首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Women have a higher risk of lung adenocarcinoma than men, suggesting that estrogen pathway may be involved in the pathogenesis of this cancer. This study was designed to determine whether ERα expression, estrogen levels, and endocrine disruptor exposure would influence tumor growth of lung adenocarcinoma cells using a xenograft model in which human lung adenocarcinoma cells with and without transgenic ERα expression were transplanted into female nude mice. Results showed that estrogen promoted tumor growth of ERα(+) lung adenocarcinoma cells but inhibited that of ERα(-) lung adenocarcinoma cells. Endocrine disruptor benzo[a]pyrene stimulated ERα(-) tumor growth dose dependently. Either of ovariectomy and ERα expression abolished the tumor growth-promoting effect of benzo[a]pyrene. The high CYP1B1/CYP1A1 and low COMT/CYP1B1 expression ratios detected in ERα(+) tumors suggested an accumulation of 4-hydroxyestradiol metabolite under high body estrogen, whereas comparable CYP1A1 and CYP1B1 expression plus estrogen-inducible COMT expression might favor the formation of 2-methoxyestradiol in ERα(-) tumors. Inhibition of estrogen on ERα(-) tumor growth might be partly attributable to the anti-proliferative action of 2-methoxyestradiol. Benzo[a]pyrene increased expression of CYP1B1 over CYP1A1 and suppressed estrogen-induced COMT up-regulation in ERα(-) tumor cells, probably switching estrogen metabolism to 4-hydroxyestradiol formation and removing the inhibition of 2-methoxyestradiol on ERα(-) tumors. ERα inhibited AhR from up-regulating CYP1 in response to benzo[a]pyrene exposure, but it increased angiogenic VEGF-A expression with body estrogen levels. Estrogen might increase ERα(+) lung adenocarcinoma growth by up-regulating cancer-related ERα target gene expression.  相似文献   

3.
4.
Interindividual differences in the expression of carcinogen-metabolizing enzymes in the lung may modify the effective dose of tobacco carcinogens in this organ. We investigated the role of detoxifying glutathione S-transferases (GST) in the formation of aromatic DNA adducts in bronchoalveolar macrophages (BAM) of active smokers. The effect of GSTs on aromatic DNA adducts was studied separately and in combination with the PAH-metabolizing cytochrome P450 enzyme, CYP3A. GSTA, GSTM3, GSTP, and CYP3A protein levels were analyzed by Western blotting, GSTM1 and GSTP1 genotypes were determined by polymerase chain reaction (PCR) based methods, and numbers of aromatic DNA adducts were measured by nuclease P1 enhanced 32P-postlabeling method in BAM of 31 active smokers. No correlation was observed between GSTA or GSTP proteins or GSTM1 or GSTP1 genotypes and the level of aromatic DNA adducts. A high or medium expression level of GSTM3 was associated with a lower level of aromatic DNA adducts in the smokers who smoked less than 20 cigarettes per day, when the effect of GSTM3 was analyzed in combination with CYP3A (regression analysis; F(6,24)=6.3, P<0.001). No protection by GSTM3 was observed in heavy smokers. High CYP3A levels, on the other hand, increased the number of DNA adducts regardless of the amount of smoking.  相似文献   

