首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Vaccine》2019,37(31):4364-4369
Duck hepatitis A virus (DHAV) is the major pathogen of duck viral hepatitis, which has caused great economic losses to duck breeding industry. As an effective delivery tool for protein antigens, Lactococcus lactis (L. lactis) has been successfully used to stimulate mucosal and systemic immune response. In this study, a recombinant L. lactis named NZ3900-VP1 was constructed, which could express VP1 protein of DHAV type 3 (DHAV-3) by using a nisin-controlled expression (NICE) system. The animal experiment in both mice and ducklings were performed to detect the immune response and protection effect of oral vaccination by the recombinant L. lactis. The results showed that oral vaccination with L. lactis NZ3900-VP1 significantly induced specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) of DHAV-3 in mice and ducklings, and cytokines including interleukin-2 (IL-2), interferon gamma (IFN-γ), interleukin-10 (IL-10) and interleukin-4 (IL-4). Notably, the ducklings vaccinated with L. lactis NZ3900-VP1 were effectively protected when facing natural infestation of DHAV-3, which indicated that the recombinant L. lactis could serve as an effective vaccine to prevent DHAV-3 infection in ducklings.  相似文献   

2.
3.
《Vaccine》2021,39(23):3152-3160
PurposePseudomonas aeruginosa (P. aeruginosa) infection is one of the major causes of keratitis. However, effective prophylactic and therapeutic vaccines against P. aeruginosa keratitis have yet to be developed. In this study, we explored the use of P. aeruginosa membrane vesicles (MVs) as a prophylactic vaccine as well as the use of immune sera derived from P. aeruginosa MV-immunized animals as a treatment for P. aeruginosa corneal infections in C57BL/6 mice.MethodsC57BL/6 mice were intramuscularly immunized with P. aeruginosa MVs; the mouse corneas were then scarified and topically infected with several P. aeruginosa strains, followed by determination of corneal clinical score and corneal bacterial load. Next, immune sera derived from P. aeruginosa MV-immunized ICR mice were administered intraperitoneally to naïve C57BL/6 mice, followed by topical P. aeruginosa challenge. Finally, the immune sera were also used as a topical treatment in the mice with established P. aeruginosa corneal infections.ResultsP. aeruginosa-specific IgG and IgA antibodies induced by intramuscular immunization were detected not only in the sera but also in the eye-wash solution. Both active and passive immunization significantly inhibited P. aeruginosa corneal infection. Finally, topical treatment with immune sera in the mice with established P. aeruginosa corneal infections notably decreased the corneal clinical score and corneal bacterial load.ConclusionsP. aeruginosa keratitis can be attenuated by vaccination of P. aeruginosa MVs and topical application of P. aeruginosa MV-specific immune sera.  相似文献   

4.
《Vaccine》2020,38(48):7645-7653
The development of a Chagaś disease vaccine has yet the need for the identification of novel combinations of antigens and adjuvants. Here, the performance of TcTASV-C proteins that are virulence factors of trypomastigotes and belong to a novel surface protein family specific for T. cruzi, have been evaluated as antigens for a prophylactic vaccine. Several immunization schemes in which TcTASV-C was combined with aluminum hydroxide, saponin and/or U-Omp19 were assayed. Aluminum hydroxide and saponin were assayed together to trigger different pathways of the immune response simultaneously. U-Omp19 is a promising novel adjuvant able to promote a Th1 immune response with IFNg production, thus an interesting molecule to be tested as adjuvant for the control of T. cruzi infection. Therefore, U-Omp19 was added to the aluminum hydroxide-saponin formulation as well as assayed individually with TcTASV-C. The immunization with TcTASV-C and U-Omp19 had the best performance as a prophylactic vaccine. Mice presented the lowest parasitemias and improved survival by 40% after being challenged with a highly virulent T. cruzi strain, which promoted 100% mortality in all other immunized groups. Immunization with TcTASV-C and U-Omp19 triggered cellular responses with IFN-γ and IL-17 production and with lytic antibodies that could explain the protection achieved by this vaccination scheme. To our knowledge, this is the first time that U-Omp19 is tested with a defined T. cruzi antigen in a vaccine formulation.  相似文献   

