首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent advances in the development of animal models for Lyme borreliosis have provided means of identifying potential targets for the design of a subunit vaccine to prevent this disease. The C3H/HeN mouse model was used to study several Borrelia burgdorferi antigens from a single isolate for their ability to elicit borreliacidal and protective antibodies. The ospA, ospB, ospC, ospD, and 83-kDa genes from a California isolate, SON 188, were cloned and expressed in Escherichia coli as proteins fused to the C-terminal end of maltose-binding protein. Active immunization of mice with these fusion proteins elicited high titers of antibodies that recognized the homologous SON 188 antigens upon immunoblotting. Antibodies generated to the OspA and OspB fusion proteins, but not to the OspC, OspD, and the 83-kDa fusion proteins, demonstrated in vitro borreliacidal activity. Challenge of all actively immunized mice with 10(7) SON 188 spirochetes resulted in infection in all mice receiving the OspD or 83-kDa immunogens but not in any mice receiving the OspA, OspB, or OspC fusion proteins. These results demonstrate the potential of OspA, OspB, and OspC as components of a subunit vaccine for the prevention of Lyme borreliosis.  相似文献   

2.
We identified surface antigens of Borrelia burgdorferi that are targeted by antibody-dependent, complement-mediated killing (ADCK) in the rhesus monkey. For this purpose, we had available serum samples from three animals infected with B. burgdorferi JD1 by needle inoculation and from two monkeys that were infected with the same B. burgdorferi strain by Ixodes scapularis tick bite. Sera from monkeys from the first group contained antibodies to OspA and OspB detectable by Western blot (immunoblot) using whole B. burgdorferi antigens, whereas serum samples from animals in the second group did not. The targeting of OspA and OspB by functional antibodies was demonstrated directly by showing that ADCK was partially inhibited when antibodies were preincubated with an excess of soluble recombinant OspA or OspB. Simultaneous addition of OspA and OspB did not result in an additive inhibitory effect on ADCK, a result that suggests that the epitopes on OspA and that on OspB targeted by antibody in this mechanism are the same, or at least cross-reacting. The targeting of non-OspA, non-OspB surface antigens was inferred from the fact that sera from tick-inoculated animals, which did not contain detectable anti-OspA or anti-OspB antibodies, were able to effect ADCK. This killing effect was not inhibitable by the addition of recombinant OspA or OspB or both proteins together. We also showed that both immunoglobulin G and M antibodies participate in the ADCK mechanism in the rhesus monkey. Rhesus complement does not kill B. burgdorferi in vitro in the absence of antibody, and antibody alone is effective in killing only at serum dilutions lower than 1:15. However, such "complement-independent" antibodies were not present in all bleeds. Two main conclusions may be drawn from the analysis of our results. First, both OspA and OspB are targeted by the ADCK mechanism in the rhesus monkey. Second, one or more B. burgdorferi surface antigens that are neither OspA nor OspB also participate in ADCK.  相似文献   

3.
Vaccination with recombinant outer surface protein A (OspA) has been shown to protect mice from infection with Borrelia burgdorferi, the Lyme disease agent. To determine whether antibodies to B. burgdorferi proteins other than OspA are involved in protective immunity, antibodies to OspA were removed from protective anti-B. burgdorferi serum; the residual serum was still protective. Absorption of OspA and OspB antibodies from anti-B. burgdorferi serum eliminated the protective effect. Therefore, active immunization experiments were performed to determine the roles of OspB and flagellin in protective immunity and to determine whether protective immunity induced by OspA is dose dependent. Active immunization with recombinant OspA protected mice from infection with an inoculum of 10(4) spirochetes, but this protection could be overcome with a challenge of 10(7) spirochetes; OspB protected mice from infection with an inoculum of 10(3) spirochetes but was insufficient to fully protect against 10(4) organisms; and immunization with flagellin had no protective effect. These studies suggest that OspA and OspB, but not flagellin, play roles in protective immunity to spirochete infection.  相似文献   

