首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Cisplatin-based chemotherapy has long been the cornerstone of non-small cell lung cancer (NSCLC) management. However, median survival rarely exceeds 1 year. The identification of molecular markers can help to predict response, leading to a broad implementation of the new concept of customized chemotherapy. ERCC1 is an excision nuclease within the nucleotide excision repair pathway that forms a heterodimer with XPF. As a unit, they execute the 5' incision into the DNA strand relative to the site of DNA damage. The 5' excision is the last of several steps that are specific to excision of a platinum DNA lesion. In mouse models, normal ERCC1 function is critical to normal aging and brain development. Numerous studies indicate that ERCC1 influences the repair of platinum DNA damage. We report here our accumulated experience of ERCC1 mRNA expression and outcome in cisplatin-treated NSCLC patients and the preliminary confirmatory data on a prospective ERCC1 mRNA customized docetaxel-cisplatin trial, in which low ERCC1 mRNA levels in the tumor correlate with significantly better response. ERCC1 is one of several proteins involved in the repairosome, where other DNA repair genes, such as BRCA1, are also central to cisplatin resistance.  相似文献   

3.
Individuals with the genetic disease xeroderma pigmentosum (XP) have impaired nucleotide excision repair (NER). Group A XP cells are defective in the XPA protein essential for NER and serve, together with other NER proteins, as a nucleation factor for the demarcation of bulky DNA damage. Because XPA cells are extremely sensitive to UV and drugs that cause bulky DNA damage, the XPA protein is an attractive target for manipulating cellular sensitivity to certain cancer therapeutics, a concept that perhaps can be applied toward developing more effective cancer treatments. We have made a replication-defective adenovirus, AdCMV-FlagXPA(59-114), that expresses a truncated form of XPA encompassing amino acids 59-114 sufficient for binding to the excision repair cross-complementing protein 1 (ERCC1)/xeroderma pigmentosum complementation group F (XPF) nuclease essential for making an incision 5' of the damage. On the basis of previous work, it was expected that this truncated XPA protein would work as a decoy and impair NER and, thus, sensitize cells to UV and drugs that produce bulky DNA lesions. Because the truncated XPA protein is "tagged" with the Flag epitope, an anti-Flag antibody can be used to detect protein expression and to isolate proteins associated with the XPA complex. We show that relatively large quantities of truncated XPA protein are present in infected human lung carcinoma A549 cells 2-4 days postinfection. Moreover, in a pull-down assay using anti-Flag antibody, we show that ERCC1 is present in the FlagXPA complex but not in a complex isolated from cells infected with a control virus. Most importantly, cells infected with AdCMV-FlagXPA(59-114) are significantly more sensitive than control cells to UV-induced damage as determined by host-cell reactivation of UV-irradiated AdLacZ adenovirus and in a cytotoxicity assay that appears to be the result of aberrant processing of 6-4 photoproducts. Infected cells were also more sensitive to treatment with cisplatin, an important cancer drug. These results suggest that NER, and the XPA protein in particular, can be a direct target for sensitizing tumor cells to UV and cisplatin and perhaps also certain other clinically important drugs.  相似文献   

4.
目的研究显示核苷酸切除修复通路在去除吸烟引起的DNA损伤中发挥着重要的作用,旨在探讨核苷酸切除修复通路单核苷酸多态性与吸烟相关性肺癌易感性的关系。方法选取1010例肺癌患者和1011例正常对照。采用基于通路的候选基因选点策略,从核苷酸切除修复通路相关的8个核心基因中筛选出40个标签SNPs进行检测和分析。结果单个位点分析发现6个SNPs(ERCC1 2个,DDB2 2个,ERCC4/XPF 1个,XPC 1个)与肺癌的易感性相关。进一步采用Logistic回归模型,调整年龄、性别、吸烟史和肿瘤家族史后,仍有3个SNPs(ERCC1 rs3212948,DDB2 rs830083,ERCC4 rs3136038)与肺癌易感性存在统计学关联。等位基因联合分析结果进一步表明肺癌的发病风险随着风险等位基因个数的增加而增加,尤其是ERCC1,ERCC2,ERCC3,ERCC5,XPA和XPC。结论本研究结果提示核苷酸切除修复通路基因多态性可能与中国汉族人群的肺癌个体易感性有关,值得进一步进行功能学探讨及大样本人群验证.  相似文献   

