首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Gonadotropin-releasing hormone (GnRH) is considered to stimulate secretion of growth hormone (GH), prolactin (PRL), and somatolactin (SL) at particular stages of growth and sexual maturation in teleost fishes. We therefore examined seasonal variation in the pituitary levels of GH/PRL/SL mRNAs, and tried to clarify seasonal changes of responses to GnRH in expression of GH/PRL/SL genes, in the pituitaries of growing and maturing masu salmon (Oncorhynchus masou). Pituitary samples were monthly collected one week after implantation with GnRH analog (GnRHa). The levels of mRNAs encoding GH, PRL, and SL precursors in single pituitaries were determined by a real-time polymerase chain reaction method. The fork lengths and body weights of control and GnRHa-implanted fish of both sexes gradually increased and peaked out in September of 2-year-old (2+) when fish spawned. GnRHa implantation did not stimulate somatic growth, nor elevate gonadosomatic index (GSI) of 1+ and 2+ males, whereas it significantly increased GSI of 2+ females in late August to early September. The GnRHa-implanted 1+ males had higher levels of GH and PRL mRNAs in July, and SL mRNA from June to August than the control males. The levels of GH, PRL, and SL mRNAs in the control and GnRHa-implanted 1+ females, however, did not show any significant changes. Afterward, the PRL mRNA levels elevated in the control 2+ fish of both sexes in spring. GnRHa elevated the GH mRNA levels in both males and females in 2+ winter, and the PRL mRNA levels in females in early spring. Regardless of sex and GnRHa-implantation, the SL mRNA levels increased during sexual maturation. In growing and maturing masu salmon, expression of genes encoding GH, PRL, and SL in the pituitary is thus sensitive to GnRH in particular seasons probably in relation to physiological roles of the hormones.  相似文献   

2.
Effects of 17 alpha-methyltestosterone (MT) treatment and environmental salinity on the growth hormone (GH)/insulin-like growth factor (IGF) axis were examined in the euryhaline tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to 1 of 4 groups: FW, MT treatment in FW, SW, and MT treatment in seawater (SW). After 147 days, FW controls had the lowest levels of GH mRNA followed by FW fish treated with MT and SW control fish. Seawater fish fed with a diet containing MT, which grew the fastest, had significantly higher levels of GH mRNA than all the other groups. A significant correlation was observed between GH mRNA and the size of the individual fish. By contrast, plasma GH levels did not vary significantly among the groups. Pituitary GH mRNA levels, plasma IGF-I levels, and fish size varied in a correlated pattern, i.e., SW+MT>FW+MT=SW control>FW control. The tilapia pituitary produces two prolactins (PRLs), PRL(177) and PRL(188). Prolactin(177), but not PRL(188), exhibits growth-promoting actions in FW tilapia. Pituitary mRNA levels of both PRLs were significantly higher in fish reared in FW than those reared in SW. Treatment with MT significantly increased mRNA levels of both PRLs in FW, but had no effect on SW fish. No correlation was seen between plasma PRL levels and growth or between PRL mRNA levels and growth. These results indicate that SW rearing and MT treatment stimulate the GH/IGF-I axis, and suggest that pituitary GH mRNA at this stage of development is a better indicator of growth than plasma levels of GH and IGF-I.  相似文献   

3.
Gene expression for growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family hormones in the pituitaries of homing chum salmon were examined, because gene expression for these hormones during ocean-migrating phases remains unclear. Fish were collected in the winter Gulf of Alaska, the summer Bering Sea and along homing pathway in the Ishikari River-Ishikari Bay water system in Hokkaido, Japan in autumn. The oceanic fish included maturing adults, which had developing gonads and left the Bering Sea for the natal river by the end of summer. The absolute amounts of GH, PRL and SL mRNAs in the pituitaries of the maturing adults in the summer Bering Sea were 5- to 20-fold those in the winter Gulf of Alaska. The amount of GH mRNA in the homing adults at the coastal seawater (SW) areas was smaller than that in the Bering fish, while the amount of PRL mRNA remained at the higher level until fish arrived at the Ishikari River. The gill Na+,K+-ATPase activity in the coastal SW fish and the plasma Na+ levels in the brackish water fish at the estuary were lowered to the levels that were comparable to those in the fresh water (FW) fish. In conclusion, gene expression for GH, PRL and SL was elevated in the pituitaries of chum salmon before initiation of homing behavior from the summer Bering Sea. Gene expression for GH is thereafter lowered coincidently with malfunction of SW adaptability in the breeding season, while gene expression for PRL is maintained high until forthcoming FW adaptation.  相似文献   