4.
The pathogenic spirochete Borrelia burgdorferi contains a set of integral membrane proteins which were selectively extracted into the detergent phase upon solubilization of intact B. burgdorferi with the nonionic detergent Triton X-114. Virtually all of these hydrophobic proteins were recognized by antibodies in pooled sera from patients with chronic Lyme arthritis, demonstrating that proteins partitioning into the detergent phase of Triton X-114 encompass the major B. burgdorferi immunogens. Furthermore, most of these immunogenic proteins, including the previously characterized OspA and OspB membrane antigens, could be biosynthetically labeled when B. burgdorferi was incubated in vitro with [3H]palmitate. The OspA and OspB antigens were radioimmunoprecipitated from [3H]palmitate-labeled detergent-phase proteins with monoclonal antibodies, and [3H]palmitate was recovered unaltered from these proteins after sequential alkaline and acid hydrolyses. The combined results provide formal confirmation that the major B. burgdorferi immunogens extracted by Triton X-114 are lipoproteins. The demonstration that B. burgdorferi integral membrane antigens are lipoproteins may explain the basis of their immunogenicity and may help to improve our understanding of the surface topology of B. burgdorferi.  相似文献   

5.
Lymphocyte blastogenesis assays and immunoblotting were used to investigate and compare murine B-cell responses to preparations of extracellular membrane blebs (BAg) and spirochetes (Ag) of Borrelia burgdorferi. Immunoblotting BAg, Ag, and medium control preparations with serum from naive and infected C57BL/10 mice revealed that BAg and Ag had similar specific reactivity profiles except that major antigens of 83, 60, and 41 kDa were detected in Ag but not in BAg. It was determined that 1 microgram (dry weight) of Ag contained 0.0051 and 0.0063 microgram of outer surface proteins A (OspA) and OspB, respectively, whereas 1 microgram (dry weight) of BAg contained 0.0024 microgram of OspA and 0.0015 microgram of OspB. Both BAg and Ag caused blastogenesis in cultures of spleen cells from both groups of mice, but BAg-stimulated lymphocytes exhibited significantly greater (P < or = 0.05) blastogenesis after 2 or 6 days of culture than did lymphocytes stimulated by Ag or medium control. Flow cytometry and antibody capture enzyme-linked immunosorbent assays identified responding lymphocytes as B cells which secreted polyclonal immunoglobulin M (IgM) but not IgG or IgA. Treatment of BAg and lipopolysaccharide controls with polymyxin B resulted in as much as 20.7 and 54.3% mean decreases in blastogenesis, respectively. Fractionation of BAg or Ag by ultracentrifugation before culture with spleen cells from naive mice indicated that B-cell blastogenesis was probably associated with spirochetal membranes. The results of this study demonstrate that specific humoral responses are directed towards extracellular membrane blebs which lack the 83-, 60-, and 41-kDa antigens of intact spirochetes and that blebs also possess significant nonspecific mitogenic activity for murine B cells. This activity was not due entirely to typical lipopolysaccharide or OspA and OspB lipoproteins.  相似文献   

6.
Ten European and 3 North American isolates of Borrelia burgdorferi were compared as to their reactivity with 9 mouse monoclonal antibodies (MMA) to the type strain B. burgdorferi B31, and 1 MMA directed against B. hermsii. A Treponema pallidum strain was used for a genus-specific control. Differences in the protein patterns of the European and the North American strains were mostly based on the absence of distinct OspA and OspB bands. The OspA MMAs H 5332 and H 3TS were reactive with 3 European and the 3 North American strains. H 5332 alone reacted with another 3 strains from Europe, the remaining 4 were not recognized by one of the OspA MMAs. OspB MMAs showed reactivity with 3 European and the 3 North American strains. Of the flagella antibodies MMA H 9724 and H 604 reacted with all strains, whereas H 6TS reacted just with 2 each of the European and North American strains. There was no reactivity at all with the B. hermsii monoclonal H 9E11. No MMA reacted with the T. pallidum strain. According to a proposal for a serotyping system based upon major surface proteins of B. burgdorferi by A. G. Barbour, 6 of the strains investigated belong to serotype I, 3 to serotype II, and 4 to serotype III. Reactivity with 4 MMAs to OspB allowed to establish 5 subtypes. The geographical origin of the strains seems to be in relation with respective subtypes, an observation which needs to be substantiated for a larger group of strains. The microimmunoblot technique proved to be a useful tool which saves material and time and yields reproducible results.  相似文献   

