i via novel mechanisms. Here the effect of NDGA on Ca2+ signaling in MG63 osteoblastic cells was explored using fura-2 as a Ca2+ indicator. NDGA (2-50 microM) increased [Ca2+]i in a concentration-dependent manner. The signal comprised an initial rise and an elevated phase over a time period of 4 min. Removing extracellular Ca2+ reduced 2-50 microM NDGA-induced signals by 62+/-2%. After incubation with 50 microM NDGA in Ca2+-free medium for several minutes, addition of 3 mM CaCl2 induced an increase in [Ca2+]i. NDGA (50 microM)-induced [Ca2+]i increases were not changed by pretreatment with 10 microM of verapamil, diltiazem, nifedipine, nimodipine and nicardipine. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (1 microM) inhibited 50 microM NDGA-induced [Ca2+]i increases by 69+/-3%. Inhibition of phospholipase C with 2 microM U73122 had little effect on 50 microM NDGA-induced Ca2+ release. Several other lipoxygenase inhibitors had no effect on basal [Ca2+]i. At a concentration that did not increase basal [Ca2+]i, NDGA (1 microM) did not alter 10 microM ATP- or 1 microM thapsigargin-induced [Ca2+]i increases. Alteration of protein kinase C activity with 1 nM phorbol 12-myristate 13-acetate or 2 microM GF 109203X did not affect 50 microM NDGA-induced [Ca2+]i increases. Together, the results show that NDGA increased [Ca2+]i in osteoblasts in a lipoxygenase-independent manner, by releasing stored Ca2+ in a fashion independent of phospholipase C activity, and by causing Ca2+ influx.  相似文献   

8.
1. We have investigated the effect of propofol, an intravenous anaesthetic, on the intracellular calcium concentration ([Ca2+]i), Ca2+ entry pathways and on inositol phosphate formation in vascular smooth muscle cells. [Ca2+]i and Ca2+ flux were monitored with the Ca(2+)-sensitive fluorescent dye, fura-2, and by 45Ca2+ uptake. Production of labelled inositol phosphates was analysed by anion-exchange chromatography. 2. Treatment of the cells with endothelin-1 (ET-1) increased formation of inositol phosphates and elevated [Ca2+]i due to both release of Ca2+ from intracellular pools and prolonged entry of Ca2+ from outside the cell. Propofol reduced production of inositol phosphates mediated by ET-1 and arginine vasopressin which activate phospholipase C. 3. The sustained Ca2+ entry stimulated by ET-1 was found to occur through the activation of L-type Ca channels. This was inhibited by propofol in a dose-dependent manner. 4. Activation of protein kinase C (PKC) by phorbol esters activated a pharmacologically-similar channel and produced a similar change in [Ca2+]i due to Ca2+ entry. The entry was blocked by an L-type channel antagonist, nicardipine and by the anaesthetic drug, propofol. 5. Treatment of the cells with thapsigargin, a selective inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, also elevated [Ca2+]i by inducing the release of intracellular Ca2+ and the continued entry of extracellular Ca2+ through a nicardipine-insensitive Ca channel. Neither release nor entry induced by thapsigargin was affected by propofol. 6. These findings suggest that propofol selectively inhibits Ca2+ entry through the L-type channel induced by ET-1 and phorbol esters but has no effects on Ca2+ entry via the nicardipine-insensitive channel and on Ca2+ release from intracellular pools initiated by thapsigargin. This may represent one of the mechanisms responsible for propofol-induced vasodilatation.  相似文献   