4.
Feeding time is a major synchronizer of many physiological rhythms in many organisms. Alteration in the nutritional status, specifically fasting, also affects the secretion rhythms of growth hormone (GH) and insulin-like growth factor-I (IGF-I). In this study, we investigated whether the expression patterns for the mRNAs of GH, prolactin (PRL) and somatolactin (SL) in the pituitary gland, and insulin-like growth factor I and II (IGF-I and IGF-II) in the liver of juvenile rabbitfish (Siganus guttatus) follow a rhythm according to feeding time and whether these hormone rhythms changes with starvation. Hormone mRNA levels were determined by real time PCR. The daily expression pattern for the mRNAs of GH, PRL and SL was not altered whether food was given in the morning (10:00 h) or in the afternoon (15:00 h). The daily GH mRNA expression pattern, however, was affected when food was not available for 3 days. In contrast, the daily expression pattern for IGF-I mRNA reaches its peak at roughly 5-6h after feeding. This pattern, however, was not observed with IGF-II mRNA. During 15-day starvation, GH mRNA levels in starved fish were significantly higher than the control fish starting on the 9th day of starvation until day 15. The levels returned to normal after re-feeding. In contrast to GH, PRL mRNA levels in starved fish were significantly lower than the control group starting on the 6th day of starvation until 3 days after re-feeding. SL mRNA levels were not significantly different between the control and starved group at anytime during the experiment. Both IGF-I and IGF-II mRNA levels in starved group were significantly higher than the control fish on the 3rd and 6th day of starvation. mRNA levels of both IGF-I and II in the starved fish decreased starting on the 9th day of starvation. While IGF-I mRNA levels in the starved group continued to decrease as starvation progressed, IGF-II mRNA levels were not significantly different from the control during the rest of the starvation period. The results indicate that aside from GH and IGF-I, PRL and IGF-II are likewise involved in starvation in rabbitfish.  相似文献   

5.
PRL and PrRP cDNAs have been isolated from euryhaline silver sea bream (Sparus sarba). The PRL cDNA consists of 1360 bp encoding 212 amino acids whereas the PrRP cDNA contains 631 bp encoding preproPrRP with 122 amino acids. The mature PrRP sequence within the preprohormone is identical to the PrRPs isolated from other fish species. PRL mRNA was uniquely expressed in sea bream pituitary but PrRP mRNA was expressed in a variety of organs and tissues including the intestines, olfactory rosette and various brain regions such as hypothalamus and pituitary. Expression levels of PRL and PrRP mRNA have been examined in sea bream adapted to different salinities (0, 6, 12, 33 and 50 ppt). In the pituitary, both PRL and PrRP mRNA were significantly higher in fish adapted to low salinities (0 and 6 ppt) and the expression profiles of both hormones closely paralleled each other. However, expression of hypothalamic PrRP was significantly higher in fish adapted to iso-osmotic salinity (12 ppt) when pituitary PRL expression was low. The present study demonstrates, for the first time, a synchronized mRNA expression pattern between PRL and PrRP in fish pituitary but a disparity of mRNA expression levels between hypothalamic PrRP and pituitary PRL during salinity adaptation. These data suggest that PrRP may possibly act as a local modulator in pituitary rather than a hypothalamic factor for regulation of pituitary PRL expression in silver sea bream.  相似文献   

6.
The endocrine factors prolactin (PRL) and growth hormone (GH) are believed to have counteracting effects in the adaption of fish to changes in environmental salinity. In order to further investigate this interaction sea bream were challenged with full seawater (SW) or freshwater (FW) for 7 days and the response of pituitary glands cultured in vitro to an osmotic challenge (230, 275 and 320 mOsm/kg) was assessed. In vitro PRL secretion from pituitaries of SW-adapted fish was unaltered in response to an osmotic challenge, while GH secretion increased in the lowest osmolality (230 mOsm/kg). In contrast, both GH and PRL secretion by pituitaries from FW challenged fish was significantly increased (p < 0.01) over that of pituitaries from SW fish at the highest osmolality (320 mOsm/kg). After FW challenge pituitary PRL content and de novo synthesised and released PRL were significantly increased (p < 0.01), while total PRL secretion was not different from SW animals. GH pituitary content decreased in FW animals while total secretion and secretion of de novo synthesised protein were significantly increased (p < 0.01). In addition, after transfer of fish to FW expression of PRL and GH increased 3- and 2-fold, respectively. Despite the increase in PRL expression, no increase in total PRL secretion occurred and although in gills a 2-fold increase in the osmoregulatory marker, Na+/K+-ATPase activity was detected, profound haemodilution and a cumulative mortality of 40% occurred in sea bream placed in FW. Taken together the results suggest that the sea bream pituitary gland fails to respond appropriately to the osmotic challenge caused by low salinity and the physiological response evoked in vivo is not enough to allow this species to withstand and adapt to FW.  相似文献   