7.
A mutant of virulent Borrelia burgdorferi 297 was apparently selected for by long-term storage at 5 degrees C. This mutant was found to lack the plasmid which encodes outer surface protein A (OspA) and OspB. In addition to the loss of the OspA and OspB proteins, the mutant lacked two lipoproteins, of 20 and 7.5 kDa, that were observed in the wild type. Since the mutant was not recovered from the tissues or blood of hamsters injected with the mutant, the mutant was determined to be noninfectious. Hamsters vaccinated with noninfectious mutant 297 were protected completely from challenge with virulent wild-type 297 spirochetes. Prechallenge sera from hamsters vaccinated with mutant 297 lacked antibodies to OspA and OspB, while those from hamsters vaccinated with virulent wild-type 297 or avirulent 297 exhibited antibodies to these proteins. Hamsters vaccinated with virulent wild-type 297 or mutant 297 elicited antibodies to OspC and a 39-kDa protein (P39), whereas hamsters vaccinated with avirulent 297 lacked these antibodies. These results suggest that OspC and/or P39 are important for the development of a protective immune response. Study of this mutant may elucidate factors important to the development of a Lyme disease vaccine.  相似文献   

8.
The neutralizing epitopes of the major outer surface proteins A and B (OspA and OspB) of Borrelia burgdorferi B31 were investigated by epitope mapping using overlapping synthetic peptides, encompassing full-length OspA and OspB, and antiborrelial monoclonal antibodies (MAbs). OspA MAb N4B12 and OspB MAbs N5G5, W7C2, and P4D1 displayed a complement-independent antiborrelial activity, and complement failed to enhance the antiborrelial activity, as measured by a sensitive colorimetric assay. A combination of N4B12 with N5G5 displayed a higher antiborrelial activity than did the MAbs individually. OspA MAbs B3G11 and L3B5, however, exhibited a significant antiborrelial activity only in the presence of complement. Epitope mapping showed that B3G11 bound to one OspA synthetic peptide with the sequence of amino acids 247 to 256 (QYDSNGTKLE) and produced more than sixfold-higher reactivity than with other sequences, as measured by an enzyme-linked immunosorbent assay. OspB MAb N5G5 bound to an OspB peptide with the sequence of amino acids 211 to 220 (TLKREIEKDG), yielding at least threefold-higher reactivity than with other sequences. These two peptide sequences were found to contain neutralizing epitopes. Other MAbs had weak binding activities with the synthetic peptides, and their specific epitopes remain to be further analyzed. Thus, this study demonstrated both complement-independent and complement-dependent antiborrelial MAbs and identified the linear epitopes on OspA and OspB capable of inducing neutralizing antibody responses.  相似文献   

9.
The outer membrane of Borrelia burgdorferi, the Lyme disease agent, contains lipoproteins anchored by their lipid moieties and integral proteins with membrane-spanning regions. We used the techniques of in situ proteolysis, immunofluorescence, in vitro growth inhibition, and cross-linking with formaldehyde to characterize topological relationships between P66, an integral membrane protein, and selected Osp lipoproteins of B. burgdorferi. Protease treatment of intact spirochetes cleaved P66 and Osp proteins but not the periplasmic flagellin or the BmpA protein of the cytoplasmic membrane. P66 of cells lacking OspA, OspB, and OspC was more susceptible to trypsin cleavage than was P66 of cells with these Osp proteins. A monoclonal antibody against the surface loop of P66 bound, agglutinated, and inhibited the growth of viable spirochetes lacking OspA, OspB, OspC, and OspD but not of the cells that expressed OspA, OspC, and/or OspD. When cells were fixed, the antibody bound to cells that express OspD and OspC but still not to cells with OspA. The close association of OspA and P66 was confirmed by the crosslinking of the two proteins by formaldehyde. These results show that Osp proteins, particularly OspA, limit the access of antibody or trypsin to the surface loop region of P66. The proximity and possible contact between P66 and OspA (or other Osp proteins) may hinder the effectiveness of antibodies to what otherwise would be an appropriate vaccine target.  相似文献   

10.
Four Borrelia burgdorferi strains isolated in the same restricted geographic area share different protein patterns on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The use of polyclonal rabbit antisera and a battery of monoclonal antibodies directed toward the immunodominant proteins OspA, OspB, and pC also revealed different epitope distributions and specificities of these antigens on the strains examined. For the first time, a computerized analysis of these phenotypic characters was done mainly by cluster analysis. The computerized analysis revealed the levels of similarities among the strains and indicated, on a quantitative basis, that one of them is much closer to the American strain B31 than to the other strains.  相似文献   