5.
Salmonella enterica serovar Typhimurium is a major food-borne pathogen that can cause self-limited gastroenteritis or life-threatening invasive diseases in humans. There is no licensed S. Typhimurium vaccine for humans to date. In this study, we attempted to construct a live attenuated vaccine strain of S. Typhimurium based on three genes, namely, the two global regulator genes fnr and arcA and the flagellin subunit gene fliC. The S. Typhimurium three-gene mutant, named SLT39 (ΔfnrΔarcAΔfliC), exhibited a high level of attenuation with a colonization defect in mouse tissues and approximately 104-fold decreased virulence compared with that of the wild-type strain. To evaluate the immunogenicity and protection efficacy of STL39, mice were inoculated twice with a dose of 107 CFU or 108 CFU at a 28-day interval, and the immunized mice were challenged with a lethal dose of the wild-type S. Typhimurium strain one month post second immunization. Compared with mock immunization, SLT39 immunization with either dose elicited significant serum total IgG, IgG1 and IgG2a and faecal IgA responses against inactivated S. Typhimurium antigens at a comparable level post second immunization, whereas the 108 CFU group induced higher levels of duodenal and caecal IgA than the 107 CFU group. Furthermore, the bacterial loads in mouse tissues, including Peyer’s patches, spleen and liver, significantly decreased in the two SLT39 immunization groups compared to those in the control group post challenge. Additionally, all mice in the SLT39 (108 CFU) group and 80% of the mice in the SLT39 (107 CFU) group survived the lethal challenge, suggesting full protection and 80% protection efficacy, respectively. Thus, the S. Typhimurium fnr, arcA and fliC mutant proved to be a potential attenuated live vaccine candidate for prevention of homologous infection.  相似文献   

6.
7.
《Vaccine》2023,41(8):1513-1523
While effective at preventing Zaire ebolavirus (ZEBOV) disease, cellular immunity to ZEBOV and vector-directed immunity elicited by the recombinant vesicular stomatitis virus expressing ZEBOV glycoprotein (rVSVΔG-ZEBOV-GP) vaccine remain poorly understood. Sera and peripheral blood mononuclear cells were collected from 32 participants enrolled in a prospective multicenter study [ClinicalTrials.gov NCT02788227] before vaccination and up to six months post-vaccination. IgM and IgG antibodies, IgG-producing memory B cells (MBCs), and T cell reactivity to ZEBOV glycoprotein (ZEBOV-GP), vesicular stomatitis virus-Indiana strain (VSV-I) matrix (M) protein, and VSV-I nucleoprotein (NP) were measured using ELISA, ELISpot, and flow cytometry, respectively. 11/32 (34.4%) participants previously received a different investigational ZEBOV vaccine prior to enrollment and 21/32 (65.6%) participants were ZEBOV vaccine naïve. Both ZEBOV vaccine naïve and experienced participants had increased ZEBOV-GP IgG optical densities (ODs) post-rVSVΔG-ZEBOV-GP vaccination while only ZEBOV vaccine naïve participants had increased ZEBOV-GP IgM ODs. Transient IgM and IgG antibody responses to VSV-I M protein and NP were observed in a minority of participants. All participants had detectable ZEBOV-GP specific IgG-producing MBCs by 6 months post-vaccination while no changes were observed in the median IgG-producing MBCs to VSV-I proteins. T cell responses to ZEBOV-GP differed between ZEBOV vaccine experienced and ZEBOV vaccine naïve participants. T cell responses to both VSV-I M protein and VSV-I NP were observed, but were of a low magnitude. The rVSVΔG-ZEBOV-GP vaccine elicits robust humoral and memory B cell responses to ZEBOV glycoprotein in both ZEBOV vaccine naïve and experienced individuals and can generate vector-directed T cell immunity. Further research is needed to understand the significance of pre-existing vector and target antigen immunity on responses to booster doses of rVSVΔG-ZEBOV-GP and other rVSV-vectored vaccines.  相似文献   

