首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formoterol has a similar onset of effect to salbutamol but a prolonged duration of action. However, the relative efficacy of the two drugs in acute severe asthma is not known. This double-blind, double-dummy study compared the safety and efficacy of the maximum recommended daily dose of formoterol and a predicted equivalent dose of salbutamol in 88 patients presenting to the emergency department with acute severe asthma. Patients were randomized to formoterol 54 microg via Turbuhaler or salbutamol 2400 microg via pressurized metered dose inhaler (pMDI) plus spacer in three equal doses over 1 h. Following the full dose, mean FEV1 at 75 min increased by 37% for formoterol and 28% for salbutamol (P = 0.18). The maximum increase in FEV1 over 4 h was significantly greater with formoterol compared with salbutamol (51% vs. 36%, respectively P < 0.05) and formoterol was as effective as salbutamol at improving symptoms and wellbeing. Both treatments were well tolerated. Formoterol caused a greater decrease in serum potassium (difference -0.2 mmol/l). In severe acute asthma, bronchodilator therapy with high-dose (54 microg) formoterol Turbuhaler provided equally rapid improvements in lung function of greater magnitude over 4 h than high-dose (2400 microg) salbutamol pMDI plus spacer.  相似文献   

2.
RATIONALE: Formoterol is approved as asthma rescue medication in many countries. The exact duration of the airway vs. systemic effects of formoterol compared with another rescue medication, salbutamol, has not been evaluated. OBJECTIVE: To assess the duration of airway bronchodilatory effects vs. systemic effects of inhaled formoterol and salbutamol in asthmatic patients. METHODS: Twenty-six patients with stable and reversible asthma were given single doses of formoterol dry-powder inhaler (OxisTurbuhaler) 2x9 microg (lower dose; LD) and 6x9 microg (higher dose; HD), salbutamol (VentolinDiskhaler) 3x400 microg (LD) and 9x400 microg (HD), and placebo in a randomized, double-blind, crossover trial. Airway and systemic effects were assessed by forced expiratory volume in 1s (FEV1), serum potassium, blood pressure, corrected QT-interval (QTc), and palpitation and tremor scores. Time with clinically relevant bronchodilation (FEV1 increase 12%) without clinically relevant markers of systemic effects (serum potassium suppression 0.2 mmol/L, QTc-prolongation 20 ms, or heart rate increase 8 beats per minute) was evaluated. RESULTS: Bronchodilation was maintained for 24h with both formoterol doses and for 7-11h with salbutamol. Maximum bronchodilation and systemic effects were similar after formoterol and salbutamol, except for statistically significantly larger maximum heart rate and palpitation and tremor scores after salbutamol. Systemic responses were similarly brief for formoterol and salbutamol (7 h). CONCLUSIONS: The airway effects of inhaled formoterol are of long duration, whereas the systemic effects are of a similarly short duration as salbutamol. Thus, the time with clinically relevant bronchodilation without systemic effects is substantially longer after formoterol than after salbutamol.  相似文献   

3.
We studied 16 patients with stable COPD in a double blind, double dummy, placebo-controlled, within patient study to see if formoterol could be used as a rescue drug. We compared the of onset of bronchodilation obtained with formoterol 12 microg (metered dose corresponding to 9 microg delivered dose) and formoterol 24 microg (metered dose corresponding to 18 microg delivered dose), both delivered via Turbuhaler, with that of salbutamol 400 microg and salbutamol 800 microg delivered via pressurized metered-dose inhaler (pMDI). Patients inhaled single doses of placebo, formoterol and salbutamol on five separate days. FEV1 was measured in baseline condition and 3, 6, 9, 12, 15, 18, 21, 24, 30, 40, 50, and 60 min after inhalation of each treatment. We examined two separate criteria for deciding if a response was greater than that expected by a random variation of the measurement: (1) a rise in FEV1 of at least 15% from the baseline value; (2) an absolute increase in FEV1 of at least 200 ml. Formoterol 12 microg (15.2 min; 95% CI 9.5-21.0) and formoterol 24 microg (15.1 min; 95% CI 8.9-21.2) caused a rise in FEV1 of at least 15% from the baseline value almost rapidly as salbutamol 400 microg (13.6 min; 95% CI 7.1-20.1) and salbutamol 800 microg (14.5 min; 95% CI 7.1-21.9). No significant difference (P=0.982) in onset of action was seen between the four active treatments. According to Criterion 2, the mean time to 200 ml increase in FEV1 was 11.1 min (95% CI: 7.0-15.2) after salbutamol 400 microg, 13.0 min (95% CI: 7.9-18.1) after salbutamol 800 microg, 14.7 min (95% CI: 7.1-22.4) after formoterol 12 microg, and 12.7 min (95% CI: 7.4-18.0) after formoterol 24 microg. Again, there was no significant difference (P= 0.817) between the four active treatments. Formoterol Turbuhaler 12 microg and 24 microg caused bronchodilation as rapidly as salbutamol 400 microg and 800 microg given via pMDI.  相似文献   