5.
There is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are potent carcinogens in laboratory animals and are suspected human carcinogens. The PAHs are bioactivated by cytochrome P450 (CYP)1A1/1B1 enzymes to reactive intermediates that bind to DNA, a critical step in the initiation of carcinogenesis. The Ah receptor (AHR) plays a critical role in the induction of CYP1 enzymes (i.e., CYP1A1, 1A2 and 1B1) by PAHs such as benzo[a]pyrene (BP) and 3-methylcholanthrene (MC). In our investigation, we tested the hypothesis that AHR-null animals are less susceptible to PAH-induced DNA adduct formation than wild-type animals. Wild-type [AHR (+/+)] mice or mice lacking the gene for the AHR were treated with a single dose (100 micromol/kg) of BP or MC, and hepatic DNA adducts were analyzed by (32)P-postlabeling. BP induced multiple hepatic DNA adducts in wild-type as well as AHR-null animals, suggesting the existence of AHR-independent mechanisms for BP metabolic activation. On the other hand, DNA adduct formation was markedly suppressed in AHR-null animals exposed to MC, although the major MC-DNA adduct was produced in these animals. Hepatic activities and apoprotein contents of 7-ethoxyresorufin O-deethylase (EROD) (CYP1A1) and 7-methoxyresorufin O-demethylase (MROD) (CYP1A2) activities were markedly induced by BP and MC in the wild-type, but not, in AHR-null animals. CYP1B1 expression was also induced, albeit to a lesser extent by the PAH MC, but not BP, in the wild-type animals. In conclusion, these results demonstrate the existence of AHR- and CYP1A1-independent mechanisms of PAH metabolic activation in mouse liver, a phenomenon that may have important implications for PAH-mediated carcinogenesis.  相似文献   

6.
7.
Resveratrol inhibits PAH bioactivation through reduced expression of the CYP1A1 and CYP1B1 genes in human bronchial epithelial cells. Ad libitum access to a diet containing resveratrol showed no effect on benzo[a]pyrene-induced lung tumorigenesis in A/J mice. Also, resveratrol did not change CYP1A1 and CYP1B1 gene expression or benzo[a]pyrene protein adduct levels in the lung tissue. The lack of chemopreventive activity may have been caused by insufficient concentrations or nonreactive forms of resveratrol in the lungs.  相似文献   

8.
Previous studies by us and others have shown a significantly higher level of aromatic DNA adducts in normal adjacent breast tissue samples obtained from breast cancer patients than in those obtained from non-cancerous controls. The increased amount of DNA damage could be related to excess environmental carcinogen exposure and/or genetic susceptibility to such exposure. In the current study, we investigated the relationship between the levels of aromatic DNA adducts in breast tissues and polymorphisms of the drug-metabolizing genes cytochrome P4501A1 (CYP1A1), N-acetyltransferase-2 (NAT2), and glutathione S-transferase M1 (GSTM1), in 166 women having breast cancer. DNA adducts were measured using (32)P-postlabeling and information on smoking status was obtained from medical records. When pooled data of smokers and non-smokers were analyzed by multiple regression analyses, no significant correlation was found between the level of total DNA adducts and age, race, or polymorphisms of CYP1A1, GSTM1, and NAT2. The only significant predictor of the level of DNA adducts in breast tissues was smoking (P = 0.008). When data were analyzed separately in smokers and non-smokers, however, a significant gene-environment interaction was observed. Smokers with CYP1A1*1/*2 or *2/*2 genotypes had a significantly higher level of DNA adducts than those with the CYP1A1*1/*1 genotype. This effect was not seen among non-smokers. There was also a gene-gene interaction, as smokers with combined CYP1A1*1/*2 or CYP1A1*2/*2 genotypes and GSTM1 null had a much higher level of adducts than those with either CYP1A1 or GSTM1 polymorphism. Genetic polymorphisms of CYP1A1 and NAT2 were also significantly correlated with the frequency of certain types of DNA adducts. For example, a bulky benzo[a]pyrene (B[a]P)-like adduct was detected in 26% of the samples, the presence of which was not related to age, race, smoking status, or GSTM1 and NAT2 genotype. However, a significantly higher frequency of the B[a[P-like adduct was found in individuals having CYP1A1*1/*2 or *2/*2 genotypes than in those having the *1/*1 genotype (P = 0.04). In addition, individuals having slow NAT2 alleles had a significantly higher frequency of the typical smoking-related DNA adduct pattern, i.e. a diagonal radioactive zone (DRZ), than others did (P = 0.008). These findings suggest that polymorphisms of CYP1A1, GSTM1, and NAT2 significantly affect either the frequency or the level of DNA adducts in normal breast tissues of women having breast cancer, especially in smokers. Further large-scale studies are required to determine the exact role of these polymorphisms and types of DNA damage in breast cancer susceptibility.  相似文献   