8.
《Vaccine》2020,38(39):6141-6152
Influenza vaccination is considered the most valuable means to prevent and control seasonal influenza infections, which causes various clinical symptoms, ranging from mild cough and fever to even death. Among various influenza vaccine types, the inactivated subunit type is known to provide improved safety with reduced reactogenicity. However, there are some drawbacks associated with inactivated subunit type vaccines, with the main ones being its low immunogenicity and the induction of Th2-biased immune responses. In this study, we investigated the role of a single-stranded RNA (ssRNA) derived from the intergenic region in the internal ribosome entry site of the Cricket paralysis virus as an adjuvant rather than the universal vaccine for a seasonal inactivated subunit influenza vaccine. The ssRNA adjuvant stimulated not only well-balanced cellular (indicated by IgG2a, IFN-γ, IL-2, and TNF-α) and humoral (indicated by IgG1 and IL-4) immune responses but also a mucosal immune response (indicated by IgA), a key protector against respiratory virus infections. It also increases the HI titer, the surrogate marker of influenza vaccine efficacy. Furthermore, ssRNA adjuvant confers cross-protective immune responses against heterologous influenza virus infection while promoting enhanced viral clearance. Moreover, ssRNA adjuvant increases the number of memory CD4+ and CD8+ T cells, which can be expected to induce long-term immune responses. Therefore, this ssRNA-adjuvanted seasonal inactivated subunit influenza vaccine might be the best influenza vaccine generating robust humoral and cellular immune responses and conferring cross-protective and long-term immunity.  相似文献   

9.
《Vaccine》2019,37(30):4081-4088
While vaccination is highly effective for the prevention of many infectious diseases, the number of adjuvants licensed for human use is currently very limited. The aim of this study was to evaluate the safety, efficacy, and to clarify the mechanism of a phosphorothioated interleukin (IL)-10-targeted antisense oligonucleotide (ASO) as an immune adjuvant in intradermal vaccination. The cytotoxicity of IL-10 ASO and its ability to promote T cell proliferation were assessed by Cell Counting Kit-8 (CCK-8) assay. The contents of IL-6, IL-8, TNF-α, IL-1β, and IL-10 in inoculated local tissue and the antigen-specific antibody titers in mouse serum samples were determined by ELISA. The target cells of IL-10 ASO were observed using immunofluorescent staining. The results showed that the specific antibody titer of ovalbumin (OVA), a model antigen, was increased 100-fold upon addition of IL-10 ASO as an adjuvant compared to that of OVA alone. IL-10 ASO showed an immunopotentiation efficacy similar to that of Freund’s incomplete adjuvant, with no detectable cell or tissue toxicity. In vitro and in vivo experiments confirmed that IL-10 ASO enhances immune responses by temporarily suppressing IL-10 expression from local dendritic cells and consequently promoting T cell proliferation. In conclusion, IL-10 ASO significantly enhances immune responses against co-delivered vaccine antigens with high efficacy and low toxicity. It has the potential to be developed into a safe and efficient immune adjuvant.  相似文献   

10.
《Vaccine》2020,38(27):4263-4272
BackgroundDespite appreciable immunogenicity in malaria-naive populations, many candidate malaria vaccines are considerably less immunogenic in malaria-exposed populations. This could reflect induction of immune regulatory mechanisms involving Human Leukocyte Antigen G (HLA-G), regulatory T (Treg), and regulatory B (Breg) cells. Here, we addressed the question whether there is correlation between these immune regulatory pathways and both plasmablast frequencies and vaccine-specific IgG concentrations.MethodsFifty Gabonese adults with lifelong exposure to Plasmodium spp were randomized to receive three doses of either 30 µg or 100 µg GMZ2-CAF01, or 100 µg GMZ2-alum, or control vaccine (rabies vaccine) at 4-week intervals. Only plasma and peripheral blood mononuclear cells isolated from blood samples collected before (D0) and 28 days after the third vaccination (D84) of 35 participants were used to measure sHLA-G levels and anti-GMZ2 IgG concentrations, and to quantify Treg, Breg and plasmablast cells. Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of Plasmodium falciparum sporozoites (PfSPZ Challenge).ResultsThe sHLA-G concentration increased from D0 to D84 in all GMZ2 vaccinated participants and in the control group, whereas Treg frequencies increased only in those receiving 30 µg or 100 µg GMZ2-CAF01. The sHLA-G level on D84 was associated with a decrease of the anti-GMZ2 IgG concentration, whereas Treg frequencies on D0 or on D84, and Breg frequency on D84 were associated with lower plasmablast frequencies. Importantly, having a D84:D0 ratio of sHLA-G above the median was associated with an increased risk of P. falciparum infection after sporozoites injection.ConclusionRegulatory immune responses are induced following immunization. Stronger sHLA-G and Treg immune responses may suppress vaccine induced immune responses, and the magnitude of the sHLA-G response increased the risk of Plasmodium falciparum infection after CHMI. These findings could have implications for the design and testing of malaria vaccine candidates in semi-immune individuals.  相似文献   