7.
8.
9.
To clarify the roles of prolactin (PRL) and GH in the control of the immune system, the effects of environmental salinity, hypophysectomy, and PRL and GH administration on several immune functions were examined in tilapia (Oreochromis mossambicus). Transfer from fresh water (FW) to seawater (SW) did not alter plasma levels of immunoglobulin M (IgM) and lysozyme. The superoxide anion (O(2)(-)) production in head kidney leucocytes accompanied by phagocytosis was elevated in SW-acclimated fish over the levels observed in FW fish. Hypophysectomy of the fish in FW resulted in a reduction in O(2)(-) production in leucocytes isolated from the head kidney, whereas there was no significant change in plasma levels of IgM or lysozyme. Treatment with tilapia GH and PRLs (PRL(177) and PRL(188)) enhanced O(2)(-) production in vitro in head kidney leucocytes in a dose-related manner. Extrapituitary expression of two PRLs, GH and IGF-I mRNA was detected in lymphoid tissues and cells such as head kidney, spleen, intestine and leucocytes from peripheral blood and head kidney. PRL-receptor mRNA was detected in head kidney leucocytes, and the level of expression was higher in SW-acclimated fish than that in FW fish. Treatment with PRL(177) caused higher production of O(2)(-) in the head kidney leucocytes isolated from SW tilapia than that from FW fish. In view of the fact that PRL acts antagonistically to osmoregulation in SW, its immunomodulatory actions in this euryhaline fish would appear to be independent of its osmoregulatory action.  相似文献   

10.
The pituitary levels of mRNAs encoding gonadotropin (GTH) subunits (GTH alpha2 and IIbeta), prolactin (PRL), and somatolactin (SL) increased in chum salmon during the last stages of spawning migration. In the present study, changes in pituitary levels of mRNAs encoding GTH alpha2, Ibeta, and IIbeta; growth hormone (GH); PRL; and SL were examined in homing chum salmon of Sanriku stock to clarify whether the changes are associated with final maturation or freshwater (FW) adaptation. In 1993, fish were caught at four areas: off the coast of Sanriku (off-coast), the mouth of Otsuchi Bay (ocean), inside of Otsuchi Bay (bay), and the Otsuchi River (river). In addition, effects of hypoosmotic stimulation by transition from seawater (SW) to FW were examined in 1994 and 1995. The amounts of mRNAs were determined by dot-blot analyses or real-time polymerase chain reactions. The levels of GTH alpha2 and IIbeta mRNAs in the ocean, bay, and river fish were two to five times those in the off-coast fish, and the levels of SL mRNAs in the bay fish were two to four times those in the off-coast fish. The levels of GH and PRL mRNAs in the ocean and bay fish were significantly lower than those in the off-coast fish, and those in the river fish were three to five times those in the ocean and bay fish. In the SW-to-FW transition experiment in 1994, the levels of GTH alpha2, Ibeta, and IIbeta mRNAs transiently increased, whereas changes were insignificant in 1995. The levels of GH, PRL, and SL mRNAs increased in both SW and FW environments, and no apparent effects of SW-to-FW transition were observed. The present study suggests that in prespawning chum salmon, expression of genes encoding GTH alpha2, IIbeta, and SL elevates with final maturation regardless of osmotic environment. Hypoosmotic stimulation by transition from the SW-to-FW environment is not critical to modulate expression of genes for PRL. PRL gene expression can be elevated in SW fish that were sexually almost matured.  相似文献   