9.
The effects of turmeric feeding before and after benzo(a)pyrene [B(a)P] exposure on the levels of B(a)P-derived DNA adducts were studied in tissues of Swiss mice employing (32)P-postlabelling analysis. A reduction in the levels of B(a)P-derived DNA adducts in liver, lung, and forestomach was observed in animals pre-treated with 0.2 or 1% turmeric diet and exposed to B(a)P by oral intubation when compared to animals receiving standard laboratory diet and B(a)P. The observed decrease was not due to dilution caused by nascent DNA synthesis. Comparative evaluation of levels of B(a)P-derived DNA adducts in tissues of animals shifted to 0.2 or 1% turmeric diet after 24 h of oral intubation of B(a)P with those continued on standard laboratory diet did not suggest enhanced disappearance/repair of B(a)P-derived DNA adducts due to exposure to turmeric. Further, pre-treatment of mice with 1% turmeric diet significantly reduced the B(a)P-induced increase in activity of cytochrome P450 (CYP450) isozymes CYP 1A1 and 1A2 in liver, lung, and forestomach of mice. In addition, hepatic glutathione S-transferase (GST) was found to be elevated in turmeric pre-treated mice. Thus turmeric-mediated decrease in induction of phase-I enzymes in liver, lung, and forestomach of mice and enhancement of hepatic GST appear to play an important role in reducing the B(a)P-induced DNA damage in target and non-target tissues.  相似文献   

10.
11.
Arylhydrocarbon receptor knock-out, AhR(-/-), mice have recently been shown to be rather resistant to benzo[a]pyrene (B[a]P)-induced tumor formation, probably reflecting the inability of these mice to express significant levels of cytochrome P450 (P450 or CYP) 1A1 that activates B[a]P to reactive metabolites (Y. Shimizu, Y. Nakatsuru, M. Ichinose, Y. Takahashi, H. Kume, J. Mimura, Y. Fujii-Kuriyama and T. Ishikawa (2000) PROC: Natl Acad. Sci. USA, 97, 779-782). However, it is not precisely determined whether CYP1B1, another enzyme that is also active in activating B[a]P, plays a role in the B[a]P carcinogenesis in mice. To understand the basis of roles of CYP1A1 and CYP1B1 in the activation of chemical carcinogens, we compared levels of induction of liver and lung CYP1A1, 1A2, and 1B1 by various polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls in AhR(+/+) and AhR(-/-) mice. Liver and lung CYP1A1 and 1B1 mRNAs were highly induced in AhR(+/+) mice by a single intraperitoneal injection of each of the carcinogenic PAHs, such as B[a]P, 7,12-dimethylbenz[a]anthracene, dibenz[a,l]pyrene, 3-methylcholanthrene, 1,2,5,6-dibenzanthracene, benzo[b]fluoranthene, and benzo[a]anthracene and by a co-planar PCB congener 3,4,3',4'-tetrachlorobiphenyl. We also found that 6-aminochrysene, chrysene, benzo[e]pyrene, and 1-nitropyrene weakly induced the mRNA expression of CYP1A1 and 1B1, whereas anthracene, pyrene, and fluoranthene that have been reported to be non-carcinogenic in rodents, were very low or inactive in inducing these P450s. The extents of induction of liver CYP1A2 by these chemicals were less than those of CYP1A1 and 1B1 in AhR(+/-/+/-) mice. In AhR(-/-) mice, there was no induction of these P450s by PAHs and polychlorinated biphenyls. Liver microsomal activities of 7-ethoxyresorufin and 7-ethoxycoumarin O-deethylations and of mutagenic activation of (+/-)-trans-7,8-dihydroxy-7,8-dihydro-B[a]P to DNA-damaging products were found to correlate with levels of CYP1A1 and 1B1 mRNAs in the liver. Our results suggest that carcinogenicity potencies of PAHs may relate to the potencies of these compounds to induce CYP1A1 and 1B1 through AhR-dependent manner and that these induced P450s participate in the activation of B[a]P and related carcinogens causing initiation of cancers in mice.  相似文献   