11.
《Vaccine》2019,37(41):6102-6111
Loss of airway microbial diversity is associated with non-typeable Haemophilus influenzae (NTHi) infection and increased risk of exacerbation in chronic obstructive pulmonary disease (COPD). We assessed the safety and immunogenicity of an investigational vaccine containing NTHi antigens, recombinant protein D (PD) and combined protein E and Pilin A (PE-PilA), and AS01 adjuvant in adults with moderate/severe COPD and prior exacerbations.In this phase 2, observer-blind, controlled trial (NCT02075541), 145 COPD patients aged 40–80 years randomly (1:1) received two doses of NTHi vaccine or placebo 60 days apart, on top of standard care.Reactogenicity in the 7-day post-vaccination period was higher following NTHi vaccine than placebo. Most solicited adverse events (AEs) were mild/moderate. At least one unsolicited AE was reported during the 30-day post-vaccination period by 54.8% of NTHi vaccine and 51.4% of placebo recipients. One serious AE (placebo group) was assessed by the investigator as vaccine-related. Anti-PD, anti-PE and anti-PilA geometric mean antibody concentrations increased up to 30 days after each NTHi vaccine dose, waned thereafter, but remained higher than baseline (non-overlapping confidence intervals) up to 13 months post-dose 2. The frequency of specific CD4+ T cells increased following two doses of NTHi vaccine and remained higher than baseline. Exploratory analysis showed a statistically non-significant lower yearly rate of moderate/severe exacerbations in the NTHi vaccine group than following placebo (1.49 versus 1.73) in the one-year period post-dose 2, with estimated vaccine efficacy of 13.3% (95% confidence interval −24.2 to 39.5; p = 0.44).The NTHi vaccine had an acceptable safety and reactogenicity profile and good immunogenicity in adults with COPD.  相似文献   

12.
《Vaccine》2020,38(19):3537-3544
BackgroundVaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value.MethodsA new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets.ResultsI.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone.ConclusionsThe I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.  相似文献   

13.
《Vaccine》2019,37(26):3472-3477
Adjuvants are substances that enhance adaptive immune response to antigen. Development of a safe and effective immunostimulant adjuvant is essential for the efficacy of a vaccine to protect against infectious pathogens. Purple non-sulfur photosynthetic bacteria exhibited nontoxic natural lipid A variants that are distinct in their chemical structures from that of the Escherichia coli-type lipid A. In this study, the adjuvant efficacy of attenuated lipid A variants and their corresponding lipopolysaccharides (LPSs), derived from purple photosynthetic bacteria (Rhodocyclus tenuis and Rhodobacter sphaeroides) were evaluated. LPS was extracted using modified phenol-chloroform-petroleum ether method and lipid A was separated by mild acid hydrolysis. Trinitrophenol (TNP) was conjugated to hen egg albumin (TNP-HEA) and used as haptenic antigen. The LPS and lipid A adjuvant candidates were formulated in oil-in-water emulsion (OIWE) and evaluated to elicit anti-TNP IgG against TNP-HEA conjugate in BALB/c female mice. The anti-TNP IgG titers were measured using ELISA. The intact LPS-based adjuvants present in OIWE formulation showed significantly higher efficacy to elicit anti-TNP IgG titers against TNP-HEA conjugate compared to their corresponding lipid A-based adjuvants. As expected, the OIWE formulations of all LPS- and lipid A-based adjuvant candidates showed higher activities compared to the aqueous formulations. Slow reduction in the levels of anti-TNP IgG antibodies in the serum was observed over 4 months after immunization using the LPS- and lipid A-based adjuvant candidates which may provide a long protection against pathogens. The attenuated LPSs and lipid A’s from the photosynthetic bacteria showed promising results to develop novel safe and effective adjuvants that can evoke the immune response. The most promising adjuvant candidate was the LPS-based adjuvant from R. tenuis.  相似文献   