5.
The incidence of cutaneous melanoma is rising rapidly in a number of countries. The key environmental risk factor is exposure to the ultraviolet (UV) component in sunlight. The nucleotide excision repair (NER) pathway deals with the main forms of UV-induced DNA damage. We have investigated the hypothesis that polymorphisms in NER genes constitute genetic susceptibility factors for melanoma. However, not all melanomas arise on sun-exposed sites and so we investigated the hypothesis that genes involved in other pathways for the repair of oxidative DNA damage may also be involved in susceptibility to melanoma. Scotland, with its high incidence of melanoma and stable homogeneous population, was ideal for this case-control study, involving 596 Scottish melanoma patients and 441 population-based controls. Significant associations were found for the NER genes ERCC1 and XPF, with the strongest associations for melanoma cases aged 50 and under [ERCC1 odds ratio (OR) 1.59, P = 0.008; XPF OR 1.69, P = 0.003]. Although an XPD haplotype was associated with melanoma, it did not contain the variant 751 Gln allele, which has been associated with melanoma in some previous studies. No associations were found for the base excision repair and DNA damage response genes investigated. An association was also found for a polymorphism in the promoter of the vitamin D receptor gene, VDR (OR 1.88, P = 0.005). The products of the two NER genes, ERCC1 and XPF, where associations with melanoma were found, act together in a rate-limiting step in the repair pathway.  相似文献   

6.
Platinum-based drugs and radiation are key elements of multimodality treatment in a wide variety of solid tumors and especially tumors of the upper gastrointestinal tract. Cytotoxicity is directly related to their ability to cause DNA damage. This event consecutively triggers the nucleotide excision repair (NER) complex. The NER capacity has a major impact on chemo and radiation sensitivity, emergence of resistance and patient outcome. Excision repair cross-complementing group 1 (ERCC1) is a key molecule in NER. This review provides an overview of the NER complex with a focus on ERCC1. Recent literature has been analyzed and provides information regarding the potential role of ERCC1 as a prognostic factor in multimodality treatment of upper gastrointestinal cancer and cancer risk. To date, the role of ERCC1 as a predictive marker for individual multimodality treatment is far from being firmly established for routine use. However, with reliable methods, established cut-off values and validation in large, prospective, randomized trials, ERCC1 may possibly prove to play an important role as a tumor marker in individualized treatment for upper gastrointestinal cancer.  相似文献   

7.
Genes involved in the nucleotide excision repair (NER) pathway, which removes bulky DNA adducts, are potential low-penetrance cancer susceptibility genes. We recently reported an association between detectable polycyclic aromatic hydrocarbon (PAH)-DNA adducts and breast cancer risk. Using a population-based breast cancer case-control study on Long Island, New York, we examined whether polymorphisms in NER genes modified the association between PAH-DNA adducts and breast cancer risk. We examined polymorphisms in ERCC1 (3'-untranslated region 8092C/A), XPA (5'-untranslated region -4G/A), XPD (Asp(312)Asn in exon 10), XPF (Arg(415)Gln in exon 8), and XPG (Asp(1104)His in exon 15) in 1,053 breast cancer cases and 1,102 population-based controls. The presence of at least one variant allele in XPD was associated with a 25% increase in the odds ratio [OR, 1.25; 95% confidence interval (95% CI), 1.04-1.50] for breast cancer. The increase associated with homozygosity of the variant alleles for XPD and ERCC1 was stronger among those with detectable PAH-DNA adduct levels (OR, 1.83; 95% CI, 1.22-2.76 and OR, 1.92; 95% CI, 1.14-3.25 for detectable versus nondetectable adducts and homozygous wild-type genotype for XPD and ERCC1, respectively). We found no association between XPA, XPF, and XPG genotypes, PAH-DNA adducts, and breast cancer risk. When we combined genotypes for these NER pathway genes, there was a significant trend for increasing breast cancer risk with increasing number of putative high-risk alleles. Overall, this study suggests that the risk of breast cancer may be elevated among women with polymorphisms in NER pathway genes and detectable PAH-DNA adducts.  相似文献   