12.
Recent epidemiological studies have disputed whether females are at increased risk of lung cancer compared to males. However, several molecular studies are in support of an increased susceptibility to tobacco smoke carcinogens among females. Our earlier findings suggest that women display higher levels of smoking-induced bulky/hydrophobic DNA adducts which may be related to an increased expression of CYP1A1 in their lungs, compared to men. In this in vitro study, 11 lung adenocarcinoma cell lines, 6 of male and 5 of female origin, were exposed to benzo[a]pyrene, cigarette smoke condensate (CSC), or vehicle control. Subsequent expression analysis of genes in the polycyclic aromatic hydrocarbon bioactivation pathway was conducted with Real-Time RT-PCR. DNA adducts were measured in benzo[a]pyrene-exposed cells by 32P-postlabelling analysis, and CYP1 activity was measured by EROD assay. Analysis of benzo[a]pyrene-DNA adducts showed higher levels of adducts in cell lines from women compared to cell lines from men (p = 0.03). The results also revealed significant sex differences in CYP1A1 gene expression, both in untreated cells (p = 0.03), and in cells exposed to benzo[a]pyrene (p = 0.017) and cigarette smoke condensate (p = 0.0043). In CSC-exposed cells, significantly higher levels of CYP1 activity was found in cell lines of female origin (p = 0.049). These results are in support of the previously published in vivo data, providing evidence for a higher susceptibility to PAH of women's lungs.  相似文献   

13.
14.
Although all forms of smoking are harmful, smoking pipes or cigars is associated with lower exposure to the lethal products of tobacco products and lower levels of morbidity and mortality than smoking cigarettes. Cytochrome P-450-1A (CYP1A) is a major pathway activating carcinogens from tobacco smoke. Our primary aim was to compare CYP1A2 activity in individuals smoking pipes or cigars only, cigarettes only and in non-smokers. We studied 30 smokers of pipes or cigars only, 28 smokers of cigarettes only, and 30 non-smokers male subjects matched for age. CYP1A2 activity was assessed as the caffeine metabolic ratio in plasma. One-day urine collection was used for determining exposure to products of tobacco metabolism. Nitrosamine and benzo[a]pyrene DNA adducts were measured in lymphocytes. CYP1A2 activity was greater (p<0.0001) in cigarette smokers (median: 0.61; interquartile range: 0.52-0.76) than in pipe or cigar smokers (0.27; 0.21-0.37) and non-smokers (0.34; 0.25-0.42) who did not differ significantly. Urinary cotinine and 1-hydroxypyrene levels were higher in cigarette smokers than in pipe or cigar smokers and higher in the later than in non-smokers. DNA adducts levels were significantly lower in pipe or cigar smokers than in cigarette smokers. In multivariate analysis, cigarette smoking was the only independent predictor of CYP1A2 activity (p<0.0001) and of 1-hydroxypyrene excretion in urine (p=0.0012). In this study, pipe or cigar smoking was associated with lower exposure to products of tobacco metabolism than cigarette smoking and to an absence of CYP1A2 induction. Cigarette smoking was the only independent predictor of CYP1A2 activity in smokers. However, inhalation behaviour, rather than the type of tobacco smoked, may be the key factor linked to the extent of tobacco exposure and CYP1A2 induction. Our results provide a reasonable explanation for the results of epidemiological studies showing pipe or cigar smoking to present fewer health hazards than cigarette smoking.  相似文献   