9.
Kupffer cells contain voltage-dependent calcium channels.   总被引:13,自引:0,他引:13  
Kupffer cells, the resident hepatic macrophages, are activated by calcium, but conclusive evidence that they contain voltage-dependent calcium channels has not been presented previously. In this study, the cytosolic free calcium concentration ([Ca2+]i) of cultured Kupffer cells was measured with the fluorescent Ca2+ indicator fura-2. Partial replacement of extracellular Na+ by K+ caused an increase in [Ca2+]i in a concentration-dependent manner (half-maximal effect at 81 mM K+), presumably due to membrane depolarization. At 65 mM K+, where there were minimal changes in [Ca2+]i, addition of the dihydropyridine-type calcium channel agonist BAY K 8644 (1 microM) caused a large increase in [Ca2+]i. Overall, the effect of BAY K 8644 (1 microM) was to shift the concentration-response curve for K+ to the left (half-maximal effect at 61 mM K+). Under depolarizing conditions (65 mM K+), BAY K 8644 increased [Ca2+]i in a concentration-dependent manner (half-maximal effect at approximately 400 nM BAY K 8644). Moreover, the dihydropyridine-type calcium channel blocker nitrendipine inhibited the BAY K 8644-induced increase in [Ca2+]i in a concentration-dependent manner (half-maximal inhibition with about 25 nM nitrendipine). When extracellular Ca2+ was omitted from the incubation medium, the increases in [Ca2+]i due to BAY K 8644 were prevented completely. In addition, an intracellular Ca2+ antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (200 microM), did not inhibit the BAY K 8644-sensitive, voltage-dependent increase in [Ca2+]i. Thus, these data collectively indicate that BAY K 8644 causes a transmembrane Ca2+ influx in Kupffer cells in a voltage-dependent manner, providing the first direct evidence that Kupffer cells contain L-type voltage-dependent Ca2+ channels.  相似文献   

10.
粉防己碱对大鼠心肌细胞电压依赖性钙通道的作用   总被引:6,自引:0,他引:6  
运用钙离子荧光指示剂Fura-2/AM,检测了粉防己碱(Tet)对成年大鼠心室肌细胞电压依赖性钙通道的影响。结果显示:基础状态下心肌细胞内钙离子([Ca2+]i)为162.6±7.3nmol·L-1,50mmol·L-1氯化钾能使[Ca2+]i增加至480.8±9.3nmol·L-1(P<0.01),在无细胞外钙条件下,这种增加作用消失,而预先给予Tet和维拉帕米(Ver)则能阻断高钾升高[Ca2+]i的作用。结果提示:Tet是通过阻断电压依赖性钙通道而发挥作用的。  相似文献   

11.
The effects of 12 Ca(2+) antagonists on MDR1 were examined by two independent models: the inhibitory effect on MDR1-mediated transport of [(3)H]digoxin using MDR1-overexpressing LLC-GA5-COL150 cell monolayers and the reversal effect on cytotoxicity of vinblastine or paclitaxel using MDR1-overexpressing Hvr100-6 cells. The inhibitory effects on [(3)H]digoxin transport were assessed as the 50% inhibitory concentration during 4 h exposure, and the values were the lowest for nicardipine (4.54 microM), manidipine (4.65 microM) and benidipine (4.96 microM), followed by bepridil (10.6 microM), barnidipine (12.6 microM), efonidipine (13.0 microM), verapamil (13.2 microM) and nilvadipine (18.0 microM). The reversal effect on cytotoxicity was assessed by the 50% growth inhibitory concentration after 3 days exposure, and the resistance to vinblastine or paclitaxel in Hvr100-6 cells was reversed by manidipine, verapamil, benidipine, barnidipine, and nicardipine, in that order. Bepridil, barnidipine, efonidipine, verapamil and nilvadipine showed similar inhibitory effects on [(3)H]digoxin transport, but barnidipine and verapamil showed a stronger effect in reversal of cytotoxicity. Real-time quantitative RT-PCR assay indicated a decrease in MDR1 mRNA expression by barnidipine and verapamil. It is concluded that Ca(2+) antagonists cannot only be direct inhibitors of MDR1 but that some may at the same time act as inhibitors of expression of MDR1 via down-regulation of MDR1 mRNA.  相似文献   

