首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2.
《Vaccine》2016,34(13):1566-1574
BackgroundPlasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies.MethodFemale A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at −20 °C for subsequent testing.ResultsBoth domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8 aa of D and first 12 aa of C of the two allelic families and the first 20 aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI.ConclusionThe data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.  相似文献   

3.
Mazumder S  Ravindran R  Banerjee A  Ali N 《Vaccine》2007,25(52):210-8781
The difficulty in making successful vaccines against leishmaniasis is partly due to lack of an appropriate adjuvant. Non-coding plasmid DNA (pDNA) bearing immunostimulatory sequences (ISS) is a potent activator of innate immunity, and can thus act as an adjuvant with vaccine antigen. We therefore evaluated the efficacy of pDNA and soluble leishmanial antigens (SLA) to protect against challenge with Leishmania donovani infection. We demonstrate that immunomodulatory activity of pDNA, which potentiated a Th1 immune responses, led to enhanced protection with SLA. Importantly, adding cationic liposomes as vehicle to the antigen, with pDNA either complexed or entrapped within, significantly increased the potentiating effect of pDNA. Further, comparison of the two vaccine formulations demonstrated an impressive increase in the protective efficacy up to two folds when both antigen and pDNA were within the vehicle. Thus, these studies establish the utility of non-coding pDNA bearing ISS as strong promoters of vaccine potency of liposomal antigens especially when co-entrapped with the antigen in cationic liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号