14.
15.
《Vaccine》2020,38(17):3339-3350
BackgroundVaccination against S. pneumoniae is recommended by national guidelines. Moderate immunogenicity of the 13-valent pneumococcal conjugate vaccine (PCV13) has been reported in adult kidney transplant recipients (KTR). This study further defines the immunogenicity of PCV13 in this cohort.Methods49 KTR were immunized with PCV13. A validated opsonophagocytic killing assay (OPA), a global anti-pneumococcal capsular polysaccharide (anti-PCP) IgG, IgG2, IgM and IgA ELISA, and - for selected patients - a serotype specific anti-PCP WHO reference ELISA were performed pre-vaccination and at month 1 and 12 post-vaccination.ResultsGeometric mean OPA titers increased significantly for 13/13 serotypes at month 1 and for 10/13 serotypes at month 12 post-vaccination. Vaccine response defined as an OPA titer ≥1:8 was reached in 9/13 serotypes (median). 53% reached the vaccine response criteria at month 1 and 45% at month 12. At month 1 after vaccination, the median OPA titer in an age-group matched healthy reference population was 5- to 10-fold higher than in KTR. OPA titers correlated strongly with results to the global and serotype specific anti-PCP IgG ELISA. Lower OPA titers significantly (p < 0.05) correlated with albuminuria, an interval between vaccination and transplantation <12 months, age and treatment with mycophenolate mofetil. Global IgG, IgG2, IgM and IgA, as well as serotype specific anti-PCP antibody concentrations (12/13 serotypes) increased significantly at month 1 and 12 post-vaccination.ConclusionsKidney transplant recipients show a significant humoral response after vaccination with PCV13. Functional antibody response exists, but is not as vigorous as in healthy adults.  相似文献   

16.
《Vaccine》2019,37(29):3825-3831
Currently, foot-and-mouth disease (FMD) vaccine purity is tested in cattle to detect antibodies against the non-structural protein (NSP) after repeated immunization with the final vaccine product. In case of vaccine failure, the manufacturing company would suffer significant economic loss. To prevent such unfortunate losses with the final vaccine product, in vitro testing is required to quantitate an NSP antigen during the manufacturing process prior to animal experiments. A novel lateral-flow assay device was developed using a monoclonal antibody (MAb) against the 3B NSP. To determine the minimal amount of NSP required to elicit antibodies in livestock, goats were immunized several times with various concentrations of either the recombinant 3AB (rec.3AB) protein or FMD virus culture supernatant. Antibodies against 3AB were elicited after a second immunization with 10.6 ng to 42.5 ng of rec.3AB and a third immunization with a 10-fold diluted FMD virus culture supernatant in goats. The lateral-flow assay device detected the minimal amount of rec.3AB and native NSP in FMD virus culture supernatant required to induce NSP antibodies in goats. The in vitro assay device is simple and economical, provides rapid results, and should be useful for FMD vaccine-manufacturing companies prior to conducting animal experiments to test the vaccine purity.  相似文献   

17.
《Vaccine》2023,41(16):2716-2722
BackgroundThe continuing evolution of influenza viruses poses a challenge to vaccine prevention, highlighting the need for a universal influenza vaccine. We evaluated the safety and immunogenicity of one such candidate, Multimeric-001 (M-001), when used as a priming vaccine prior to administration of quadrivalent inactivated influenza vaccine (IIV4).MethodsHealthy adults 18 to 49 years of age were enrolled in a phase 2 randomized, double-blind placebo-controlled trial. Participants received two doses of either 1.0-mg M-001 or saline placebo (60 per study arm) on Days 1 and 22 followed by a single dose of IIV4 on about Day 172. Safety, reactogenicity, cellular immune responses and influenza hemagglutination inhibition (HAI) and microneutralization (MN) were assessed.ResultsThe M-001 vaccine was safe and had an acceptable reactogenicity profile. Injection site tenderness (39% post-dose 1, 29% post-dose 2) was the most common reaction after M-001 administration. Polyfunctional CD4+ T cell responses (perforin-negative, CD107α-negative, TNF-α+, IFN-γ+, with or without IL-2) to the pool of M-001 peptides increased significantly from baseline to two weeks after the second dose of M-001, and this increase persisted through Day 172. However, there was no enhancement of HAI or MN antibody responses among M-001 recipients following IIV4 administration.ConclusionsM-001 administration induced a subset of polyfunctional CD4+ T cells that persisted through 6 months of follow-up, but it did not improve HAI or MN antibody responses to IIV4. (clinicaltrials.gov NCT03058692).  相似文献   

