首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.

Background

Although development of an HSV vaccine is a priority there is currently no vaccine available. The recent failure of subunit vaccines suggest that presentation of more antigens via a live attenuated vaccine may be required for protection. We therefore evaluated VC2, a live attenuated HSV vaccine, engineered to be unable to enter into neuronal axons.

Methods

VC2 pathogenesis was first evaluated in guinea pigs following intravaginal inoculation. VC2 was then evaluated as a prophylactic and therapeutic vaccine and compared protection to a gD2 vaccine adjuvanted with MPL/Alum in the guinea pig model of genital HSV-2. The guinea pig model allows evaluation of acute and recurrent disease, as well as vaginal shedding acutely and during episodes of recurrent activation.

Results

VC2 was significantly attenuated in guinea pigs compared to the wild type strain, 17syn+. It replicated poorly at the inoculation site, did not produce any genital disease and rarely infected the neural tissue. After prophylactic vaccination, the VC2 vaccine decreased the clinical severity of acute and recurrent HSV-2 disease and shedding and decreased the quantity of virus in the DRGs. When compared to gD2+MPL/Alum, VC2 was somewhat more effective especially as it relates to neural tissue infection. VC2 was not effective as a therapeutic vaccine.

Conclusion

The live attenuated prophylactic HSV vaccine, VC2, was effective in the guinea pig model of genital HSV-2. Its decreased ability to infect neural tissues provides advantages over other live attenuated vaccines.  相似文献   

2.
Genital herpes simplex virus (HSV) infections are common but results from vaccine trials with HSV-2 glycoprotein D (gD) have been disappointing. We therefore compared a similar HSV gD2 vaccine, to a further truncated gD2 vaccine, to a vaccine with gD2 plus gB2 and gH2/gL2 and to a vaccine with only gB2 and gH2/gL2 in a guinea pig model of genital herpes. All vaccines were administered with cationic liposome-DNA complexes (CLDC) as an adjuvant. All vaccines significantly decreased the severity of acute genital disease and vaginal virus replication compared to the placebo group. The majority of animals in all groups developed at least one episode of recurrent disease but the frequency of recurrent disease was significantly reduced by each vaccine compared to placebo. No vaccine was significantly more protective than gD2 alone for any of the parameters described above. No vaccine decreased recurrent virus shedding. When protection against acute infection of dorsal root ganglia and the spinal cord was evaluated all vaccines decreased the per cent of animal with detectable virus and the quantity of virus but again no vaccine was significantly more protective than another. Improvements in HSV-2 vaccines may require inclusion of more T cell targets, more potent adjuvants or live virus vaccines.  相似文献   

3.
《Vaccine》2016,34(26):2948-2952
Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries.  相似文献   

4.
Herpes simplex virus (HSV) infections are common but there is no vaccine available. We evaluated cationic liposome–DNA complexes (CLDC) as an adjuvant for an HSV gD2 vaccine and compared it to an MPL/Alum adjuvant in a guinea pig model of genital herpes. The addition of CLDC to the gD2 vaccine significantly decreased acute and recurrent disease and most importantly the number of days with recurrent virus shedding compared to gD2 alone. Reductions in these outcomes were also detected when gD2 + CLDC was compared to gD2 + MPL/Alum. When the vaccine and adjuvants were evaluated as therapeutic vaccines, they were ineffective. CLDC enhanced protection compared to MPL/Alum and is the first vaccine to reduce recurrent virus shedding, a key to decreasing the spread of HSV-2.  相似文献   

5.
《Vaccine》2021,39(40):5866-5875
Herpes simplex virus type 2 (HSV-2) is a common sexually transmitted disease that affects approximately 500 million individuals globally. There is currently no approved vaccine to prevent HSV-2 infection. EXCT4 is a truncated form of the mature glycoprotein G-2 (mgG-2) that unlike full mature form is secreted by expressing cells enabling it to be rapidly scaled up for production. The current study examined whether EXCT4 immunity in mice could be further enhanced through use of adjuvants. EXCT4 formulated with Advax-CpG adjuvant induced a strong Th1-type immune response characterized by interferon gamma (IFN-γ) and protected animals against a lethal genital challenge with HSV-2. This response was associated with reduced viral load in vaginal washes, spinal cord, and dorsal root ganglia. Together the results provide proof of concept that EXCT4 formulated with Advax-CpG adjuvant is a promising HSV-2 vaccine candidate warranting further investigation.  相似文献   

