首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human fingers have sufficiently more muscles than joints such that every fingertip force of submaximal magnitude can be produced by an infinite number of muscle coordination patterns. Nevertheless, the nervous system seems to effortlessly select muscle coordination patterns when sequentially producing fingertip forces of low, moderate, and maximal magnitude. The hypothesis of this study is that the selection of coordination patterns to produce submaximal forces is simplified by the appropriate modulation of the magnitude of a muscle coordination pattern capable of producing the largest expected fingertip force. In each of three directions, eight subjects were asked to sequentially produce fingertip forces of low, moderate, and maximal magnitude with their dominant forefinger. Muscle activity was described by fine-wire electromyograms (EMGs) simultaneously collected from all muscles of the forefinger. A muscle coordination pattern was defined as the vector list of the EMG activity of each muscle. For all force directions, statistically significant muscle coordination patterns similar to those previously reported for 100% of maximal fingertip forces were found for 50% of maximal voluntary force. Furthermore the coordination pattern and fingertip force vector magnitudes were highly correlated (r > 0.88). Average coordination pattern vectors at 50 and 100% of maximal force were highly correlated with each other, as well as with individual coordination pattern vectors in the ramp transitions preceding them. In contrast to this consistency of EMG coordination patterns, predictions using a musculoskeletal computer model of the forefinger show that force magnitudes 相似文献   

2.
A female infant with additional genetic material on the long arm of chromosome 18 is described. Cytogenetic studies of the infant and her mother showed that the altered region resulted from an unbalanced translocation of part of the long arm of chromosome 1. This chromosomal abnormality has not been reported previously, according to a recent registry of abnormal chromosome patterns. The patient had hydrops fetalis and multiple congenital abnormalities, involving the cardiovascular, respiratory, and skeletal systems, together with unusual facies. External features, radiological findings, and gross and microscopical examination at necropsy are presented and compared with previously reported cases of related but dissimilar chromosomal abnormalities.  相似文献   

3.
The long-standing concept that schizophrenia (SC) and bipolar disorder (BP) represent two distinct illnesses has been recently challenged by findings of overlap of genetic susceptibility loci for these two diseases. We report here the results of a linkage disequilibrium (LD) analysis of chromosome 18 utilizing subjects with SC from the Central Valley of Costa Rica. Evidence of association (P < 0.05) was obtained in three chromosomal regions: 18p11.31 (D18S63), 18q12.3 (D18S474), and 18q22.3-qter (D18S1161, D18S70), all of which overlap or are in close proximity with loci previously shown to be in LD with BP, type I in this population. Since both the SC and bipolar samples contained cases with a history of mania and almost all cases of SC and BP had a history of psychosis, we performed an alternative phenotyping strategy to determine whether presence or absence of mania, in the context of psychosis, would yield distinct linkage patterns along chromosome 18. To address this issue, a cohort of psychotic patients (including a range of DSMIV diagnoses) was divided into two groups based on the presence or absence of mania. Regions that showed association with SC showed segregation of association when the sample was stratified by history of mania. Our results are compared with previous genetic studies of susceptibility to SC or BP, in Costa Rica as well as in other populations. This study illustrates the importance of detailed phenotype analysis in the search for susceptibility genes influencing complex psychiatric disorders in isolated populations and suggests that subdivision of psychoses by presence or absence of past mania syndromes may be useful to define genetic subtypes of chronic psychotic illness.  相似文献   

4.
Lightly touching a stable surface with one fingertip strongly stabilizes standing posture. The three main features of this phenomenon are fingertip contact forces maintained at levels too low to provide mechanical support, attenuation of postural sway relative to conditions without fingertip touch, and center of pressure (CP) lags changes in fingertip shear forces by approximately 250 ms. In the experiments presented here, we tested whether accurate arm proprioception and also whether the precision fingertip contact afforded by the arm's many degrees of freedom are necessary for postural stabilization by finger contact. In our first experiment, we perturbed arm proprioception and control with biceps brachii vibration (120-Hz, 2-mm amplitude). This degraded postural control, resulting in greater postural sway amplitudes. In a second study, we immobilized the touching arm with a splint. This prevented precision fingertip contact but had no effect on postural sway amplitude. In both experiments, the correlation and latency of fingertip contact forces to postural sway were unaffected. We conclude that postural control is executed based on information about arm orientation as well as tactile feedback from light touch, although precision fingertip contact is not essential. The consistent correlation and timing of CP movement and fingertip forces across conditions in which postural sway amplitude and fingertip contact are differentially disrupted suggests posture and the fingertip are controlled in parallel with feedback from the fingertip in this task.  相似文献   