4.
To evaluate the safety and tolerability of high-dose formoterol and salbutamol in patients with chronic obstructive pulmonary disease (COPD). In this two-way crossover, double-blind, double-dummy study, 17 adults with mild-to-moderate COPD were randomized to receive either formoterol 24 microg (2 x 12 microg via Aerolizer), or salbutamol 600 microg (6 x 100 microg via metered-dose inhaler), and the appropriate double-dummy q.i.d. at 4-h intervals for 3 consecutive days (total daily dose: 96 and 2400 microg, respectively). After a 4-7-day washout period, patients were switched to the other treatment. Treatment with high-dose formoterol and salbutamol was equally well tolerated, with no reports of serious adverse events. Both agents were associated with decreased plasma potassium (mean minimum values: 3.4 and 3.3 mmol/l for formoterol and salbutamol, respectively; P=0.914), increased serum glucose (mean maximum values: 9.0 and 8.7 mmol/l, respectively; P=0.373), and small increases in mean QTc interval (mean maximum 439 ms with both treatments; P=0.813). No clinically relevant between-treatment differences in adverse events or laboratory values occurred. Both drugs improved lung function (mean maximum forced expiratory volume in 1s [FEV(1)] 2.6 l with both treatments; P=0.624), with the improvement being significantly greater with formoterol than with salbutamol on all 3 days of treatment (mean area under the curve [AUC](0-24 h) of FEV(1) formoterol vs. salbutamol on days 1-3, all P<0.05). High-dose formoterol via Aerolizer (up to 96 microg/day) has a comparable tolerability profile to that of salbutamol in patients with mild-to-moderate COPD.  相似文献   

5.
A double-blind, randomized crossover study in 28 asthmatic patients assessed the relative therapeutic index for inhaled formoterol and salbutamol. Pre-drug administration FEV1 (mean 2.08 l) was 49-93% of predicted and reversibility 16-82% after inhalation of salbutamol. Patients inhaled single doses of formoterol (Oxis) (4.5,18 and 54 microg, delivered doses) via Turbuhaler, salbutamol (Ventolin) (200 and 1800 microg) via pressurized metered dose inhaler (pMDI) and placebo at intervals of 48 h or more. Individual maximum FEV1 and minimum S-K+ were calculated. Relative local (maximum FEV1) and systemic (minimum S-K+) dose potencies, and their ratio, the relative therapeutic index, were estimated using a non-linear mixed effect model. The drug effects were well tolerated and dose dependent. A log-linear approximation was used to describe the bronchodilatory effect, whereas a sigmoid approximation was more apt to describe the decrease in serum potassium concentration. A bivariate dose-response model based on these principles was fitted simultaneously to all data. The mean relative therapeutic index between formoterol 4.5-54 microg given via Turbuhaler and salbutamol 200-1800 microg given via pMDI was estimated to be 2.5 in favour of formoterol; this trend was not statistically significant.  相似文献   

6.
Formoterol inhaled via Turbuhaler (Oxis) or Aerolizer (Foradil) produces fast and long-lasting bronchodilation in asthmatic patients. While formoterol Turbuhaler provides sustained efficacy for > or =12h at a metered dose of 6 microg (delivered dose 4.5 microg), the recommended metered dose for formoterol Aerolizer is 12 microg (delivered dose unknown). This difference may be attributable to improved lung deposition with the Turbuhaler. This open, randomised, crossover study compared the effects of a single metered dose of formoterol Turbuhaler 6 microg and formoterol Aerolizer 12 microg in 16 patients with stable moderate-to-severe asthma. Pulmonary function, assessed by measuring specific airway conductance (sGaw), was determined at intervals of < or =8h post-inhalation of each drug on separate study days. Both inhalers increased sGaw at all time points. There were no significant differences between the two formulations in onset of activity, maximum effect, duration of effect or area under the response curve. Furthermore, both treatments were well tolerated with no differences in adverse events, blood pressure or heart rate; thus the formoterol Turbuhaler may, therefore, have an improved therapeutic index. This pilot study indicates that the same clinical effect can be achieved with half the metered dose (6 microg) of formoterol Turbuhaler compared with formoterol Aerolizer (12 microg).  相似文献   

