首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Twenty pairs of dried macerated femora were submitted to progressive, physiologically oriented loading. The aim of this work was to determine the role of trabecular bone, the importance of the bone mineral density of the femoral shaft, and the importance of the Singh index in the mechanical strength of the femoral neck. By means of an original technique, the influence of both the principal tensile and secondary compressive trabecular groups on the mechanical strength to bending stress has been demonstrated. The artificial destruction of these trabecular groups is responsible for a loss of strength of more than 50% in varus angulation while it has practically no effect in valgus angulation. On the other hand, the mechanical strength of the femoral neck is better correlated with the bone mineral density of the femoral shaft (r=0.74) than with the Singh index (r=0.50) or with age (r=0.15).Supported by a grant from theFonds de la Recherche Scientifique Médicale (F.R.S.M., Brussels, Belgium)  相似文献   

2.
Enhanced bone mass and physical fitness in prepubescent footballers   总被引:4,自引:0,他引:4  
Not much is known about the osteogenic effects of sport activities before puberty. We tested the hypothesis that football (soccer) participation is associated with enhanced bone mineral content (BMC) and areal density (BMD) in prepubertal boys. One hundred four healthy white boys (9.3 +/- 0.2 years, Tanner stages I-II) participated in this study: 53 footballers and 51 controls. The footballers devoted at least 3 h per week to participation in football, while the controls did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses. Bone variables were measured by dual-energy X-ray absorptiometry. The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical jumps were assed with a force plate. Additionally, 30-m running speed, 300-m run (anaerobic capacity), and 20-m shuttle-run tests (maximal aerobic power) were also performed. Compared to the controls, the footballers attained better results in the physical fitness test and had lower body mass (-10%, P < 0.05) due to a reduced percentage of body fat (4% less, P < 0.05). The footballers exhibit enhanced trochanteric BMC (+17%, P < 0.001). Likewise, femoral and lumbar spine BMD were also greater in the football players (P 相似文献   

3.
Peak spine and femoral neck bone mass in young women   总被引:4,自引:0,他引:4  
Achievement of higher peak bone mass early in life may play a critical role against postmenopausal bone loss. Bone mineral density (BMD) of the spine, femoral neck, greater trochanter, Ward's triangle, and spine bone mineral content (BMC) and bone surface area (BSA) were assessed by dual energy x-ray absorptiometry in 300 healthy females (age 6-32 years). Bone measurements were described by using nonlinear models with age, weight, height, or dietary calcium intake as the explanatory variables. At the spine, femoral neck, greater trochanter, and Ward's triangle, the highest BMD level was observed at 23.0 +/- 1.4, 18.5 +/- 1.6, 14.2 +/- 2.0, and 15.8 +/- 2.1 years, respectively. The age of attaining peak spine BMC and BSA cannot be estimated, as significant increases in these two measures were observed through this age group. Age, weight, and height were all significant predictors of all these bone measurements. Weight was a stronger predictor than age for all sites. Dietary calcium intake was not a significant predictor for any of these bone measurements. We conclude that age of attaining peak bone mass at the hip is younger than at the spine, and BMC and BSA at the spine continue to increase through the early thirties in females.  相似文献   

4.
While metal or plastic interbody spinal fusion devices are manufactured to appropriate mechanical standards, mechanical properties of commercially prepared structural allograft bone remain relatively unassessed. Robust models predicting compressive load to failure of structural allograft bone based on easily measured variables would be useful. Three hundred twenty seven femoral rings from 34 cadaver femora were tested to failure in axial compression. Predictive variables included age, gender, bone mineral density (BMD), position along femoral shaft, maximum/minimum wall thickness, outer/inner diameter, and area. We used support vector regression and 10‐fold cross‐validation to develop robust nonlinear predictive models for load to failure. Model performance was measured by the root‐mean‐squared‐deviation (RMSD) and correlation coefficients (r). A polynomial model using all variables had RMSD = 7.92, r = 0.84, indicating excellent performance. A model using all variables except BMD was essentially unchanged (RMSD = 8.12, r = 0.83). Eliminating both age and BMD produced a model with RMSD = 8.41, r = 0.82, again essentially unchanged. Compressive strength of structural allograft bone can be estimated using easily measured geometric parameters, without including BMD or age. As DEXA is costly and cumbersome, and setting upper age‐limits for potential donors reduces the supply, our results may prove helpful to increase the quality and availability of structural allograft. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1271–1276, 2014.  相似文献   

5.