8.
The lung cancer mortality rate in Xuan Wei County is among the highest in China and has been attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NER) plays a key role in reversing DNA damage from exposure to environmental carcinogens, such as PAHs, that form bulky DNA adducts. We studied single nucleotide polymorphisms (SNPs) and their corresponding haplotypes in 6 genes (ERCC1, ERCC2/XPD, ERCC4/XPF, ERCC5/XPG, RAD23B and XPC) involved in NER in a population-based case-control study of lung cancer in Xuan Wei. A total of 122 incident primary lung cancer cases and 122 individually matched controls were enrolled. Three linked SNPs in ERCC2 were associated with lung cancer with similar ORs; e.g., persons with the Gln allele at codon 751 had a 60% reduction of lung cancer (OR = 0.40, 95% CI 0.18-0.89). Moreover, one haplotype in ERCC2 was associated with a decreased risk of lung cancer (OR = 0.40, 95% CI 0.19-0.85) compared to the most common haplotype. In addition, subjects with one or 2 copies of the Val allele at codon 249 of RAD23B had a 2-fold increased risk of lung cancer (OR = 1.91, 95% CI 1.12-3.24). In summary, our results suggest that genetic variants in genes involved in the NER pathway may play a role in lung cancer susceptibility in Xuan Wei. However, due to the small sample size, additional studies are needed to evaluate these associations within Xuan Wei and in other populations with substantial environmental exposure to PAHs.  相似文献   

9.
Over 80% of patients with advanced metastatic testis tumors can be cured using cisplatin-based combination chemotherapy. This is unusual as metastatic cancer in adults is usually incurable. Cell lines derived from testis tumors retain sensitivity to cisplatin in vitro. We previously investigated 2 testis tumor cell lines with a low capacity to remove cisplatin-induced DNA damage and found that they had low levels of the DNA nucleotide excision repair proteins XPA, ERCC1 and XPF. To determine whether low levels of XPA, ERCC1 and XPF proteins are characteristic of testis tumor cell lines, we investigated 35 cell lines derived from cancers to determine whether groups of cell lines from diverse tissue origins differ from one another in constitutive levels of these NER proteins. Quantitative immunoblotting was used to compare groups of cell lines representing prostate, bladder, breast, lung, cervical, ovarian and testis cancers. Only the 6 testis tumor cell lines showed significantly lower mean levels of XPA (p = 0.001), XPF (p = 0.001) and ERCC1 (p = 0.004) proteins from the other groups. Our results encourage further investigation of the possibility that low levels of these nucleotide excision repair proteins could be related to the favorable response of testis tumors to cisplatin-based chemotherapy.  相似文献   