15.
16.
Human exposure to polycyclic aromatic hydrocarbons (PAH) occurs through complex mixtures such as coal tar. The effect of complex PAH mixtures on the activation of carcinogenic PAH to DNA-binding derivatives and carcinogenesis were investigated in mice treated topically with NIST (National Institute of Standards and Technology) Standard Reference Material 1597 (SRM), a complex mixture of PAH extracted from coal tar, and either additional benzo[a]pyrene (B[a]P) or dibenzo[a,l]pyrene (DB[a,l]P). In an initiation-promotion study using 12-O-tetradecanoylphorbol-13-acetate as the promoter for 25 weeks, the SRM and B[a]P co-treated mice had a similar incidence of papillomas per mouse compared with the group exposed to B[a]P alone as the initiator. PAH-DNA adduct analysis of epidermal DNA by 33P-post-labeling and reversed-phase high-performance liquid chromatography found the SRM co-treatment led to a significant decrease in the total level of DNA adducts and B[a]P-DNA adducts to less than that observed in mice treated with B[a]P alone at 6, 12 and 72 h exposure. After 24 and 48 h exposure, there was no significant difference in the levels of adducts between these groups. In the DB[a,l]P initiation-promotion study, the co-treated group had significantly fewer papillomas per mouse than mice treated with DB[a,l]P alone as initiator. Averaging over the times of exposure gave strong evidence that mice co-treated with SRM and DB[a,l]P had a significantly lower level of PAH-DNA adducts than mice treated with DB[a,l]P alone. Western immunoblots showed that both cytochrome P450 (CYP) 1A1 and 1B1 were induced by the SRM. These results are consistent with the hypothesis that two major factors determining the carcinogenic activity of PAH within a complex mixture are (i) the persistence of certain PAH-DNA adducts as well as total adduct levels, and (ii) the ability of the components present in the mixture to inhibit the activation of carcinogenic PAH by the induced CYP enzymes.  相似文献   

17.
18.
DNA adduct formation in vivo in mouse skin following a single topical application of benzo[a]fluoranthene (BbF), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), or indeno[1,2,3-cd]pyrene (IP) was investigated in female CD-1 mice using 32P-postlabeling analysis. Distinct adduct profiles were detected for each of the non-alternant hydrocarbons examined. Two adducts, one major and one minor, were detected using polyethyleneiminecellulose (PEI-cellulose) thin-layer chromatography (TLC) for BbF and BjF while a single major adduct was detected for BkF and IP. The relative extent of binding to mouse skin DNA was in the order BbF greater than BjF greater than BkF greater than IP. 32P-Postlabeled DNA adducts separated by PEI-cellulose TLC were further analyzed by high performance liquid chromatography (HPLC). A single radioactive peak was detected for 32P-labeled DNA adducts of BjF and BkF. Three general areas of radioactivity were detected when 32P-labeled DNA adducts of BbF were separated on HPLC.  相似文献   