6.
《Vaccine》2019,37(43):6470-6477
Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2). Using the HSV-2 genital herpes guinea pig model, we demonstrate that IN NE01-gD2/gB2 induces higher levels of neutralizing antibody compared to a monovalent IN NE01-gD2 vaccine, but less than an intramuscular (IM) Alum/MPL-gD2 vaccine. Following intravaginal (IVag) challenge with HSV-2, the group immunized with IN NE01-gD2/gB2 exhibited significantly reduced acute and recurrent disease scores compared to placebo recipients. Significantly, latent virus was only detected in the dorsal root ganglia of 1 of 12 IN NE01-gD2/gB2-vaccinated animals compared to 11 of 12 placebo recipient. In the therapeutic model, IN NE01-gD2/gB2 immunized guinea pigs exhibited a significant reduction in the recurrent lesions scores (64%, p < 0.01), number of animal days with disease (64%, p < 0.01), number of animals with viral shedding (50%, p < 0.04) and reduction in virus positive vaginal swabs (56%, p < 0.04), These data suggests that the treatment may be effective in treating chronic disease and minimizing virus transmission. These results warrant advancing the development of IN NE01-gD2/gB2 as both a prophylactic and therapeutic vaccine against HSV-2.  相似文献   

7.
《Vaccine》2020,38(47):7409-7413
Neonatal herpes is a dreaded complication of genital herpes infection in pregnancy. We recently compared two vaccine platforms for preventing genital herpes in female mice and guinea pigs and determined that HSV-2 glycoproteins C, D and E expressed using nucleoside-modified mRNA in lipid nanoparticles provided better protection than the same antigens produced as baculovirus proteins and administered with CpG and alum. Here we evaluated mRNA and protein immunization for protection against neonatal herpes. Female mice were immunized prior to mating and newborns were infected intranasally with HSV-2. IgG binding and neutralizing antibody levels in mothers and newborns were comparable using the mRNA or protein vaccines. Both vaccines protected first and second litter newborns against disseminated infection based on virus titers in multiple organs. We conclude that both vaccines are efficacious at preventing neonatal herpes, which leaves the mRNA vaccine as our preferred candidate based on better protection against genital herpes.  相似文献   

8.
9.
Vaccines for prevention and treatment of genital herpes are high public health priorities. Our approach towards vaccine development is to focus on blocking virus entry mediated by herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) and to prevent the virus from evading complement and antibody attack by blocking the immune evasion domains on HSV-2 glycoproteins C (gC2) and E (gE2), respectively. HSV-2 gC2 and gE2 are expressed on the virion envelope and infected cell surface where they are potential targets of antibodies that bind and block their immune evasion activities. We demonstrate that antibodies produced during natural infection in humans or intravaginal inoculation in guinea pigs bind to gC2 but generally fail to block the immune evasion domains on this glycoprotein. In contrast, immunization of naïve or previously HSV-2-infected guinea pigs with gC2 subunit antigen administered with CpG and alum as adjuvants produces antibodies that block domains involved in immune evasion. These results indicate that immune evasion domains on gC2 are weak antigens during infection, yet when used as vaccine immunogens with adjuvants the antigens produce antibodies that block immune evasion domains.  相似文献   

10.
Hu K  Dou J  Yu F  He X  Yuan X  Wang Y  Liu C  Gu N 《Vaccine》2011,29(7):1455-1462
Herpes stromal keratitis (HSK) is a chronic inflammatory process caused by the infection of herpes simplex virus type 1 (HSV-1). Development of a HSV-1 vaccine is a priority because these infections are common and cannot be well prevented. It appears that the potential of nanocarriers in DNA vaccination will be required to augment the immune response to DNA vaccines. Therefore, in the study, nanoparticles Fe3O4 coated with glutamic acid, DNA vaccine pRSC-gD-IL-21 and polyethylenimine were prepared and immunized in the mice by ocular mucosal administration. The immune responses and protection efficiency against HSV-1 challenge were also tested. The results showed that the nanoparticles containing DNA vaccine pRSC-gD-IL-21 induced mice to generate higher levels of specific neutralizing antibody, sIgA in tears, and IFN-γ, IL-4 in serum, and to enhance the cytotoxicities of NK cells and splenocytes as well as splenocyte proliferative response to glycoprotein D compared with those of the control mice. More importantly, the mice immunized with the experimental vaccine showed less HSK degree than that of the control mice after HSV-1 challenge of the murine ocular mucosa. In conclusion, an ocular mucosal administration of nanoparticles containing DNA vaccine confers strong specific immune responses and effective inhibition of HSK in a HSV-1 infected murine model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号