11.
Previously, it has been shown that polyclonal antibodies to Borrelia burgdorferi and some monoclonal antibodies (MAbs) to borrelia major surface proteins caused inhibition of adherence of the bacteria to cultured human umbilical vein endothelial (HUVE) cells. In this study, fragment antigen binding (Fab) molecules generated from the immunoglobulin G fraction of rabbit anti-recombinant OspA serum were found to inhibit the adherence of B. burgdorferi to HUVE cells by 73%. Subsequently, MAbs were generated for use in determining whether or how B. burgdorferi outer surface proteins (Osps) A and/or B are involved in mediating attachment to, and/or invasion of, HUVE cells by B. burgdorferi. Twenty-two MAbs were generated to borrelial proteins with apparent molecular masses (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 19, 31 (OspA), 34 (OspB), and 35 kDa. Fab molecules from one anti-OspA MAb, 9B3D, demonstrated an inhibitory effect on bacterial association with HUVE cells. None of the other MAbs, including the other anti-OspA MAbs, showed an inhibitory effect on cell association of greater than 5%. This effect of Fab 9B3D was concentration dependent and plateaued at approximately 6 micrograms of Fab per ml (nearly 80% inhibition of the bacterial association with the monolayer). Penetration assays and cell association experiments performed by using immunofluorescence also suggested that the inhibitory action of 9B3D occurs at the level of adherence. MAb 9B3D recognized the OspA of every North American strain tested (n = 19) but only 3 [corrected] of 20 strains from western Europe, Russia, and Japan, suggesting that the North American strains and strains from other parts of the world may use different molecules and/or different OspA epitopes to interact with endothelial cells. Immunoblots of Escherichia coli expressing different OspA fusion peptides suggested that the 9B3D epitope resides in the carboxy-terminal half of OspA. MAb 9B3D promises to be a valuable tool for elucidating the domain or domains of OspA involved in the endothelial cell cytadherence of North American strains of B. burgdorferi.  相似文献   

12.
A nonclonal population of Borrelia burgdorferi N40 (passage 3) that survived protective immunity following challenge inoculation of outer surface protein (Osp) A- or B-hyperimmunized mice were characterized for the molecular basis of evasion of immunity. Two of six B. burgdorferi isolates, cultured from OspA-immunized mice, had antigenic diversity in the carboxyl terminus of OspA and did not bind to the protective OspA monoclonal antibody designated IXDII. However, OspA-immunized mice challenged with these variants were fully protected. Moreover, B. burgdorferi isolates with a point mutation in ospB, which results in a truncated OspB that does not bind to protective OspB monoclonal antibody 7E6C, were frequently enriched after infection of OspB-immunized mice. These studies suggest that the incomplete efficacy of an OspA- or OspB-based vaccine may be partly due to immunomediated in vivo selective pressure, resulting in the persistence of some spirochetes that do not bind to protective antibodies.  相似文献   

13.
Antigenic variation and strain heterogeneity have been demonstrated for the pathogenic Borrelia species, i.e. B. burgdorferi and the relapsing fever borreliae. In relapsing fever, new borrelia serotypes emerge at a high rate spontaneously, a mechanism that is caused by DNA rearrangements on linear plasmid translocating genes coding for variable major proteins from previous silent to expression sites (i.e. from inner sites to telomeric sites of the plasmid). As a result of this variation, the borreliae escape the immune response of the host, thus leading to the relapse phenomenon. In B. burgdorferi, which is the causative agent of the multisystem disorder Lyme borreliosis, there is also a growing body of findings that antigenic variation is involved in pathogenesis of the disease. Phenotypic variation of strains in vitro concerns the size and the amount of surface-associated proteins (OspA, OspB and pC). There are indications that OspA and OspB truncations are due to deletions within the ospAB operon caused by recombination events, and that OspA/OspB-less mutants lack the 49-kb plasmid that bears the ospAB operon. With the increasing number of isolates obtained from various geographic and biological sources, it became apparent that B. burgdorferi is immunologically and genetically more heterogeneous, as previously believed. The major outer surface proteins OspA and OspB (which have been efficient antigens in vaccine studies) are heterogeneous at a genetic level. The same degree of genetic non-identity was observed for the pC protein. Other proteins like flagellin and the highly specific immunodominant p100 range protein show a lower degree of non-identity. Recombinant OspA, pC, p100 range protein and flagellin have been hyperexpressed in E. coli and these proteins are immunologically reactive. This allows further research for development of vaccines and diagnostic tools. B. burgdorferi isolates have been investigated with genotyping (DNA hybridization, PCR and 16S rRNA analysis) as well as serotyping by various authors. Comparison of the different methods has shown good agreement when the same strains have been investigated. No correlation could be found between different phenotypic and genotypic groups with respect to the ability to cause arthritis in SCID mice. A serotyping system based on immunological differences in OspA detected by a panel of monoclonal antibodies has been proposed. Serotyping a large number of B. burgdorferi isolates has shown a striking predominance of the OspA serotype 2 among European isolates from human skin, in contrast to isolates from ticks or CSF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A total of 472 field-collected Ixodes ricinus ticks from southern Germany were investigated by immunofluorescence for the presence of Borrelia burgdorferi with a polyvalent rabbit immune serum and with monoclonal antibodies specific for outer surface proteins A and C (OspA and OspC, respectively). Borreliae were detected in 90 ticks with the polyvalent immunofluorescence assay. Infection rates in adults (females, 20.2%; males, 25.2%) were significantly higher than in nymphs (12.1%). OspA was detected in 77 ticks and OspC was detected in only 1 tick with the respective monoclonal antibodies. We therefore conclude that B. burgdorferi in unfed I. ricinus ticks usually expresses OspA and very rarely OspC.  相似文献   