12.
1. The effects of ryanodine on changes in cytoplasmic Ca2+ level ([Ca2+]i) and muscle tension induced by maximum concentrations of phenylephrine (Phe; 1 microM), prostaglandin F2 alpha (PGF2 alpha, 10 microM), caffeine (Caf, 30 mM) and isoprenaline (Iso, 1 microM) were examined in rat aortic strips using fura-2. 2. In normal media, Phe and PGF2 alpha produced a phasic contraction, followed by a tonic one. Caf elicited only a transient contraction. When the preparation was treated with 10 microM ryanodine, an increase in [Ca2+]i was induced accompanied by a nicardipine (1 microM)-resistant contraction which was [Ca2+]o-dependent. 3. In Ca2(+)-free solution, the three stimulants elicited transient increases in [Ca2+]i. Transient contractions to Phe and Caf were accompanied by changes in [Ca2+]i. The transient increase in [Ca2+]i induced by PGF2 alpha was not accompanied by a corresponding contraction. 4. Sustained contractions were induced by Phe and PGF2 alpha in the absence of external Ca2+, while the increase in [Ca2+]i was reduced. A larger maximum contraction was induced by PGF alpha than by Phe. 5. Ryanodine abolished both the Caf- and Phe-induced [Ca2+]i transient increases and the corresponding contractions, but had no substantial effect on the PGF2 alpha-induced [Ca2+]i transient increase. Ryanodine had no influence on the sustained contractions induced by Phe and PGF2 alpha. 6. Iso relaxed both sustained contractions almost completely, without any detectable change in [Ca2+]i. Treatment of the preparation with ryanodine had no effect on the concentration-response curves for Iso in relaxing the 0.1 microM Phe- or 40 mM K(+)-induced precontraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated the effects of bifemelane, a nootropic drug, on the intracellular calcium concentration ([Ca2+]i) in rat cerebral astrocytes using a Ca2+ imaging device. At concentrations of 10 - 30 microM, bifemelane induced a slow onset and small increase in the [Ca2+]i, while at higher concentrations (100 - 300 microM), it induced a rapid transient increase in the [Ca2+]i during administration and a second large increase was seen during drug washout. The first peak was observed in Ca2+-free medium, but its onset was significantly delayed, and no second peak was seen. Neither of these effects was seen in cells treated with thapsigargin, a specific inhibitor of endoplasmic reticulum Ca2+-ATPase, in Ca2+-free medium. When thapsigargin-treated astrocytes were returned to normal medium containing Ca2+ (1.8 mM), the [Ca2+]i increased significantly, and this effect was reversely inhibited by bifemelane. We conclude that bifemelane causes the first peak by stimulating release from intracellular Ca2+ stores and the second by capacitive entry through store-operated Ca2+ channels. Although the detail mechanisms of action of the drug are still unknown, bifemelane will be provided as a pharmacological tool for basic studies on astrocytes.  相似文献   

14.
The anti-estrogenic drug tamoxifen, which is used therapeutically for treatment and prevention of breast cancer, can lead to the development of thrombosis. We found that tamoxifen rapidly increased intracellular free calcium [Ca2+]i in human platelets from both male and female donors. Thus 10 microM tamoxifen increased [Ca2+]i above the resting level by 197 +/- 19%. Tamoxifen acted synergistically with thrombin, ADP, and vasopressin to increase [Ca2+]i. The anti-estrogen ICI 182780 did not attenuate the effects of tamoxifen to increase [Ca2+]i; however, phospholipase C inhibitor U-73122 blocked this effect. 4-hydroxytamoxifen, a major metabolite of tamoxifen, also increased [Ca2+]i, but other tamoxifen metabolites and synthetic derivatives did not. Three hydroxylated derivatives of triphenylethylene (corresponding to the hydrophobic core of tamoxifen) which are transitional structures between tamoxifen (Ca agonist) and diethylstilbestrol (Ca antagonist) increased [Ca2+]i slightly (6% to 24%) and partially inhibited thrombin-induced [Ca2+]i elevation (68% to 79%). Therefore the dimethylaminoethyl moiety is responsible for tamoxifen being a Ca agonist rather than antagonist. 4-Hydroxytamoxifen and polymer-conjugated derivatives of 4-hydroxytamoxifen increased [Ca2+]i, with similar efficacy. The ability of tamoxifen to increase [Ca2+]i in platelets, leading to platelet activation, and its ability to act synergistically with other platelet agonists may contribute to development of tamoxifen-induced thrombosis.  相似文献   