7.
The corticosteroid beclomethasone dipropionate (BDP) has been formulated with the long acting beta agonist formoterol (BDP/formoterol 100 microg/6 microg, Foster) in a single inhaler using Modulite technology. We have investigated the acute tolerability of high, cumulative doses of BDP/formoterol compared to formoterol alone and placebo. This was a double blind, 3-way cross-over comparison of 10 puffs of BDP/formoterol 100 microg/6 microg or formoterol 6 microg or placebo during maintenance treatment with BDP/formoterol two puffs per day. Pharmacokinetics over 12h during maintenance treatment was measured on day 7. High cumulative doses were then administered on three separated days. Eighteen patients with asthma were recruited (mean FEV(1) 65% predicted). The primary endpoint was serum potassium over the 12h period after high doses. QTc, blood pressure and heart rate over 12h, and plasma lactate and glucose over 3h following dosing were assessed. Formoterol caused a significantly greater decrease in serum potassium than BDP/formoterol or placebo (difference in mean minimum concentrations; 0.11 and -0.15 mmol/l, respectively, p<0.05 for both comparisons). No significant differences in serum potassium parameters were found between BDP/formoterol and placebo. QTc, plasma lactate and vital signs values observed with the combination were not statistically different from those with formoterol alone. For glucose, the mean maximum increase after formoterol treatment was 0.4 mmol/l (p<0.01 compared to placebo), while BDP/formoterol treatment caused a maximum increase of 0.7 mmol/l (p<0.01 compared to formoterol and placebo). The active metabolite of BDP is beclomethasone-17-monopropriate (B17MP), which reached Cmax at 0.25 h, with an elimination half-life of 3.7 h. Formoterol also reached Cmax at 0.25 h, and concentrations were measurable up to 12 h. High doses of BDP/formoterol did not significantly reduce serum potassium, while formoterol alone did to a greater extent. The BDP/formoterol combination was well tolerated, and exhibited a safety profile generally similar to formoterol alone when administered in high doses to stable asthmatic patients.  相似文献   

8.
Short-acting beta(2)-agonists are currently recommended for symptom relief in asthma and the treatment of mild, acute exacerbations in COPD. However, formoterol has as fast an onset of action as salbutamol with the additional benefit of longer-lasting bronchodilation (approximately 12 h). Furthermore, systemic side effects observed with formoterol are of a similar duration but less pronounced than with short-acting beta(2)-agonists. In this double-blind, randomized, cross-over study, 20 adult patients with reversible chronic airway obstruction (intrinsic asthma or COPD) inhaled single doses of formoterol 9 microg or salbutamol 100 microg (group A) or formoterol 18 microg or salbutamol 200 microg (group B). FEV(1) was measured prior to and 5, 10, 15, 20, 25 and 30 min following inhalation of study drug. No significant differences in FEV(1) values were observed between group A (P=0.704) or group B (P=0.270) at baseline, or at 5 (Group A: P=0.340; Group B: P=0.559) and 15 min (Group A: P=0.526; Group B: P=0.818) post dose. No adverse events were reported during the study. Formoterol Turbuhaler has as rapid an onset of action as salbutamol pMDI when given at the recommended doses.  相似文献   

