首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ecklonia cava is an edible brown alga that contains high levels of phlorotannins, which are unique marine polyphenolic compounds. In the present study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of phlorotannin 6,6′-bieckol, which is an active component isolated from E. cava, on lipopolysaccharide (LPS)-stimulated primary macrophages and RAW 264.7 macrophage cells. 6,6′-Bieckol was found to inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production and to suppress the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, 6,6′-bieckol downregulated the production and mRNA expression of the inflammatory cytokines TNF-α and IL-6. Moreover, pretreatment with 6,6′-bieckol decreased LPS-induced transactivation of nuclear factor-kappa B (NFκB) and nuclear translocation of p50 and p65 subunits of NFκB. Furthermore, chromatin immunoprecipitation assay revealed that 6,6′-bieckol inhibited LPS-induced NFκB binding to the TNF-α and IL-6 promoters. Taken together, these data suggest that the anti-inflammatory properties of 6,6′-bieckol are related to the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the negative regulation of the NFκB pathway in LPS-stimulated macrophages.  相似文献   

4.
In this study, potential anti-inflammatory effect of fucoxanthin isolated from brown algae was assessed via inhibitory effect of nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 macrophage cells. The Myagropsis myagroides was selected for further experiments due to its profound NO inhibitory effect, and was partitioned with different organic solvents. Highest NO inhibitory effect was detected in the chloroform fraction, and the active compound was identified as fucoxanthin, a kind of carotenoid available in brown algae evidenced high correlation with the inhibitory effect of NO production (r2 = 0.9511). Though, fucoxanthin significantly inhibited the NO production, it slightly reduced the prostaglandin E2 (PGE2) production. The inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions were inhibited by fucoxanthin. Further, RT-PCR analysis indicated that the iNOS and COX-2 mRNA expressions were suppressed by fucoxanthin. Moreover, the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), and the mRNA expression levels of those cytokines were reduced by the addition of fucoxanthin in a dose-dependent manner. Hence, these results suggest that the use of fucoxanthin may be a useful therapeutic approach for the various inflammatory diseases.  相似文献   

5.
6.
Extracts of the plant species Pinus sylvestris L. and Plantago lanceolata L. have been used in traditional medicine for the treatment of certain respiratory diseases, but little is known about their precise effects and mechanisms of action. In this study, we investigated the effect of these plant extracts on the production of nitric oxide (NO) and prostaglandin E(2), NO synthase (NOS) type II, cyclooxygenase-1 (COX-1) and COX-2 mRNA expression in the murine macrophage cell line J774A.1. We found that Pinus sylvestris and Plantago lanceolata extracts inhibited NO production in a concentration-dependent manner in this cell line, without obvious cytotoxic effects as tested by MTT assay. The Plantago lanceolata extract at all doses used, and the Pinus sylvestris extract at high doses, showed significant scavenging of NO radicals released by the NO donor PAPA-NONOate. Our data also show that pre-treatment with these extracts significantly inhibits inducible NOS (iNOS) mRNA production in this cell line, without affecting COX-1 mRNA expression. COX-2 mRNA levels and PGE(2) levels induced by lipopolysaccharide/interferon-gamma were not modified upon pre-treatment with the extracts. Thus, our results suggest that the anti-inflammatory properties of Pinus sylvestris and Plantago lanceolata extracts may reflect decreased NO production, possibly due to inhibitory effects on iNOS gene expression or to NO-scavenging activity.  相似文献   

7.
We have previously shown that ivermectin inhibits LPS-induced production of inflammatory cytokines. In the present study, we investigated the effect of ivermectin on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophages. Ivermectin inhibited LPS-induced NO and PGE2 production. Consistent with these observations, the protein and mRNA expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes were inhibited by ivermectin in a concentration-dependent manner. Furthermore, the phosphorylation of p38, ERK1/2, and JNK in LPS-stimulated RAW 264.7 cells was suppressed by ivermectin in a dose-dependent manner. These results suggest that ivermectin suppresses NO and PGE2 production, as well as iNOS and COX-2 expression, by inhibiting phosphorylation of mitogen-activated protein kinases (MAPK) (p38, ERK1/2, and JNK) in LPS-stimulated RAW 264.7 cells.  相似文献   