10.
Polymorphisms of DNA repair genes and risk of non-small cell lung cancer   总被引:24,自引:0,他引:24  
Lung cancer is a leading cause of cancer mortality with an inter-individual difference in susceptibility to the disease. The inheritance of low-efficiency genotypes involved in DNA repair and replication may contribute to the difference in susceptibility. We investigated 44 single nucleotide polymorphisms (SNPs) in 20 DNA repair genes including nucleotide excision repair (NER) genes XPA, ERCC1, ERCC2/XPD, ERCC4/XPF and ERCC5/XPG; base excision repair (BER) genes APE1/APEX, OGG1, MPG, XRCC1, PCNA, POLB, POLiota, LIG3 and EXO1; double-strand break repair (DSB-R) genes XRCC2, XRCC3, XRCC9, NBS1 and ATR; and direct damage reversal (DR) gene MGMT/AGT. The study included 343 non-small cell lung cancer (NSCLC) cases and 413 controls from Norwegian general population. Our results indicate that SNPs in the NER genes ERCC1 (Asn118Asn, 15310G>C, 8902G>T), XPA (-4G>A), ERCC2/XPD (Lys751Gln) and ERCC5/XPD (His46His); the BER genes APE1/APEX (Ile64Val), OGG1 (Ser326Cys), PCNA (1876A>G) and XRCC1 (Arg194Trp, Arg280His, Arg399Gln); and the DSB-R genes ATR (Thr211Met), NBS1 (Glu185Gln), XRCC2 (Arg188His) and XRCC9 (Thr297Ile) modulate NSCLC risk. The level of polycyclic aromatic hydrocarbon-DNA (PAH-DNA) adducts in normal lung tissue from 211 patients was analysed. The variant alleles of XRCC1(Arg280His), XRCC1 (Arg399Gln), ERCC1(G8092T), ERCC5(His46His) and MGMT/AGT(Lys178Arg) were more frequent in patients with PAH-DNA adduct levels lower than the mean whereas the XRCC1(Arg194Trp) variant was more frequent in cases with higher adduct levels than the mean.  相似文献   

11.
Base excision repair and nucleotide excision repair are vital responses to multiple types of DNA damage, including damage from tobacco exposure. Single-nucleotide polymorphisms (SNP) in these pathways may affect DNA repair capacity and therefore influence risk for cancer development. We performed a clinic-based, case-control study comprising 481 consecutive patients with confirmed pancreatic adenocarcinoma and 625 healthy controls. Allele and genotype frequencies for 16 SNPs in DNA repair genes ERCC1, XPD/ERCC2, XPC, XPF/ERCC4, OGG1, and XRCC1 were compared after adjusting for age, sex, and smoking history. Subgroup analysis by sex and smoking history was performed. Carriers of one or two XPF/ERCC4 minor alleles at R415Q had decreased risk of pancreatic adenocarcinoma compared with those who had two major alleles [odds ratio (OR), 0.59; 95% confidence interval (95% CI), 0.40-0.85]. Heavy smokers (>40 pack-years) had increased risk for cancer if they were carriers of at least one minor allele for XPD/ERCC2 at D312N (OR, 2.78; 95% CI, 1.28-6.04) or D711D (OR, 2.19; 95% CI, 1.01-4.73). No other significant differences in risk were identified. Minor alleles in DNA repair genes XPF/ERCC4 and XPD/ERCC2 were associated with altered risk for pancreatic cancer.  相似文献   

12.

BACKGROUND:

The nucleotide excision repair (NER) pathway is the principal DNA repair pathway for removing bulky platinum DNA adducts. Suboptimal DNA repair may lead to improved response to platinum agents. The objective of this study was to determine whether single‐nucleotide polymorphisms (SNPs) in NER pathway genes could be markers of platinum response in ovarian cancer.

METHODS:

The authors identified patients with advanced‐stage, papillary serous ovarian cancer who underwent primary cytoreductive surgery followed by platinum‐based chemotherapy. DNA was isolated from peripheral blood specimens. Twenty‐two SNPs within NER genes (xeroderma pigmentosum [XP] complementation group A [XPA], XPB/excision repair cross‐complementing rodent repair deficiency, complementation group 3 [ERCC3], XPC, XPD/ERCC2, XPF/ERCC4, XPG/ERCC5, Cockayne syndrome group B protein [CSB]/ERCC8, ERCC1) were genotyped using polymerase chain reaction analysis.