9.
The aim of this study was to compare the effects of formoterol, ipratropium bromide and a placebo on walking distance, lung function, symptoms and quality of life (QoL) in chronic obstructive pulmonary disease (COPD) patients. A total of 183 patients (mean age 64 yrs, 86 female) with moderate-to-severe nonreversible COPD participated in this randomised, double-blind, parallel-group study. After a 2-week placebo run-in, patients were randomised to formoterol Turbuhaler 18 microg b.i.d. (delivered dose), ipratropium bromide 80 microg t.i.d. via a pressurised metered dose inhaler, or placebo for 12 weeks. Inhaled short-acting beta2-agonists were allowed as relief medication and inhaled glucocorticosteroids were allowed at a constant dose. The primary variable was walking distance in the shuttle walking test (SWT). Baseline mean SWT distance was 325 m, mean forced expiratory volume in one second (FEV1) was 40% predicted. Clinically significant improvements in SWT (>30 m) were seen in 41, 38 and 30% of formoterol, ipratropium and placebo patients, respectively (not significant). Mean increases from run-in were 19, 17 and 5 m in the formoterol, ipratropium and placebo groups, respectively. Both active treatments significantly improved FEV1, forced vital capacity, peak expiratory flow and daytime dyspnoea score compared with placebo. Formoterol reduced relief medication use compared with placebo. Neither active treatment improved QoL. Formoterol and ipratropium improved airway function and symptoms, without significant improvements in the shuttle walking test.  相似文献   

10.
Formoterol Turbuhaler has been suggested for as-needed use in asthmatic patients. We investigated whether regular treatment with formoterol would modify the dose-response curves to formoterol in patients with partially reversible COPD. In this randomised, double-blind, cross-over study taking place over four non-consecutive days 16 outpatients with moderate to severe COPD, who were under regular treatment with formoterol Turbuhaler (18 microg in two daily doses) from at least 4 months, inhaled a conventional dose of formoterol Turbuhaler 9 microg or placebo. Two hours later, a FEV(1) value was established, following which a dose-response curve to formoterol (4.5 microg/inhalation) or placebo was constructed using four inhalations (1+1+2)--total cumulative delivered dose of 18 microg formoterol--with the following sequences: (1) formoterol pre-treatment + formoterol 18 microg, (2) formoterol pre-treatment + placebo, (3) placebo pre-treatment + formoterol 18 microg, (4) placebo pre-treatment + placebo. Formoterol 9 microg induced significant (P < 0.0001) bronchodilation at 2 h after inhalation (best mean increase in FEV(1): 0.170 L). Afterwards, dose-dependent increases in FEV(1) occurred with formoterol (maximum mean increase from 2-h value with formoterol: 0.072 after formoterol pre-treatment, and 0.201 L after placebo pre-treatment). Both maximum values of bronchodilation after the last inhalation of formoterol were statistically different (P < 0.001) from 2-h levels. These results show that dose-dependent bronchodilatation of formoterol is maintained despite regular treatment.  相似文献   

11.
Worsening of underlying bronchospasm may be associated with acute exacerbations of chronic obstructive pulmonary disease (COPD). As airway obstruction becomes more severe, the therapeutic option is to add a short-acting inhaled beta2-agonist as needed to cause rapid relief of bronchospasm. Unfortunately however, the most effective dosage may increase above that recommended during acute exacerbations. Formoterol (Oxis) Turbuhaler has a rapid onset of action (within minutes) and demonstrates a maintained effect on a rway function. In this study, we examined the effects of formoterol used as needed in 20 patients with acute exacerbations of COPD. A dose response curve to inhaled formoterol (9 microg per inhalation) or placebo was constructed using three separate inhalations, i.e. a total cumulative dose of 27 microg. Dose increments were given at 20-min intervals, with measurements being made 15 min after each dose. Formoterol, but not placebo, induced a large and significant (P<0.001) dose-dependent increase in forced expiratory volume in 1 sec (FEV1) [mean differences from baseline = 0.1311 after 9 microg formoterol (95% CI: 0.096-0.167)] 0.1811 after 18 microg formoterol (95% CI: 0.140-0.2221) and 0.2081 after 27 microg formoterol (95% CI: 0.153-0.2631). However, 27 microg formoterol did not induce further benefit [0.0271 (95% CI: -0.008-0.0621); P=0.121] when compared wth 18 microg formoterol. Results of this study suggest the use of higher than customary dose of formoterol for as-needed therapy to provide rapid relief of bronchospasm in patients suffering from acute exacerbations of partially reversible COPD.  相似文献   