15.
The cardiac antidysrrhythmic drug amiodarone can give rise to potentially fatal pulmonary toxicity in large numbers of patients. The effect of amiodarone on Ca2+ homeostasis and cell injury has been studied using human pulmonary artery endothelial (HPAE) cells in vitro. Amiodarone produced a concentration-dependent increase in intracellular free Ca2+ concentration ( [Ca2+]i) to micromolar levels that are similar to those seen with physiological stimuli that increase [Ca2+]i. Unlike physiological stimuli, the rise in [Ca2+]i produced by amiodarone developed slowly and was maintained over at least 30 min. Omitting Ca2+ from the external medium reversibly prevented the amiodarone-induced rise in [Ca2+]i. Amiodarone treatment increased the apparent first order rate constants for 45Ca2+ influx and efflux in intact HPAE cells. 45Ca2+ accumulation into the endoplasmic reticulum of saponin-permeabilized HPAE cells was decreased by amiodarone treatment. The release of 45Ca2+ from the endoplasmic reticulum stores by the putative intracellular second messengers inositol-1,4,5-trisphosphate, arachidonic acid, and Ca2+ was blocked by amiodarone treatment. The changes in Ca2+ homeostasis coincide with an increase in [3H]deoxyglucose release as a measure of early cell injury by amiodarone. It is concluded that amiodarone can produce an increase in [Ca2+]i by an action on the plasma membrane that allows the influx of external Ca2+. This increase in [Ca2+]i, together with other changes in Ca2+ homeostasis, may be responsible for the early cell injury associated with amiodarone toxicity.  相似文献   

16.
Intracellular calcium [Ca2+]i acts as an important intracellular messenger system for secretion and synthesis, cell growth and differentiation. In order to demonstrate definitively that a change in [Ca2+]i is responsible for a physiological event, one has to measure [Ca2+]i directly within intact cells and correlate the time course of any [Ca2+]i changes with the biological response. Measurement of [Ca2+]i was done in a single cell preloaded with fluorescent Ca indicator fura2 using a fluorescent unit (lonoquant) consisting of an inverted microscope (Zeiss IM 35) equipped with a mercury lamp and a rotating filter wheel containing filters at wavelengths of 340 and 380 nm. Cells were alternately excited and emission signals of fura 2-loaded cells were collected by a photomultiplier and recorded on-line on a computer screen. As a model system, the rat C-cell carcinoma cell line rMTC 6-23 secreting calcitonin was used. An acute elevation of extracellular calcium resulted in an increase in [Ca2+]i within 5 sec and rapid release of preformed calcitonin. This tight linkage between extracellular calcium and [Ca2+]i is mediated via Ca influx through voltage-dependent Ca channels. These channels are modulated by intracellular cAMP, yielding a rhythmic oscillation of [Ca2+]i, as well as by extracellular somatostatin blocking the Ca channel and the increase of [Ca2+]i via a pertussis toxin sensitive Gi protein. The change in [Ca2+]i is associated with changes in calcitonin secretion, confirming the stimulus secretion coupling via voltage-dependent Ca channels in C-cells.  相似文献   

17.
The effects of tri-n-butyltin chloride (TBT), an environmental pollutant, on cytoplasmic free calcium ion concentration ([Ca2+]i) were investigated in primary cultured rat hepatocytes. A high concentration (4.0 microM) of TBT increased resting levels of [Ca2+]i and then induced cell blebs resulting in cell death within 2 h. The increase in [Ca2+]i, but not the cell death, depended on the presence of extracellular Ca2+, suggesting that the increase in [Ca2+]i is not critical for the cytotoxicity of TBT. A low concentration (0.1 microM) of TBT did not have any toxic effect (decrease in ATP content, decrease in viability, and shape change) on cultured hepatocytes and did not change [Ca2+]i. However, the calcium responses induced by phenylephrine, [Arg8]-vasopressin, and ATP were suppressed in the cells pretreated with 0.1 microM TBT for 30 min. The suppression was not observed in the cells pretreated with 0.1 microM TBT for only 1 min. Pretreatment with 0.1 microM TBT for 30 min had no effect on the inositol 1,4,5-triphosphate content or its increase in response to hormonal stimulation. These results suggest that TBT suppresses hormone-induced calcium responses at nontoxic low concentrations.  相似文献   