5.
Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface, long-loop reflexes involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.  相似文献   

6.
A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with “one against one” multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future.
The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ?
  相似文献   

7.
The dermatoglyphic pattern of the Kabuki make-up syndrome   总被引:1,自引:0,他引:1  
Dermatoglyphic analyses of 12 patients with the newly recognized Kabuki make-up syndrome revealed a combination of unusual dermatoglyphic patterns. They included frequent fingertip ulnar loop patterns (72%), the absence of digital triradius c or d (25%), an interdigital triradius bc or cd (33%), hypothenar loop patterns (67%), and ulnar loop patterns in the fourth interdigital area (17%). Other unusual findings included persistence of fingertip pads (58%), a single flexion crease of the fourth or fifth finger (25%), and an excess of minor flexion creases of the palm (92%).  相似文献   

8.
Three patients with different marker chromosomes were screened by in situ hybridisation using biotinylated probes to chromosome specific pericentric repeats to determine the chromosomal origin of the marker. Each marker had a different origin, with one from each of chromosomes 1, 9, and 16. This is the first time that autosomal marker chromosomes consisting of a small ring have been shown to be derived from the pericentric heterochromatin of metacentric and submetacentric chromosomes. Evidence suggests that such markers are not associated with any significant risk of phenotypic abnormalities, but additional cases need to be studied.  相似文献   

9.
We studied the ability to transfer three-digit force sharing patterns learned through consecutive lifts of an object with an asymmetric center of mass (CM). After several object lifts, we asked subjects to rotate and translate the object to the contralateral hand and perform one additional lift. This task was performed under two weight conditions (550 and 950 g) to determine the extent to which subjects would be able to transfer weight and CM information. Learning transfer was quantified by measuring the extent to which force sharing patterns and peak object roll on the first post-translation trial resembled those measured on the pre-translation trial with the same CM. We found that the overall gain of fingertip forces was transferred following object rotation, but that the scaling of individual digit forces was specific to the learned digit-object configuration, and thus was not transferred following rotation. As a result, on the first post-translation trial there was a significantly larger object roll following object lift-off than on the pre-translation trial. This suggests that sensorimotor memories for weight, requiring scaling of fingertip force gain, may differ from memories for mass distribution.  相似文献   

10.
It is well accepted that the effects of mechanical vibration on the finger-hand-arm system are strongly frequency-dependent: low frequency vibration can transmit from hand to arm, while high frequency vibration is absorbed in the local tissue of fingers. This assertion has not been validated directly. The purpose of the present study is to analyze the frequency- and deformation-dependent dynamic strains in the soft tissues in a fingertip that is subjected to vibration normal or tangential to the contact surface. The dynamic responses of the fingertip were analyzed using a multi-layered two-dimensional finite element model. The major anatomical substructures, i.e., skin, subcutaneous tissue, bone, and nail, are included in the model. The fingertip was found to have a major resonance around 100-125 Hz and a second resonance around 250 Hz. The resonances of the fingertip are found to be independent of the direction of exposure (in normal or shear direction). The simulations further indicated that the dynamic strains induced by the vibration at low frequencies will penetrate deeper into the tissue (> 3 mm) while that at high frequencies will be concentrated in the superficial skin layer (< 0.8 mm). The model predictions are consistent with the published experimental observations.  相似文献   