12.
BACKGROUND: Short-acting anticholinergic bronchodilator, ipratropium bromide has been recommended as first-line drug in chronic obstructive pulmonary disease (COPD). More recently, long acting beta2-agonist (LABA) bronchodilators such as formoterol have been shown to be useful in COPD. Limited information is available on the relative efficacy of these two drugs in COPD. METHODOLOGY: A randomised, double-blind, cross-over, placebo-controlled study was carried out. Forty-four stable patients with COPD received single doses of formoterol (12 microg), ipratropium bromide (40 microg) or placebo, administered through a metered-dose inhaler on three consecutive days in a random order. Spirometry, static lung volumes, pulse rate and blood pressure, and assessment of sensation of dyspnoea at rest using a visual analog scale (Borg Scale) were recorded at baseline. Subsequently, these were repeated for assessment of response: spirometry at 5, 30 and 60 minutes and static lung volumes, pulse rate, blood pressure and dyspnoea measurement at 60 minute. RESULTS: Formoterol resulted in greater immediate improvement in lung function, with the change in FEV1 at 5 min being greater than that observed with ipratropium. The changes in static lung volumes were similar between the two but superior to placebo. Both the drugs reduced dyspnoea. Formoterol produced a significantly greater increase in heart rate and systolic blood pressure as compared to ipratropium, although the magnitude of these changes was small and clinically unimportant. CONCLUSIONS: Single therapeutic doses of formoterol and ipratropium bromide are equally effective in improving lung function and reducing dyspnoea. However, formoterol appears to be a better bronchodilator producing a faster improvement in lung function.  相似文献   

13.
This randomised, double-blind, double-dummy, crossover, placebo-controlled study assessed the acute tolerability of budesonide/formoterol in a single inhaler (Symbicort Turbuhaler, AstraZeneca) administered as a high dose. Fourteen patients with asthma receiving budesonide/formoterol maintenance treatment (two inhalations of 160/4.5 microg twice daily) inhaled 10 additional doses of budesonide/formoterol 1600/45 microg (total daily dose including morning dose of maintenance treatment 1920/54 microg) or formoterol 45 microg (Oxis Turbuhaler, AstraZeneca; total daily dose including morning dose of maintenance treatment 54 microg formoterol) or placebo in addition to the morning dose of maintenance treatment on 3 separate study days. Serum potassium, pulse rate, blood pressure and ECG were assessed at regular intervals over a 12-h period following dosing. Blood glucose and plasma lactate were assessed over 3 h following dosing. Changes in serum potassium, pulse rate, blood pressure, QTc, blood glucose and plasma lactate occurring with budesonide/formoterol, though statistically significantly different from placebo (P<0.05), were considered clinically unimportant. No clinically relevant differences were identified between active treatments. In conclusion, budesonide/formoterol in a single inhaler is well tolerated at high doses such as might be used by patients using budesonide/formoterol for relief of symptoms of asthma.  相似文献   

14.
Clinical trials show that formoterol (Oxis) Turbuhaler 4.5 microg delivered dose (6 microg metered dose) has a rapid onset of bronchodilation similar to that of salbutamol and a 12-h duration of action. Maximum increase in FEV(1) and duration of bronchodilation are dose-dependent, the 4.5 microg dose being the lowest dose tested giving both effects.Clinical studies investigating onset of bronchodilation show a significant increase in specific airway conductance occurring within 1 min after inhalation of formoterol Turbuhaler 4.5 microg. When measured from 3-20 min after inhalation, formoterol Turbuhaler 4.5 microg showed similar increases in FEV(1) to salbutamol administered via pMDI. No difference in onset of bronchodilation was observed between the formoterol Turbuhaler 4.5 and 9 microg doses.Single-dose studies and studies of 1-12 weeks' duration show that formoterol Turbuhaler 4.5 microg produces a significant and clinically important mean bronchodilating effect for > or =12 h after inhalation. In the cited studies no significant differences in duration of bronchodilation were observed between the formoterol Turbuhaler 4.5 and 9 microg doses.Conclusion: clinical data show that formoterol Turbuhaler 4.5 microg is an effective dose in patients with asthma, with a rapid onset of bronchodilation and a duration of at least 12 h.  相似文献   