19.
The modulation of benzo[a]pyrene diolepoxide (BPDE)-DNA adduct levels by polymorphisms in the CYP1A1, GSTM1 and GSTT1 genes was assessed in leukocytes of Caucasian males. Eighty-nine coke oven workers (35 smokers, 36 ex-smokers and 18 non-smokers) were recruited from job categories with different exposure levels to polycyclic aromatic hydrocarbons (PAH), together with 44 power plant workers (all smokers) not exposed to PAH. BPDE-DNA adducts were detected in 69 of 133 (52%) DNA samples with a 100-fold variation (range 0.2-44 adducts/10(8) nt) and a median of 1.6 adducts/10(8) nt. All samples with the GSTM1 active genotype (n = 59) and five out of 74 samples with GSTM1*0/*0 (7%) showed non-detectable adducts (<0.2 adducts/10(8) nt) and 69 of 74 subjects with GSTM1*0/*0 (93%) had detectable adducts (>0.2 adducts/10(8) nt). The difference in adduct level between the GSTM1*0/*0 and GSTM1 active genotypes was highly significant (P < 0.0001). No significant difference in adduct level between the GSTT1*0/*0 and GSTT1 active genotypes was seen. All heterozygotes (CYP1A1*1/*2) from subjects of GSTM1 active type did not have detectable adducts. Among the GSTM1-deficient individuals (n = 69), 42 with the CYP1A1*1/*1 genotype showed a lower adduct level (median 1.3, range 0.2-4.1 adducts/10(8) nt) compared with 26 individuals with heterozygous mutated CYP1A1*1/*2 genotypes (median 2.5, range 0.4-6.1 adducts/10(8) nt, P < 0.015). One individual with low PAH exposure and the rare combination CYP1A1*2A/*2A-GSTM1*0/*0 showed an extremely high level of 44 adducts/10(8) nt. Significant differences in detectable adduct levels were found between the CYP1A1*1/*1 and CYP1A1*1/*2 genotypes in the exposed group low + medium (P = 0.01) and for all adduct levels, detectable and non-detectable (set at a fixed value), in highly exposed individuals and in ex-smokers (P = 0.03), whereas no such differences were observed in the control group. Mutated CYP1A1*1/*2 increased the adduct level in non-smokers from the exposed group (1.4 versus 2.2 adducts/10(8) nt), but had no effect on the smokers from the exposed group (2.3 versus 2.8 adducts/10(8) nt). When all variables were dichotomized, statistical evaluation showed that CYP1A1 status (P = 0.015), PAH exposure (P = 0.003) and smoking (P = 0.006) had significant effects on adduct levels which increased in the order: CYP1A1*1/*1 < CYP1A1(*1/*2 or *2A/*2A); environmental exposure < occupational exposure; non-smokers < smokers, whereby adducts increased with cigarette dose and the duration of smoking. Higher levels of BPDE-DNA adducts in individuals with the combined CYP1A1(1/*2 or *2A/*2A)-GSTM1*0/*0 genotype suggest that these genotype combinations are at increased risk for contracting lung cancer when exposed to PAH.  相似文献   

20.
Cytochrome P4501A1 (CYP1A1), which is involved in the metabolic activation of polycyclic aromatic hydrocarbon procarcinogens derived from tobacco smoke, is induced in the lung up to 100-fold because of tobacco smoking. Our aim was to study whether promoter methylation has any role in the smoking-associated expression of CYP1A1 in human lung. Methylation of CpG sites up to 1.4 kb upstream of CYP1A1 gene was studied first by sequencing. Because methylation was observed between nucleotides -1400 and -1000, a methylation-specific single-strand conformational polymorphism method was designed for the region between nucleotides -1411 and -1295 that contains five potential methylation sites, one of them at the xenobiotic responsive element core sequence. Single-strand conformational polymorphism was used on DNA from normal lung samples and peripheral WBCs of smokers and nonsmokers, and on human lung adenocarcinoma (A549) and bronchial epithelial (Beas-2B) cell lines. In lung tissue complete or partial methylation occurred in 33% of heavy smokers (>15 cigarettes/day, n = 30), 71% of light smokers (< or =15 cigarettes/day or quitted 1-7 days earlier, n = 42), and in 98% of nonsmokers (never and ex-smokers, n = 49). Methylation was found to increase in 1-7 days after quitting smoking. In active smokers the lack of methylation in the studied region of CYP1A1 promoter was associated with a slightly higher pulmonary 7-ethoxyresorufin O-deethylase activity in the regression models allowing for the daily tobacco consumption and age. No association was observed in WBC between methylation and tobacco smoking. In lung-derived cell lines the methylation remained stable regardless of induction with benzo(a)pyrene, but a higher induction was observed in Beas-2B cells, which also had less methylation than A549 cells. The association of tobacco smoking with CYP1A1 methylation in the lung suggests that promoter methylation is involved in the regulation of CYP1A1 induction in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号