RESULTS:

In total, 139 patients with stage III and IV papillary serous ovarian cancer were genotyped. The XPC (reference SNP 3731108 [rs3731108]) adenosine‐guanine (AG)/AA genotype versus the GG genotype was associated with prolonged a progression‐free survival (PFS) of 21.3 months versus 13.4 months (hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.42‐0.95; P = .03). The XPC (rs1124303) guanosine‐thymidine (GT)/GG genotype versus the TT genotype was associated with a prolonged PFS of 22.8 months versus 14.9 months (HR, 0.47; 95% CI, 0.24‐0.94; P = .03). The XPC poly(AT) (PAT) (?/+)/(?/?) genotype versus the (+/+) genotype was associated with a prolonged PFS of 17 months versus 11.6 months (HR, 0.56; 95% CI, 0.36‐0.89; P = .01). The XPF/ERCC4 (rs12926685) cytidine‐thymidine (CT)/CC genotype versus the TT genotype was associated with a prolonged PFS of 16.7 months versus 12.4 months (HR, 0.63; 95% CI, 0.41‐0.95; P = .03). On multivariate analysis adjusting for breast cancer (BRCA) gene and cytoreductive surgery status, the XPC SNPs remained significantly associated with prolonged PFS.

CONCLUSIONS:

The current results indicated that XPC is a key component of the NER pathway that participates in DNA damage repair. SNPs in the XPC gene may represent novel markers of ovarian cancer response to platinum‐based chemotherapy. Cancer 2012;. © 2011 American Cancer Society.  相似文献   

13.
We have previously shown that in non-drug-selected human T lymphocytes, DNA repair is the primary determinant of cellular resistance to cisplatin (1). In this system, we have assessed mRNA levels of expression of the nucleotide excision repair (NER) genes ERCC1 and XPA, as well as the alternatively spliced species of ERCC1 which lacks exon VIII. The focus of these studies, was to try to identify the possible relative roles of normal XPA, full-length ERCC1, and alternatively spliced ERCC1, in a system where DNA repair is a clear determinant of cisplatin resistance. ERCC1 expression was directly related to cisplatin-DNA adduct repair capability, as well as directly related to cisplatin resistance, suggesting a primary role for ERCC1 in effecting DNA repair. XPA expression was approximately equivalent in each cell line, regardless of the level of DNA repair activity, suggesting a helper role for the product of this gene. The mRNA levels of the alternatively spliced species of ERCC1 were strongly inversely related to DNA repair activity, suggesting a possible inhibitory influence on the DNA repair process. This interpretation is consistent with alternative splicing of several known oncogenes, where the alternatively spliced species has an inhibitory effect on the full-length gene product. The NER pathway appears to be vitally important in effecting cisplatin resistance in non-drug-selected T lymphocytes. Further, it appears that NER may have at least one inhibitory regulatory component.  相似文献   

14.
15.
Ovarian cancer is the leading cause of death among women from gynecological malignancies inthe United States. Resistance to the chemotherapeutic agent cisplatin isa major limitation for the successful treatment of ovarian cancer. In an effort to overcome the cisplatin resistance problem in ovarian cancer treatment, we have sought to enhance cisplatin cytotoxicity by perturbing the nucleotide excision repair (NER) pathway. The NER pathway is responsible for repairing cisplatin bound to DNA. Expression of one of the NER components, ERCC1, is correlated with cisplatin drug resistance. Hence, we targeted ERCC1 by antisense RNA methodologies, and we show that we could sensitize a relatively sensitive A2780 cell line and also the highly resistant OVCAR10 cell line to cisplatin by expressing antisense ERCC1 RNA in them as measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The A2780 cell lines expressing antisense ERCC1 had 1.9-8.1-fold enhancements in cisplatin sensitivity. The OVCAR10 antisense ERCC1 cell lines had IC(50) values ranging from 2.28 microM to 2.7 microM cisplatin as compared with 9.52 micro M for control OVCAR10 cells. The OVCAR10 antisense ERCC1 cells also show reduced DNA-damage repair capacity as assessed by host cell reactivation. Furthermore, immunocompromised mice transplanted with the antisense cell lines survived longer than the mice bearing control cells after response to cisplatin treatment. These data suggest that it is possible to substantially enhance the cisplatin cytotoxicity by disturbing the NER pathway in cisplatin-resistant cell lines and to enhance the survival capacity of mice in an ovarian cancer xenograft model.  相似文献   