18.
1. Cytosolic calcium concentrations ([Ca2+]i) were determined with fura-2 on both resting (unstimulated) and A23187-stimulated coronary endothelial cells following injury by hydrogen peroxide (H2O2). 2. Treatment of cells with H2O2 (10(-4) M) caused an increase in the resting [Ca2+]i, which reached a maximum of five fold after 3 h. 3. The increase in resting [Ca2+]i was significantly attenuated by treatment with U78517F, a potent inhibitor of lipid peroxidation, at a concentration of 10(-6) M or greater. Catalase (50 u ml-1) also markedly inhibited the H2O2-induced rise in [Ca2+]i. Pretreatment with verapamil (10(-5) M), nifedipine (10(-6) M) or diltiazem (10(-5) M) had no effect on the increase in [Ca2+]i following addition of H2O2. 4. A23187 produced a transient increase in [Ca2+]i followed by a sustained plateau. The initial peak and plateau phase responses to A23187 were augmented by H2O2. This augmentation of [Ca2+]i was suppressed by U78517F or catalase but not by Ca-entry blockers. 5. Thus, it is likely that lipid peroxidation plays a critical role in the sustained increase in [Ca2+]i that occurs following treatment with H2O2 and that this continues in the presence of agonists which stimulate the endothelium. Voltage-gated Ca2+ channels do not seem to be involved in the genesis of cellular damage associated with sustained large increases in [Ca2+]i.  相似文献   

19.
Recent studies from the laboratory indicate that polychlorinated biphenyl (PCB) congeners can alter signal transduction and calcium homeostasis in neuronal preparations. These effects were more pronounced for the ortho-substituted, non-coplanar congeners, although the mechanisms underlying these effects are not clear. In the present study the time-course and concentration-dependent effects of coplanar and non-coplanar PCBs on intracellular free calcium concentration ([Ca2+]i) in cerebellar granule cell cultures were compared using the fluorescent probe fura-2. The ortho-substituted congeners 2,2'-dichlorobiphenyl (DCB) and 2,2',4,6,6'-pentachlorobiphenyl (PeCB) caused a gradual increase of [Ca2+]i while the non-ortho-substituted congeners 4,4'-DCB and 3,3',4,4',5-PeCB had no effect. The increase of [Ca2+]i produced by 2,2'-DCB was time- and concentration-dependent. Further studies examined possible mechanisms for this rise in [Ca2+]i. In contrast to the muscarinic agonist carbachol, the effects of 2,2'-DCB on [Ca2+]i were not blocked by thapsigargin and required the presence of extracellular calcium. The effects of ortho-substituted PCBs may depend on their ability to inhibit calcium sequestration as 2,2'-DCB significantly inhibited 45Ca2+-uptake by microsomes and mitochondria while 3,3',4,4',5-PeCB had no effect. In addition, 2,2'-DCB significantly increased the binding of [3H]inositol 1,4,5-trisphosphate to receptors on cerebellar microsomes, suggesting another possible mechanism by which ortho-substituted PCBs can mobilize [Ca2+]i. These results show that PCBs increase [Ca2+]i in vitro via a mechanism that requires extracelluar calcium, and support previous structure-activity studies indicating that ortho-substituted PCBs are more potent than non-ortho-substituted PCBs.  相似文献   

20.
The direct vascular effect of pneumadin (PN) was determined by studying the changes in intracellular free calcium ([Ca2+]i) levels in cultured rat aortic smooth muscle cells maintained between the second and fifth passages. PN evoked a rapid, concentration-dependent, biphasic increase in [Ca2+]i. The [Ca2+]i level rose from a basal value of 108 nM to a maximum increase in peak value of 170 nM. Although the level of maximal [Ca2+]i response evoked by PN was less than with other vasoactive agonists, it was more potent (EC50 0.5 nM) than even endothelin-1 (EC50 3.1 nM). At concentrations > 100 nM, [Ca2+]i elevations induced by PN above basal levels were no longer observed. Pretreatment with dexamethasone (100 nM for 24 hr) resulted in a significant increase (P < 0.01) in the peak [Ca2+]i response (310 nM) to PN. However, the biphasic pattern in the peak [Ca2+]i responses encountered with increasing concentrations of PN remained unaffected. The exaggerated [Ca2+]i response to PN was abolished by preincubation of cells with either the glucocorticoid antagonist mifepristone (RU 486) or the protein synthesis inhibitor cycloheximide. Inclusion of either an AT1 antagonist (losartan), a V1 selective vasopressin antagonist (d(Ch2)5 Tyr (Me) AVP), or an alpha-adrenoceptor antagonist (phentolamine) failed to affect the increases in [Ca2+]i induced by PN. PN-evoked increases in inositol 1,4,5-trisphosphate levels paralleled the [Ca2+]i changes. These data suggest that PN increases Ca2+ mobilization in rat aortic smooth muscle cells via activation of phospholipase C coupled receptors. This effect is up-regulated by dexamethasone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号