18.
《Vaccine》2022,40(9):1253-1260
To address the coronavirus disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recombinant subunit vaccine, AKS-452, is being developed comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain (SP/RBD) antigen and human IgG1 Fc emulsified in the water-in-oil adjuvant, Montanide? ISA 720. A single-center, open-label, phase I dose-finding and safety study was conducted with 60 healthy adults (18–65 years) receiving one or two doses 28 days apart of 22.5 µg, 45 µg, or 90 µg of AKS-452 (i.e., six cohorts, N = 10 subjects per cohort). Primary endpoints were safety and reactogenicity and secondary endpoints were immunogenicity assessments. No AEs ≥ 3, no SAEs attributable to AKS-452, and no SARS-CoV-2 viral infections occurred during the study. Seroconversion rates of anti-SARS-CoV-2 SP/RBD IgG titers in the 22.5, 45, and 90 µg cohorts at day 28 were 70%, 90%, and 100%, respectively, which all increased to 100% at day 56 (except 89% for the single-dose 22.5 µg cohort). All IgG titers were Th1-isotype skewed and efficiently bound mutant SP/RBD from several SARS-CoV-2 variants with strong neutralization potencies of live virus infection of cells (including alpha and delta variants). The favorable safety and immunogenicity profiles of this phase I study (ClinicalTrials.gov: NCT04681092) support phase II initiation of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain.  相似文献   

19.
《Vaccine》2022,40(46):6581-6588
Japan is one of the countries conducting longitudinal serosurveillance of vaccine-preventable diseases. We conducted surveillance of the local measles-specific antibody titer, calculated the effective reproduction number (Re), and compared data of four terms: term 1, 2003–2006 (before the introduction of the second shot of measles-containing vaccine); term 2, 2007–2010 (early term toward measles elimination); term 3, 2011–2014 (later term toward measles elimination); and term 4, 2015–2020 (after elimination of measles in Japan). Approximately 250 sera from volunteers aged 0 to ≥ 40 years were collected and examined for measles-specific IgG using the gelatin particle agglutination (PA) method annually from 2003 to 2020. Seroprevalence and the geometric mean of the PA antibody titer were examined by term. Re was calculated using the age-dependent proportion immune and contact matrix for each term. Of the 4,716 sera, 886 in term 1, 1,217 in term 2, 1,069 in term 3, and 1,544 in term 4 were collected. The seroprevalence gradually increased from term 1 (88.3% CI 86.0–90.3) to term 4 (95.7% CI 94.6–96.7), and the seroprevalence of term 1 was significantly lower than those of other terms (Fisher’s exact test, p < 0.001), with PA titer ≥ 16 as positive. By contrast, PA antibody titers significantly decreased from term 1 (median 1,024) to term 4 (median 256) (Mann–Whitney U test, p < 0.001). With the protection level (PA titer ≥ 128 and ≥ 256) as positive, Re gradually increased from term 1 (1.8 and 2.3) to term 4 (2.5 and 4.8, respectively). Waning levels of measles antibodies potentially increase the measles susceptibility in Osaka, Japan. This trend might imply a limitation of vaccine-induced immunity in the absence of a natural booster for wild strains after measles elimination. This study provides a cue for maintaining continuous measles elimination status in the future.  相似文献   

20.
《Vaccine》2022,40(33):4732-4741
The virus-like particles (VLPs) of porcine circovirus type 2 (PCV2) is an attractive vaccine candidate that retains the natural conformation of the virion but lacks the viral genome to replicate, thus balancing safety and immunogenicity. However, the assembly of VLPs requires cumbersome subsequent processes, hindering the development of related vaccines. In addition, as a subunit antigen, VLPs are defective in inducing cellular and mucosal immune responses. In this study, the capsid (Cap) protein of PCV2 was synthesized and self-assembled into VLPs in the recombinant attenuated S. Choleraesuis vector, rSC0016(pS-Cap). Furthermore, rSC0016(pS-Cap) induced a Cap-specific Th1-dominant immune response, mucosal immune responses, and neutralizing antibodies against PCV2. Finally, the virus genome copies in mice immunized with the rSC0016(pS-Cap) were significantly lower than those of the empty vector control group after challenge with PCV2. In conclusion, our study demonstrates the potential of using S. Choleraesuis vectors to delivery VLPs, providing new ideas for the development of PCV2 vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号