11.
Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.  相似文献   

12.
The incidence of dermatoglyphic finger patterns and pattern intensity in a sample of school children from the Alberche/Tormes valley (northern slope of the Sierra de Gredos, Central Spain) are described. Significant bilateral differences for the overall finger pattern incidence are found in both sexes. The differences between sexes are also statistically significant, except for the left hand. The Pattern Intensity Index significantly differs between hands of males only, and the sex differences are not significant. Variation ranges for fingertip patterns and pattern intensity were constructed using published data of 69 male and 62 female series drawn from the whole of the Iberian Peninsula. The overall incidence of fingertip patterns and the Pattern Intensity Index locate the studied population near the middle of the corresponding variation ranges. The only exception is the case of arches, for which Alberche/Tormes is close to the minimum value of the range of variation. A more detailed comparison of 10 male and 10 female series from the Spanish northern and southern plateaus and from the Spanish region of Extremadura was done with R-matrix analysis. The series compared include those from the northern slope (Alberche/Tormes valley, this study) and the southern slope (Tiétar valley) of the Sierra de Gredos. The observed degree of dermatoglyphic differentiation between these two series may be explained by taking into account both the role of the Sierra de Gredos as a biological barrier limiting gene flow and the evolutionary stability of dermatoglyphics. © 1996 Wiley-Liss, Inc.  相似文献   

13.
We previously have shown that reports of illusory elbow extension from biceps vibration can be attenuated by touching a stationary cue-surface with the index fingertip of a vibrated arm. However, this was not the case if the subject had previously felt genuine motion of the cue-surface without biceps vibration. Two potential explanations for this are that the sense of elbow orientation results from tactile and muscle stretch cues that are integrated based on (1) an awareness of the tactile cue’s mobility or (2) specific patterns of tactile and muscle spindle activity resembling the elbow motion during previous interactions with the tactile cue. We tested these hypotheses by comparing how touching the cue-surface attenuated the reports of arm movement during biceps vibration after a demonstration of the cue- surface mobility without involving any elbow motion versus simultaneously touching the cue-surface as it moved and extending the elbow to correspond exactly to the elbow extension illusion during vibration. Touching the cue-surface stopped attenuating the reports of elbow extension during biceps vibration only after experiencing actual cue-surface motion while moving the elbow . This supports the second hypothesis that tactile and muscle stretch feedback that are integrated based on specific patterns of tactile and muscle spindle activity recalled from previous interactions with the tactile cue. We also tested the influence of motor set on the sense of elbow position in this paradigm. We found that even after touching the stationary cue-surface had ceased to attenuate illusory elbow motion during biceps vibration, illusory elbow motion during vibration still could be attenuated. This was possible if the subjects intended to actively use their wrists rather than the elbow to maintain fingertip contact. We conclude that muscle stretch and tactile cues are integrated to locate the arm within a highly specific context associated with tactile and proprioceptive feedback from prior experience and current movement goals.  相似文献   

14.
Extended exposure to mechanical vibration has been related to many vascular, sensorineural and musculoskeletal disorders of the hand-arm system, frequently termed 'hand-arm vibration syndrome' (HAVS). A two-dimensional, nonlinear finite element model of a fingertip is developed to study the stress and strain fields of the soft tissue under dynamic loading, that may be encountered while grasping and operating a hand-held power tool. The model incorporates the most essential anatomical elements of a fingertip, such as soft tissue, bone, and nail. The finger is assumed to be in contact with a steel plate, simulating the interaction between the fingertip and a vibrating machine tool or handle. The soft tissue is assumed to be nonlinearly visco-elastic, while the nail, bone, and steel plate are considered to be linearly elastic. In order to study the time-dependent deformation behavior of the fingertip, the numerical simulations were performed under ramp-like loading with different ramping periods and sinusoidal vibrations of the contacting plate at three different frequencies (1, 10, and 31.5 Hz). Owing to relatively large deformations of the soft tissue under specified static and dynamic loading, Lagrangian large deformation theory was applied in the present analysis. The effects of the loading rate and the frequency of the sinusoidal vibration on the time-dependent strain/stress distributions in the different depth within the soft tissue of the fingertip are investigated numerically. Our simulations suggest that the soft tissue of the fingertip experiences high local stress and strain under dynamic loading and the fingertip may separate from the vibrating contact surface due to the viscous deformation behaviour of the soft tissue. For a given deformation, the high frequency loading produces a higher stress in the tissues compared to that obtained at a low frequency loading. The present model may serve as a useful tool to study the mechanism of tissue degeneration under vibratory loading encountered during operation of hand-held power tools.  相似文献   