15.
Persistent infection with Borrelia burgdorferi in the presence of a vigorous host immune response has been demonstrated in humans and in animal models of Lyme disease. Long-term persistence of B. burgdorferi was documented recently in our studies of BALB/c and C3H mice infected with cloned and uncloned strains of B. burgdorferi. From mice inoculated with the cloned strain, 11 isolates were recovered from the skin, bladder, and blood after 1 year of infection. Analysis of the genes encoding the major outer surface proteins (OspA and OspB) by restriction digestion and DNA sequencing showed no evidence of point mutations or other small genetic alterations after 1 year. Genomic macrorestriction analysis of whole B. burgdorferi showed no loss or gross alterations of the plasmids encoding OspA, OspB, or OspC. However, in two isolates, loss of a 38-kb plasmid encoding outer surface protein D was noted. Our studies suggest that loss or alteration of the genes encoding OspA and OspB is not a common occurrence during persistent spirochetal infection and that other possible mechanisms, including invasion of immunologically privileged sites, should be actively explored.  相似文献   

16.
A confocal microscopy study was undertaken to characterize the bactericidal effects of the Fab fragments of CB2, an immunoglobulin G1kappa murine monoclonal antibody, to an epitope in the carboxy region of the outer surface protein B (OspB) of Borrelia burgdorferi. Simultaneous direct labeling of both fixed and live spirochetes with fluorochrome-labeled Fab-CB2 and 11G1, and an immunoglobulin Mkappa monoclonal antibody to OspA, showed that OspA and OspB seem to colocalize in dead spirochetes but do not appear to be physically associated when the organisms are alive. A polar bleb composed of a Fab-CB2-OspB complex, followed by incorporation of 11G1-OspA, precedes the formation of a spheroplast. The spheroplasts contain both OspA and OspB and are a terminal stage in the bactericidal process induced by Fab-CB2. Outer membrane destabilization by Fab-CB2, but not cell wall or cytoplasmic membrane alterations, was demonstrated experimentally by the sequential treatment of spirochetes with Fab-CB2 and monoclonal antibodies to flagellin and DnaK. The action of Fab-CB2 is epitope specific, as another monoclonal antibody to an epitope in the amino terminus of OspB was not bactericidal. The bactericidal effect of Fab-CB2 is not dependent on the induction of spirochetal proteases but is dependent on the presence of Ca2+ and Mg2+. Supplementation of Ca2(+)- and Mg2(+)-free medium with these cations restored the bactericidal effects of Fab-CB2. The mechanism by which a Fab fragment of an antibody destroys a bacterium directly may represent a novel form of antibody-organism interaction.  相似文献   

17.
The lack of methods for isolating Borrelia burgdorferi outer membranes (OMs) has hindered efforts to characterize borrelial surface-exposed proteins. Here we isolated OMs by immersion of motile spirochetes in hypertonic sucrose followed by isopycnic ultracentrifugation of the plasmolyzed cells. The unilamellar vesicles thus obtained were shown to be OMs by the following criteria: (i) they contained OspA and OspB; (ii) they did not contain flagellin, NADH oxidase activity, or the 60-kDa heat shock protein; and (iii) their morphology by freeze-fracture electron microscopy was identical to that of OMs of intact organisms. Consistent with previous studies which employed immunoelectron microscopy and detergent-based solubilization of B. burgdorferi OMs, only small proportions of the total cellular content of OspA or OspB were OM associated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fluorography of OMs from spirochetes metabolically radiolabeled with [3H]palmitate or 35S-amino acids demonstrated that the OMs contained both nonlipidated and lipidated proteins. This fractionation procedure was also used to isolate OMs from virulent and avirulent isolates of the well-characterized B. burgdorferi N40 strain. SDS-PAGE fluorography revealed that OMs from the two isolates differed with respect to both nonlipoprotein and lipoprotein constituents. When whole cells, protoplasmic cylinders, and OMs were immunoblotted against sera from mice persistently infected with B. burgdorferi N40, the majority of antibody reactivity was directed against intracellular proteins. The availability of isolated OMs should facilitate efforts to elucidate the complex relationship(s) between B. burgdorferi membrane composition and Lyme disease pathogenesis.  相似文献   