15.
The aim of this study was to investigate formoterol, an inhaled long-acting beta2-agonist, in patients with chronic obstructive pulmonary disease (COPD). Six-hundred and ninety-two COPD patients, mean baseline forced expiratory volume in one second (FEV1) 54%, FEV1/forced vital capacity 75% of predicted, reversibility 6.4% pred, were treated with formoterol (4.5, 9 or 18 microg b.i.d.) or placebo via Turbuhaler for 12 weeks. Symptoms were recorded daily. Spirometry and the incremental shuttle walking test (SWT) were performed at clinic visits. Compared with placebo, 18 microg b.i.d. formoterol reduced the mean total symptom score by 13% and increased the percentage of nights without awakenings by 15%. Formoterol (9 and 18 microg b.i.d.) significantly reduced symptom scores for breathlessness (-7% and -9%, respectively) and chest tightness (-11% and -8%, respectively), reduced the need for rescue medication (-25% and -18%, respectively), and increased symptom-free days (71% and 86%, respectively). FEV1 improved significantly after all three doses of formoterol (versus placebo). No differences were found between groups in SWT walking distance. No unexpected adverse events were seen. In conclusion, 9 and 18 microg b.i.d. formoterol reduced symptoms and increased the number of symptom-free days in a dose-dependent manner in chronic obstructive pulmonary disease patients. Formoterol improved lung function at a dose of 4.5 microg b.i.d. and higher.  相似文献   

16.
Thirty-six adult patients (16 women) with mild to moderate asthma with a mean baseline forced expiratory volume in 1 sec (FEV1) of 73.8% (46-106%) of predicted normal value and mean reversibility of 24.2% (14.6-47.1%) were included in this double-blind, double-dummy, randomized, placebo-controlled and cross-over study. The patients inhaled single doses 4.5 or 9 microg of formoterol (Oxis) via Turbuhaler salbutamol (Ventolin) 100 or 200 microg from a pressurized metered dose inhaler (pMDI) or placebo at five randomized visits. Efficacy was measured by FEV1 pre-dose and then 1, 3, 5, 7, 10, 15, 20, 25 and 30 min after inhalation of the study drug. The primary variable of efficacy was the FEV1-value 3 min after dose intake. No statistically significant differences were found between active treatments. All active treatments gave a higher bronchodilating effect at 3 min than placebo: 10.0, 11.4% for salbutamol 100 and 200 microg and 11.7, 11.8% for formoterol 4.5 and 9 microg (P<0.001 in all cases). There was a correlation between the measured response at 3 min and the subjective experience of the patients. The relative difference vs. placebo remained throughout the study period for all active treatments except for low dose salbutamol. All treatments were well tolerated. In conclusion, formoterol Turbuhaler has as rapid an onset of action as salbutamol pMDI when given at recommended doses.  相似文献   

17.
STUDY OBJECTIVE: To compare the efficacy, tolerability, and safety of therapy with formoterol and oral slow-release theophylline (THEO) in patients with COPD. DESIGN: A randomized, parallel-group study, with double-blind arms for formoterol and placebo (PL) and an open arm for oral slow-release THEO administered in individual doses on the basis of plasma concentrations. SETTING: Eighty-one centers worldwide. PATIENTS: Eight hundred fifty-four patients with symptomatic COPD. INTERVENTION: Comparison of twice-daily inhaled formoterol dry powder (12 or 24 microg), PL, and THEO (individualized doses) over 12 months. MEASUREMENTS AND RESULTS: Compared to PL, doses of formoterol and THEO both significantly improved the area under the curve for FEV(1) measured over a period of 12 h following the morning dose of study medication at 3 and 12 months (p < 0.001 for all comparisons). Therapy with formoterol, 12 microg, was significantly more effective than that with THEO (p < or = 0.026). Formoterol significantly reduced the percentage of "bad days" (i.e., days with at least two individual symptom scores > or = 2 and/or a reduction in peak expiratory flow from a baseline of > 20%; p < or = 0.035 vs. PL and THEO), and the use of salbutamol rescue medication (p < or = 0.003 vs PL) over the whole treatment period, while the effect of THEO was similar to that of PL. Therapy with formoterol and THEO was more effective than PL at improving quality of life for > 12 months (p < or = 0.030). Treatment-related adverse events and discontinuations were more frequent among patients receiving THEO than among those receiving formoterol. CONCLUSIONS: Long-term treatment with inhaled formoterol dry powder is more effective and better tolerated than treatment with therapeutically appropriate doses of oral slow-release THEO in symptomatic patients with COPD.  相似文献   