15.
The integration of HPV-18 DNA in cervical carcinoma.   总被引:6,自引:0,他引:6       下载免费PDF全文
AIMS: Little information is available on the patterns of integration into the host chromosomal DNA of cervical carcinomas of human papillomavirus type 18 (HPV-18) DNA, which is associated with up to 20% of these carcinomas. Because integration of the viral genome may be extremely important in the pathogenesis of cervical carcinoma, the aim of this study was to investigate which regions of HPV-18 DNA are integrated into the cellular DNA of cervical carcinomas. METHODS: Southern analysis using four subgenomic probes covering the entire HPV-18 genome was used to map viral DNA integrated within cellular DNA. The polymerase chain reaction (PCR) was used to confirm the presence of specific regions of the viral genome. RESULTS: In all 11 carcinomas there was a single major HPV-18 DNA integrant, retaining approximately 4000 bp of HPV-18 DNA, indicating that approximately half of the virus genome had been lost upon integration. Southern analysis suggested strongly that the viral breakpoint was within the E1/E2 gene boundary, with concomitant loss of part or all of the E2 ORF (open reading frame), all of the E4, E5, and L2 ORFs and part of the L1 ORF. These data were supported by the PCR results, which confirmed that the region of integrated HPV-18 DNA from nucleotides 6558 to 162 was present in all the carcinoma samples studied. Assuming that no genomic rearrangements, deletions, or insertions had occurred, 4131 bp of integrated HPV-18 DNA could be accounted for in eight cervical carcinoma samples. The results of Southern analysis also suggested that integration of HPV-18 DNA may have occurred at a specific host chromosomal site. CONCLUSIONS: Broadly, the viral sequences retained upon HPV-18 integration resemble those found when HPV-16 is integrated. However, it appears that the HPV-18 E2 region is more consistently deleted.  相似文献   

16.
AIMS: Little information is available on the patterns of integration into the host chromosomal DNA of cervical carcinomas of human papillomavirus type 18 (HPV-18) DNA, which is associated with up to 20% of these carcinomas. Because integration of the viral genome may be extremely important in the pathogenesis of cervical carcinoma, the aim of this study was to investigate which regions of HPV-18 DNA are integrated into the cellular DNA of cervical carcinomas. METHODS: Southern analysis using four subgenomic probes covering the entire HPV-18 genome was used to map viral DNA integrated within cellular DNA. The polymerase chain reaction (PCR) was used to confirm the presence of specific regions of the viral genome. RESULTS: In all 11 carcinomas there was a single major HPV-18 DNA integrant, retaining approximately 4000 bp of HPV-18 DNA, indicating that approximately half of the virus genome had been lost upon integration. Southern analysis suggested strongly that the viral breakpoint was within the E1/E2 gene boundary, with concomitant loss of part or all of the E2 ORF (open reading frame), all of the E4, E5, and L2 ORFs and part of the L1 ORF. These data were supported by the PCR results, which confirmed that the region of integrated HPV-18 DNA from nucleotides 6558 to 162 was present in all the carcinoma samples studied. Assuming that no genomic rearrangements, deletions, or insertions had occurred, 4131 bp of integrated HPV-18 DNA could be accounted for in eight cervical carcinoma samples. The results of Southern analysis also suggested that integration of HPV-18 DNA may have occurred at a specific host chromosomal site. CONCLUSIONS: Broadly, the viral sequences retained upon HPV-18 integration resemble those found when HPV-16 is integrated. However, it appears that the HPV-18 E2 region is more consistently deleted.  相似文献   