11.
Most animals respond to changes in the external environment in a rhythmic fashion. In teleost fishes, daily rhythms are observed in plasma concentrations of some hormones but it is not clear whether these rhythms are exogenous or are entrained by predictable cues. We investigated whether the expression patterns for the mRNAs of growth hormone (GH), prolactin (PRL) and somatolactin (SL) in the pituitary gland, and insulin-like growth factor-I and II (IGF-I and IGF-II) in the liver, follow a daily rhythm when juvenile rabbitfish (Siganus guttatus) are reared under a normal 24-h light and dark cycle (LD), and when they are exposed to either continuous light (LL) or darkness (DD). Hormone mRNA levels were determined by real time PCR. Under LD conditions, GH mRNA expression in the pituitary was significantly lower during the light phase than during the dark phase suggesting a diurnal rhythm of expression. The rhythm disappeared when fish were exposed to LL or DD conditions. PRL mRNA expression pattern was irregular in all 3 conditions. Very low levels of SL mRNA were observed during the mid day under LD conditions. The expression pattern of SL mRNA became irregular under LL and DD conditions. No pattern could be observed in the expression profile of IGF-I and II mRNA in the liver during LD and LL conditions but a single peak in mRNA level was observed under DD conditions in both IGF-I and II. The results indicate that except for GH, the daily expression pattern for the mRNAs of the hormones examined do not seem to follow a rhythm according to light and dark cycles.  相似文献   

12.
13.
In many euryhaline fish, prolactin (PRL) plays a key role in freshwater adaptation. Consistent with this function, the present study showed a remarkable reduction in pituitary PRL content of silver sea bream abruptly transferred to low salinity (6 ppt). This reduction in pituitary PRL content followed closely the temporal changes in serum osmolality and ion levels. Serum osmolality, Na+ and Cl levels of silver sea bream abruptly transferred to hyposmotic salinity (6 ppt) were markedly reduced 2 h after the transfer. The decline in pituitary PRL content lagged behind the serum changes implying that reduction in pituitary PRL content is a response to the drop in serum ion levels and osmotic pressure. Silver sea bream pituitary cells were dispersed and exposed to a medium with reduced ion levels and osmolality in vitro, and PRL released from pituitary cells was significantly elevated. In hyposmotic exposed anterior pituitary cells, cell volume exhibited a 20% increase when exposed to a medium with a 20% decrease in osmolality. The enlarged pituitary cells did not shrink until the surrounding hyposmotic medium was replaced, a phenomenon suggesting an osmosensing ability of silver sea bream PRL cells for PRL secretion in response to a change in extracellular osmotic pressure. The decrease in pituitary PRL content in vivo and stimulated pituitary PRL release in vitro under reduced osmolality together suggest hyposmotic exposure triggers PRL release from the pituitary.  相似文献   

14.
15.
Previous studies in the pejerrey, Odontesthes bonariensis, have demonstrated that fibers with immunoreactivity to gonadotropin-releasing hormone (ir-GnRH) reach all areas of the pituitary gland, the rostral pars distalis (RPD), the proximal pars distalis (PPD), and the pars intemedia (PI). A close association was shown between ir-GnRH fibers and gonadotropin (GtH)-, growth hormone (GH)-, somatolactin (SL)-, and prolactin (PRL)-expressing cells. The presence of only one GnRH variant, suspected to be a novel form, has been shown in pituitary extracts of this fish. In addition, GnRH may stimulate GtHs, GH, SL, and PRL levels in different fish species. The objective of the present study was to seek GnRH receptors and therefore colocalization with GtHs, GH, SL, and PRL cells in O. bonariensis using a pituitary primary cell culture system. GnRH binding sites were revealed by autoradiography of an iodinated superactive GnRH agonist ([(125)I]GnRH-A) and pituitary cells were identified by immunocytochemistry using piscine antisera. Following autoradiography, silver grains representing specific [(125)I]GnRH-A binding were associated with anti GtH, GH, SL, and PRL positive cells. These results demonstrate the presence of GnRH binding sites on these cells. It is suggested that GnRH may play a wide role in the neuroendocrine control of different pituitary hormones in addition to the GtHs.  相似文献   