18.
Three human monoclonal immunoglobulin M antibodies against Borrelia burgdorferi, obtained from in vitro-stimulated peripheral blood lymphocytes, reacted in Western blots (immunoblots) with a prominent 39-kDa peptide and a faint band of approximately 66 kDa. Two of these antibodies showed bactericidal activity without addition of complement. All three antibodies were reactive in an enzyme immunoassay with cloned P39 (W.J. Simpson, M.E. Schrumpf, and T.G. Schwan, J. Clin. Microbiol. 28:1329-1337, 1990), suggesting that the target molecule of these antibodies is identical to the P39 protein. In addition, the majority of supernatants from human lymphocytes stimulated in vitro with crude B. burgdorferi antigen reacted in this assay, demonstrating that P39, although a minor component of B. burgdorferi, is an immunodominant antigen in these spirochetes. A fourth monoclonal antibody, reacting with OspA, also exhibited bactericidal activity.  相似文献   

19.
Immune responses to Borrelia burgdorferi and their influence on spirochete transmission to Ixodes ricinus were analyzed in the natural European reservoir hosts; i.e., the mouse species Apodemus flavicollis (yellow-necked mouse) and Apodemus sylvaticus (wood mouse) and the vole species Clethrionomys glareolus (bank vole), and, in addition, in the laboratory mouse strain NMRI. Naive and preimmunized rodents were infected either by artificially infected I. ricinus larvae or by intradermal injection of spirochetes. Independent of the species, all animals developed antibodies to various spirochetal antigens. However, antibodies to the outer surface proteins A (OspA) and B (OspB) were not found in recipients infected via ticks. Rodents of the genus Apodemus and of the NMRI strain showed higher levels of B. burgdorferi-specific antibodies than those of the species C. glareolus. The rate of spirochete transmission to noninfected ticks correlated with both the quality and quantity of spirochete-specific antibodies generated in the various species: high levels of spirochete-specific immunoglobulins correlated with low transmission rates. Furthermore, lower transmission rates were observed with rodents expressing antibodies to OspA and OspB (i.e., intradermally infected or immunized) than with those lacking these specificities (i.e., infected via ticks). The study provides evidence that transmission of B. burgdorferi from natural hosts to ticks is controlled by the specificity and quantity of spirochete-reactive antibodies and suggests that immunity to B. burgdorferi in natural reservoir hosts is an important regulatory factor in the horizontal transmission of B. burgdorferi in nature.  相似文献   

20.
Dogs were challenged with Borrelia burgdorferi by exposure to ticks, with or without prior protection from infection by recombinant OspA (rOspA) vaccination. Sera from these dogs were tested for their capability to inhibit the growth of B. burgdorferi in vitro. Bacterial growth was detected by a color change in the culture medium, and the optical density was measured with a spectrophotometer in microtiter plates. By growth inhibition, which was complement dependent, the color change was lacking after 5 days of incubation. Over a 1-year study, nonvaccinated dogs infected by exposure to ticks showed high antibody titers to B. burgdorferi by kinetic enzyme-linked immunosorbent assay (KELA). The same sera did not inhibit spirochetal growth or did so only at a low dilution. These results corresponded to the lack of OspA and OspB antibodies seen in Western blots (immunoblots), and these dogs were not protected from infection or disease. In contrast, dogs immunized with rOspA prior to challenge with infected ticks produced high antibody titers, as determined by KELA, but their sera also had high growth-inhibiting antibody titers. Western blot analysis showed a strong band in the 32-kDa region when the sera of these dogs were tested. When adjuvant was administered with rOspA, antibody titers by both KELA and growth inhibition were higher and persisted longer in the immunized dogs. All dogs immunized with rOspA were protected from infection and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号