17.
A procedure was developed for restriction endonuclease fingerprinting (REF) of the chromosomal DNA of coagulase-negative staphylococci. A total of 48 isolates comprising 29 Staphylococcus epidermidis and 19 Staphylococcus haemolyticus isolates from blood and mucocutaneous sites of 15 premature neonates were characterized by REF, plasmid profile (PP) analysis, antimicrobial susceptibility testing, biotyping, and slime production. On the basis of REF analysis of chromosomal DNA, the 48 coagulase-negative staphylococcal isolates were subdivided into 10 subgroups, whereas PP analysis subdivided the strains into 20 distinct subgroups. REF analysis of total DNA (i.e., chromosome plus plasmid) resulted in the same 20 subgroups as were subdivided by PP analysis. The high discriminatory power of PP analysis was associated with the variability of plasmid content in coagulase-negative staphylococcal strains isolated during the outbreak. REF patterns were found to be stable both in vitro and in vivo. Isolates carried from 2 to 10 plasmids that ranged in molecular size from 0.9 to 39.5 megadaltons. Plasmids were disseminated among the coagulase-negative staphylococci, regardless of the genetic relatedness of their chromosomal DNAs. Hence, a lack of correlation existed between the grouping of isolates by REF analysis of chromosomal DNA and the grouping by PP analysis. There were one and two distinct chromosomal patterns among 4 of 4 blood cultures and 15 of 15 mucocutaneous cultures of S. haemolyticus, respectively. In contrast, a higher proportion of distinct chromosomal patterns was found for S. epidermidis in blood cultures (7 of 11 cultures) compared with those identified for isolates in mucocutaneous cultures (6 of 18 cultures). In summary, REF analysis of chromosomal DNA, rather than total DNA, is a useful marker for epidemiological investigations of coagulase-negative staphylococci. PP analysis can also be used to provide additional epidemiological information regarding the most recent genetic events.  相似文献   

18.
Tactile performance of human fingertips is associated with activity of the nerve endings and sensitivity of the soft tissue within the fingertip to the static and dynamic skin indentation. The nerve endings in the fingertips sense the stress/strain states developed within the soft tissue, which are affected by the material properties of the tissues. The vibrotactile sensation and tactile performance are thus believed to be strongly influenced by the nonlinear and time-dependent properties of the soft tissues. The purpose of the present research is to simulate the biomechanics of tactile sensation. A two-dimensional model, which incorporates the essential anatomical structures of a finger (i.e. skin, subcutaneous tissue, bone, and nail), has been used for the analysis. The skin tissue is assumed to be hyperelastic and viscoelastic. The subcutaneous tissue is considered to be a nonlinear, biphasic material composed of a hyperelastic solid and an inviscid fluid phase. The nail and bone are considered to be linearly elastic. The advantages of the proposed fingertip model over the previous "waterbed" and "continuum" fingertip models include its ability to predict the deflection profile of the fingertip surface, the stress and strain distributions within the soft tissue, and most importantly, the dynamic response of the fingertip to mechanical stimuli. The proposed model is applied to simulate the mechanical responses of a fingertip under a line load, and in one-point (1PT) and two-point (2PT) tactile discrimination tests. The model's predictions of the deflection profiles of a fingertip surface under a line load agree well with the reported experimental data. Assuming that the mechanoreceptors in the dermis sense the stimuli associated with normal strains (the vertical and horizontal strains) and strain energy density, our numerical results suggest that the threshold of 2PT discrimination may lie between 2.0 and 3.0 mm, which is consistent with the published experimental data. The present study represents an effort to develop a structural model of the fingertip that incorporates its anatomical structure, and the nonlinear and time-dependent properties of the soft tissues.  相似文献   

19.
Karyotypes of blood and skin fibroblasts at ages 3 and 8.5 years had shown non-mosaic trisomy 18 in a male now of age 19. Because of his prolonged survival and an atypical phenotype, skin fibroblast cultures from a new biopsy were established at age 1 8 , and only normal 46, XY cells were observed, while peripheral blood lymphocytes still demonstrated 47, XY,+18. This patient and six others with trisomy 18 mosaicism illustrate the advisability of looking for such a pattern in individuals whose phenotype in early life is not fully consistent with the trisomy 18 syndrome. Additional clues to the presence of trisomy 18 mosaicism are male sex, survival beyond 2 years and lack of fingertip arches.  相似文献   

20.
It is generally assumed that primary sensory neurons transmit information by their firing rates. However, during natural object manipulations, tactile information from the fingertips is used faster than can be readily explained by rate codes. Here we show that the relative timing of the first impulses elicited in individual units of ensembles of afferents reliably conveys information about the direction of fingertip force and the shape of the surface contacting the fingertip. The sequence in which different afferents initially discharge in response to mechanical fingertip events provides information about these events faster than the fastest possible rate code and fast enough to account for the use of tactile signals in natural manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号