16.
DNA repair has an essential role in protecting the genome from damage by endogenous and environmental agents. Polymorphisms in DNA repair genes and differences in repair capacity between individuals have been widely documented. For colorectal cancer, the loss of mismatch repair gene activity is a key genetic determinant. Nucleotide excision repair (NER), recombination repair (RR) and base excision repair (BER) pathways have critical roles in protection against other cancers, and we wished to investigate their role in colorectal cancer. We have compared the frequency of polymorphisms in the NER genes, XPD, XPF, XPG, ERCC1; in the BER gene, XRCC1; and in the RR gene, XRCC3; in colorectal cancer patients and in a control group. No significant associations were found for any of the NER gene polymorphisms or for the XRCC1 polymorphism. The C allele (position 18067) of the XRCC3 gene was weakly but significantly associated with colorectal cancer (odds ratio 1.52, 95% confidence interval 1.04-2.22, P=0.03). For all patients who were heterozygous for any of the repair genes studied, tumour tissue was investigated for loss of heterozygosity (LOH). Only one example of LOH was found for all the genes examined. From the association and LOH data, we conclude that these genes do not have an important role in protection against colorectal carcinogenesis.  相似文献   

17.
18.
19.
Cheng L  Spitz MR  Hong WK  Wei Q 《Carcinogenesis》2000,21(8):1527-1530
Epidemiological studies have indicated that reduced DNA repair capacity and increased DNA adduct levels are associated with increased risk of lung cancer. Nucleotide excision repair (NER) is the major pathway in humans for repairing DNA adducts induced by smoking-related carcinogens, such as benzo[a]pyrene diol epoxide. We hypothesized that genetically determined baseline expression level of genes involved in NER is associated with risk of lung cancer. In a pilot case-control study, we measured the relative expression levels of five NER genes [ERCC1, XPB/ERCC3, XPG/ERCC5, CSB/ERCC6 and XPC (ERCC, excision repair cross-complementing; CSB, Cockayne's syndrome complementary group B)] in phytohemagglutinin-stimulated peripheral lymphocytes obtained from 75 lung cancer patients and 95 controls using a newly developed multiplex RT-PCR assay. Cases and controls were matched on age, sex, ethnicity and tobacco use. The expression level of the beta-actin gene was used as an internal control for the relative quantitation. We observed a 12.2 and 12.5% decrease in the baseline expression levels of XPG/ERCC5 and CSB/ERCC6, respectively, in cases compared with controls. These differences were statistically significant (P < 0.01) when the median expression level in the controls was used as the cut-off point, the lung cancer patients were significantly more likely than the controls to have reduced expression levels of XPG/ERCC5 [odds ratio (OR), 2.32; 95% confidence interval (CI), 1.22-4.43] and CSB/ERCC6 (OR, 2.49; 95% CI, 1.28-4.84). There was also a dose-response relationship between reduced expression levels and increased lung cancer risk (trend test: P < 0.01). Our results suggest that individuals whose expression levels of XPG/ERCC5 and CSB/ERCC6 are reduced may be at higher risk of lung cancer.  相似文献   

20.
Oxaliplatin-based chemotherapy is the standard of care in patients with high-risk stage II and stage III colorectal cancer as well as in patients with advanced disease. Unfortunately, a large proportion of patients offered oxaliplatin fail to benefit from it. In the era of personalized treatment, there are strong efforts to identify biomarkers that will predict efficacy to oxaliplatin-based treatments. Excision repair cross-complementation group 1 (ERCC1) is a key element in the nucleotide excision repair (NER) pathway, which is responsible for repairing DNA adducts induced by platinum compounds. ERCC1 has recently been shown to be closely associated with outcome in patients with non–small-cell lung cancer (NSCLC): both high ERCC1 protein and gene expression are associated with resistance to cisplatin-based chemotherapy and better outcome without treatment. Therefore, ERCC1 has the potential to be used as a strong candidate biomarker, both predictive and prognostic, for colorectal cancer. This review will focus on the preclinical and clinical evidences supporting ERCC1 as a major molecule in oxaliplatin resistance. In addition, the important technologies used to assess ERCC1 gene and protein expression will be highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号