8.
The dried flower buds of Tussilago farfara L. have been used in traditional medicine, mainly as an antitussive in the treatment of cough and other respiratory problems. In the present study, we investigated the anti-inflammatory signaling pathway via the upregulation of heme oxygenase-1 (HO-1) in response to tussilagonone (TGN), a sesquiterpene compound isolated from T. farfara. TGN induced HO-1 expression and nuclear factor-E2-related factor 2 (Nrf2) activation in RAW 264.7 cells. Nuclear translocation of Nrf2 by TGN also increased in a time- and dose-dependent manner, indicating that TGN induced HO-1 via the Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, TGN suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and reduced the mRNA expression of proinflammatory cytokines, as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. TGN inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the nuclear translocation of nuclear factor (NF)-κB. However, a specific inhibitor of HO-1 reversed the TGN-mediated suppression of NO production and knockdown of HO-1 by small interfering RNA abrogated inhibitory effects of TGN on iNOS and COX-2 protein expression and NF-κB nuclear translocation. Furthermore, TGN reduced iNOS and COX-2 expression in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation mouse model. Taken together, these findings suggest an important role for TGN-induced HO-1 activation in regulating inflammatory responses. Moreover, TGN is a potent therapeutic candidate for targeting the crosstalk between Nrf2/HO-1 and the NF-κB signaling pathway in the prevention or treatment of inflammation-associated diseases.  相似文献   

9.
10.
The anti-inflammatory activity of whole Cirsium maackii (family Compositae) plants and of its major flavonoid, luteolin 5-O-glucoside, was evaluated for their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein expression, and tert-butylhydroperoxide (t-BHP)-induced reactive oxygen species (ROS) generation in RAW 264.7 murine macrophage cells. The methanolic extract of C. maackii showed strong anti-inflammatory activity, and was thus fractionated with several solvents. The ethyl acetate-soluble fraction, exhibiting the highest anti-inflammatory activity potential, was further to yield a major flavonoid, luteolin 5-O-glucoside. We found that luteolin 5-O-glucoside, at a non-toxic concentration, inhibited LPS-induced NO production and t-BHP-induced ROS generation in a dose-dependent manner in RAW 264.7 cells. It also suppressed the expression of iNOS and COX-2 in LPS-stimulated macrophages. Furthermore, the efficacies of the methanolic extract of C. maackii in inhibiting both NO and ROS were attributed to its flavonoid content by HPLC analysis. These results indicated that C. maackii whole plants and its flavonoids inhibit the expression of iNOS and COX-2 in through the inhibition of ROS generation, and therefore can be considered as a useful therapeutic and preventive approach for the treatment of various inflammatory and oxidative stress-related diseases.  相似文献   

11.
Ecklonia cava (EC) is a brown alga that has demonstrated radical scavenging, bactericidal, tyrosinase inhibitory, and protease inhibitory activities. However, the molecular mechanisms underlying its anti-inflammatory action remain unclear. In the current study, we attempted to determine whether pretreatment with EC induces a significant inhibition of anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. Our results indicate that EC inhibits LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in a concentration-dependent manner and inhibits inducible nitric oxide (iNOS) and cyclooxygenase (COX)-2 in BV2 microglia without significant cytotoxicity. EC treatment significantly reduced nuclear factor-κB (NF-κB) translocation and DNA-binding in LPS-stimulated BV2 microglia. This effect was mediated through the inhibition of the degradation of the inhibitor κB and by inhibition of the mitogen-activated protein kinase (MAPK) phosphorylation, at least in part by inhibiting the generation of reactive oxygen species. Our data also indicate that EC extracts exert anti-inflammatory effects by suppressing proinflammatory cytokines. Collectively, these results suggest that EC suppresses the induction of cytokines by LPS, as well as iNOS and COX-2 expression, by blocking NF-κB and MAPK activation. These findings provide mechanistic insights into the anti-inflammatory and neuroprotective actions of EC in BV2 microglia.  相似文献   

12.
13.
The purpose of this study was to examine anti-inflammatory effect of ethanolic extract of Antrodia salmonea (EAS) in the lipopolysaccharide (LPS)-stimulated RAW246.7 macrophages and the carrageenan (Carr)-induced edema paw model, and to clarify its possible molecular mechanisms. Inhibitory effects of EAS were examined on cells proliferation, nitric oxide (NO) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, and activity of antioxidant enzymes. Our data demonstrated that EAS inhibited cell growth, NO production, and expression of iNOS and COX-2 proteins in LPS-stimulated RAW246.7 cells. EAS can also significantly reduce paw edema, content of NO, TNF-α and malondialdehyde (MDA), expression of iNOS and COX-2 proteins, and neutrophil infiltration within the tissues stimulated by Carr. The anti-inflammatory mechanisms of EAS might be related to the decrease of inflammatory cytokine and increase of antioxidant enzymes activities, which would result in reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.  相似文献   