18.
Formoterol fumarate is a beta2-agonist bronchodilator that combines a fast onset of action with a long duration of action. Its fast onset of action is well documented in asthma but has not been directly compared with that of salbutamol in patients with chronic obstructive pulmonary disease (COPD). This randomized, double-blind, placebo-controlled study was conducted to assess the bronchodilatory effects over the first 3 h after inhalation of single doses of formoterol 24 microg delivered via the Aerolizer dry powder inhaler device (double-blind), or salbutamol 400 microg delivered by a Diskhaler dry powder inhaler (single-blind) in patients with COPD. A total of 24 patients with COPD were randomized [mean age 61.6 +/- 7.8 years, mean forced expiratory volume in 1 sec (FEV1) 1.38 +/- 0.32 l and 45.8 +/- 9.6% of predicted]. Inhalation of formoterol or salbutamol resulted in similar increases in FEV from 0 to 3 h post-dose. Both drugs produced similar bronchodilation by 5 min, which became almost maximal by 30 min. The primary efficacy variable, the area under the curve (AUC) of the FEV increase above predose baseline from 0 to 30 min (AUC(0-30 min)), demonstrated significant effects for formoterol (mean 5.89 +/- 4.67 l min(-1)), and salbutamol (mean 6.06 +/- 4.34 l min(-1)), which were not statistically different from each other but statistically significantly higher (P<0.0001) than that observed with placebo (-0.32 +/- 2.59 l min(-1)). In addition, both formoterol and salbutamol produced similar and rapid increases in forced vital capacity (FVC). In summary, this study confirms the rapid onset of action of formoterol and indicates that the onset of action of formoterol and salbutamol are similar in patients with COPD.  相似文献   

19.
The short-term protective effect on exercise-induced asthma (EIA) and the duration of action of formoterol, given by metered dose aerosol at a dose of 24 micrograms, were compared with salbutamol (200 micrograms) and placebo in twelve asthmatic EIA-positive patients in a double-blind, placebo-controlled, three period cross-over study. On each treatment day the patients were given one of the drugs or placebo and two exercise tests were performed at the second and at the eighth hour after dosing. Using a standard procedure, exercise was performed by treadmill in well-controlled environmental conditions. In the first test at 2 h a significant difference relative to placebo (p less than 0.001) at each incremental time after exercise (i.e. 5, 10, 15, 20, 30 min) was obtained with both formoterol and salbutamol, without any significant difference between formoterol and salbutamol. After the eighth hour test formoterol still protected against EIA in comparison to both salbutamol and placebo. The effect of salbutamol at this time was not different from placebo. No adverse effects were reported in any treatment group. Formoterol has a long duration of action in protecting against EIA that persisted for eight hours, removing the need to dose with beta 2-agonist before every exercise.  相似文献   

20.
We examined the influence of higher than conventional doses of oxitropium bromide on formoterol-induced bronchodilation in patients with partially reversible stable COPD. Twenty outpatients inhaled one or two puffs of formoterol (12 microg puff(-1)), or placebo. Two hours after inhalation, a dose-response curve to inhaled oxitropium bromide (100 microg puff(-1)) or placebo was constructed using one puff, one puff, two puffs and two puffs, for a total cumulative dose of 600 microg oxitropium bromide. Doses were given at 20-min intervals and measurements made 15 min after each dose. On six separate days, all patients received one of the following: (1) formoterol 12 microg + oxitropium bromide 600 microg, (2) formoterol 12 microg + placebo, (3) formoterol 24 microg + oxitropium bromide 600 microg, (4) formoterol 24 microg + placebo, (5) placebo + oxitropium bromide 600 microg, or (6) placebo + placebo. Both formoterol 12 microg and 24 microg induced a good bronchodilation (formoterol 12 microg, 0.19-0.20 l; formoterol 24 microg 0.22-0.24 l). The dose-response curve of oxitropium, but not placebo, showed an evident increase in FEV1, with a further significant increase of respectively 0.087 l and 0.082 l after the formoterol 12 microg and formoterol 24 microg pre-treatment. This study shows that improved pulmonary function in patients with stable COPD may be achieved by adding oxitropium 400-600 microg to formoterol. There is not much difference in bronchodilation between combining oxitropium with formoterol 12 microg or 24 microg. In any case, formoterol 24 microg alone seems sufficient to achieve the same bronchodilation induced by oxitropium 600 microg alone in most patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号