16.
17.
Developmental ontogeny of prolactin and its receptor in fish   总被引:2,自引:0,他引:2  
Prolactin (PRL) is a member of a family of structurally similar proteins which includes growth hormone (GH) and somatolactin (SL) in teleost fish. The genes encoding these proteins are expressed principally in the pituitary gland and sequence analysis reveals they share considerable similarity. GH, PRL, and SL bring about their physiological action by binding to specific receptors localised in the membrane of cells in target tissue. The PRL receptor (PRLR) and GH receptor (GHR) have been identified in a number of teleosts but the SL receptor remains to be characterised. On hormone binding, receptors dimerise, and signal transduction occurs via the JAK/STAT signalling pathway. The principal action of PRL in fish is freshwater osmoregulation, although it has also been implicated in reproduction, behaviour, growth, and immunoregulation. The role of PRL in early development and metamorphosis is well established, respectively, in mammals and amphibians, although its role in fish is not so well known. Studies have shown that PRL mRNA and protein are restricted to the developing pituitary gland in fish embryos and larvae. PRLR mRNA and protein is also present in fish embryos and has a widespread tissue distribution in larvae. The levels of PRLR and PRL mRNA vary throughout embryonic and early larval development. The potential role of PRL in fish embryos and larvae is considered in relation to their physiological status.  相似文献   

18.
19.
A pituitary hormone, somatolactin (SL), belonging to the GH/PRL family, is produced in the intermediate lobe of the teleost pituitary. The function of this protein is uncertain. Clones coding for SL were isolated and sequenced from a gilthead seabream pituitary cDNA expression library. The nucleotide sequence of the larger cDNA isolated was 1.5 kb containing a 0.8-kb 3′-untranslated region and two potential polyadenylation signals (AATAAA). The mature polypeptide is composed of 207 amino acids, and a signal peptide of 24 residues was also found in the SL precursor. A potential N-glycosylation site Asn-Lys-Thr was identified in gilthead seabream SL. A comparison of the SL amino acid sequences of several fishes indicated that seven cysteine residues are characteristically present in all the SLs so far isolated. Six of those residues are present in homologous positions in SL and GHSparus aurataproteins. SL and GH fromS. auratashowed a 43% homology at the nucleotide level and 22% identity at the amino acid level. Expression of recombinant SL (rSL) inEscherichia coliand isolation from inclusion bodies led to a monomeric form of SL identical in electrophoretic mobility to one of the two forms of the native SL secreted from gilthead seabream pituitaries culturedin vitro.Further, a native glycosylated modified SL secretedin vitroas shown by N-glycosidase treatment was identified. Specific anti-SL antibodies that discriminate well against gilthead seabream GH and PRL in immunoblotting were also raised against rSL.  相似文献   

20.
The osmoregulatory actions of ovine prolactin (oPRL), ovine growth hormone (oGH), and cortisol were tested in the euryhaline gilthead seabream Sparus aurata. Acclimated to sea water (SW, 40 ppt salinity, 1000 mOsm/kg H(2)O) or brackish water (BW, 5 ppt, salinity, 130 mOsm/kg H(2)O), injected every other day for one week (number of injections, 4) with saline (0.9% NaCl), oPRL (4 microg/g body weight), oGH (4 microg/g body weight) or cortisol (5 microg/g body weight), and transferred from SW to BW or from BW to SW 24h after the last injection. Fish were sampled before and 24h after transfer. Gill Na(+), K(+)-ATPase activity, plasma osmolality, plasma ions (sodium and chloride), plasma glucose, and muscle water moisture were examined. SW-adapted fish showed higher gill Na(+), K(+)-ATPase activity, plasma osmolality, and plasma ions levels than BW-adapted fish. Transfer from SW to BW decreased plasma osmolality and ions levels after 24h, while transfer from BW to SW increased these parameters, whereas gill Na(+),K(+)-ATPase activity was unaffected. oPRL treatment significantly decreased gill Na(+),K(+)-ATPase activity and increased plasma osmolality and ions in SW- and BW-adapted fish. This treatment minimizes loss of osmolality and ions in plasma after transfer to BW and increased these values after transfer to SW. No significant changes were observed in gill Na(+),K(+)-ATPase activity, plasma osmolality, and plasma ions in oGH-treated group with respect to saline group before or after transfer from SW to BW or from BW to SW. Treatment with cortisol induced, in SW-adapted fish, a significant increase of gill Na(+),K(+)-ATPase activity and decrease of plasma osmolality and plasma ions. In BW-adapted fish this treatment induced a significant increases in gill Na(+),K(+)-ATPase activity, plasma osmolality, and plasma ions. After transfer to SW cortisol-treated fish had higher plasma osmolality than the saline group. Our results support the osmoregulatory role of PRL in the adaptation to hypoosmotic environment in the gilthead seabream S. aurata. Further studies will be necessary to elucidate the osmoregulatory role of GH in this species. Cortisol results suggest a "dual osmoregulatory role" of this hormone in S. aurata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号