14.
15.
Anti-inflammatory activity of Saccharina japonica and its active components was evaluated via in vitro inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 murine macrophage cells. Since the methanolic extract of S. japonica showed strong anti-inflammatory activity, it was fractionated with several solvents. Among the fractions, the ethyl acetate fraction demonstrated the highest inhibition of LPS-induced NO production (IC50 = 25.32 μg/mL), followed by the CH2Cl2 fraction (IC50 = 75.86 μg/mL). Considering the yield and anti-inflammatory potential together, the CH2Cl2 fraction was selected for chromatographic separation to yield two active porphyrin derivatives, pheophorbide a and pheophytin a, together with an inactive fucoxanthin. In contrast to fucoxanthin, pheophorbide a and pheophytin a showed dose-dependent inhibition against LPS-induced NO production at nontoxic concentrations in RAW 264.7 cells. Both compounds also suppressed the expression of iNOS proteins, while they did not inhibit the COX-2 expression in LPS-stimulated macrophages. These results indicate that pheophorbide a and pheophytin a are two important candidates of S. japonica as anti-inflammatory agents which can inhibit the production of NO via inhibition of iNOS protein expression. Thus, these compounds hold great promise for use in the treatment of various inflammatory diseases.  相似文献   

16.
CQMUH-011, a novel adamantane sulfonamide compound, was shown to suppress macrophage activation and proliferation in our previous study. However, it is unknown whether CQMUH-011 has anti-inflammatory and hepatoprotective properties. In this study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-induced RAW264.7 cell activation in vitro and LPS- and D-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF) in vivo. The results showed that in RAW264.7 cells challenged by LPS, CQMUH-011 inhibited cell proliferation and induced cell cycle arrest and apoptosis. Furthermore, CQMUH-011 reduced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production and down-regulated the overexpression of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB induced by LPS in RAW264.7 cells. In vivo, CQMUH-011 reduced serum levels of aspartic aminotransferase and alanine transaminase and improved the mortality and hepatic pathological damage induced by LPS/D-GalN in mice. Moreover, CQMUH-011 significantly inhibited the serum levels of proinflammatory mediators, including TNF-α, IL-6, IL-1β, nitric oxide (NO), and prostaglandin E2 (PGE2), and down-regulated the protein expression of TLR4, p38 mitogen-activated protein kinases, NF-κB, NF-κB inhibitor α (IκBα), IκB kinase β (IKKβ), cyclooxygenase-2 (COX-2) and inducible NO synthases (iNOS) induced by LPS/D-GalN in mice. In conclusion, these results demonstrated that CQMUH-011 has a notable anti-inflammatory effect and protects mice from LPS/D-GalN-induced FHF and that the molecular mechanisms might be related to the inhibition of the TLR4/NF-κB signaling pathway activation, the subsequent decrease in proinflammatory mediator production, and the inhibition of macrophage activation.  相似文献   

17.
Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression.  相似文献   

18.
The anti-inflammatory effects of the methanol extract of the roots of Morinda officinalis (MEMO) (Rubiaceae) were evaluated in-vitro and in-vivo. The effects of MEMO on lipopolysaccharide (LPS)induced responses in the murine macrophage cell line RAW 264.7 were examined. MEMO potently inhibited the production of nitric oxide (NO), prostaglandin E2 and tumour necrosis factor-alpha (TNF-alpha) in LPS-stimulated RAW 264.7 macrophages. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, and of iNOS, COX-2 and TNF-alpha at the mRNA level, was also inhibited by MEMO in a concentration-dependent manner. Furthermore, MEMO inhibited the nuclear factor kappa B (NF-kappaB) activation induced by LPS, and this was associated with the prevention of degradation of the inhibitor kappaB (IkappaB), and subsequently with attenuated p65 protein in the nucleus. The anti-inflammatory effect of MEMO was examined in rats using the carrageenan-induced oedema model. The antinociceptive effects of MEMO were assessed in mice using the acetic acid-induced abdominal constriction test and the hot-plate test. MEMO (100, 200 mg kg-1 per day, p.o.) exhibited anti-inflammatory and antinociceptive effects in these animal models. Taken together, the data demonstrate that MEMO has anti-inflammatory and antinociceptive activity, inhibiting iNOS, COX-2 and TNF-alpha expression by down-regulating NF-kappaB binding activity.  相似文献   

19.
Fermentation products of the fungus Monascus offer valuable therapeutic benefits and have been used extensively for centuries in Asia. The aim of this study is to investigate the inhibitory effect of the Monascus-fermented metabolite monascin (MS) on the molecular mechanism of ovalbumin (OVA)-induced inflammation in the human THP-1 monocyte cell line. We found that 1, 5, and 25 μM of MS significantly attenuated several proinflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) formation caused by OVA stimulation. Further, 5 and 25 μM of MS significantly reduced the generation of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) at both the protein and mRNA levels. MS (5 and 25 μM) decreased OVA-induced phosphorylation of mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK), but not that of extracellular signal-regulated kinase (ERK) or p38 kinase. We used the peroxisome proliferator activated receptor-γ (PPAR-γ) antagonist GW9662 to show that MS inhibit JNK phosphorylation through increased expression of PPAR-γ. Thus, the metabolites from Monascus fermentation may serve as a dietary source of anti-inflammatory agents.  相似文献   

20.
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-α, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-treated BV2 microglial cells by suppressing ROS and NF-κB. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号