Summary

Using combined dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography, we demonstrate that men matched with women for femoral neck (FN) areal bone mineral density (aBMD) have lower volumetric BMD (vBMD), higher bone cross-sectional area, and relatively similar values for finite element (FE)-derived bone strength.

Introduction

aBMD by DXA is widely used to identify patients at risk for osteoporotic fractures. aBMD is influenced by bone size (i.e., matched for vBMD, larger bones have higher aBMD), and increasing evidence indicates that absolute aBMD predicts a similar risk of fracture in men and women. Thus, we sought to define the relationships between FN aBMD (assessed by DXA) and vBMD, bone size, and FE-derived femoral strength obtained from quantitative computed tomography scans in men versus women.

Methods

We studied men and women aged 40 to 90?years and not on osteoporosis medications.

Results

In 114 men and 114 women matched for FN aBMD, FN total cross-sectional area was 38% higher (P?P?Conclusions In this cohort of young and old men and women from Rochester, MN, USA who are matched by FN aBMD, because of the offsetting effects of bone size and vBMD, femoral strength and the load-to-strength ratio tended to be relatively similar across the sexes.  相似文献   

6.
The aim of this study was to compare femoral neck (FN) strength in Chinese overweight adolescents with gender-matched normal weight controls and investigate the relationship of total body soft tissue composition (lean and fat masses) to indices of FN strength. Dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur and total body were made in 65 Chinese overweight adolescents and 89 gender-matched normal weight controls using Lunar Prodigy DXA bone densitometer (GE Healthcare, Madison, WI). FN bone mineral density (BMD), total body lean mass, fat mass, and bone mineral content (BMC) were measured. Using FN BMD values derived from DXA measurements, hip structural analysis (HSA) was performed using Lunar enCORE (GE Healthcare), version 10.5 software. Structural parameters derived by HSA were bone cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), and the section modulus (Z). Data were analyzed by Student's t-test, Pearson correlation coefficients (r), and one-way analysis of covariance (ANCOVA). Overweight boys and girls had higher body weight, lean mass, fat mass, and body mass index (p<0.001) than normal controls. CSA, CSMI, and Z were higher in overweight groups compared with controls (p<0.05). Lean mass correlated well with all HSA parameters (range of r: 0.501--0.714) for both genders. ANCOVA test showed no significant differences between overweight and normal weight groups regarding HSA variables in both genders after adjustment for lean mass. However, the differences remain significant after adjustment for fat mass in boys but not in girls. This study supports the conclusion that overweight individuals have greater hip neck strength in comparison with normal weight controls in Chinese adolescents. Lean mass is a major determinant for FN strength.  相似文献   

7.
Enhanced bone mass and physical fitness in young female handball players   总被引:5,自引:0,他引:5  
This study evaluates the effect of physical activity on the bone content (BMC) and density (BMD) in 51 girls (14.2+/-0.4 yr). Twenty-four were placed in the handball group as they have been playing handball for at least 1 year (3.9+/-0.4). The other 27 who did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses comprised the control group. Bone mass and areal density were measured by dual-energy X-ray absorptiometry (DXA). The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical squat jump were assessed with a force plate. Additionally, 30-m run (running speed) and 300-m run (as an estimate of anaerobic capacity) tests were also performed. Maximal aerobic capacity was estimated using the 20-m shuttle-run tests. Compared to the controls, handballers attained better results in the physical fitness tests and had a 6% and 11% higher total body and right upper extremity lean mass (all P<0.05). The handballers showed enhanced BMC and BMD in the lumbar spine, pelvic region, and lower extremity (all P<0.05). They also showed greater BMC in the whole body and enhanced BMD in the right upper extremity and femoral neck than the control subjects (all P<0.05). As expected, total lean mass strongly correlated with total and regional BMC and BMD (r=0.79-0.91 P<0.001). Interestingly, 300-m running speed correlated with BMC and BMD variables (r=0.59-0.67 and r=0.60-0.70, respectively; all P<0.001). Multiple regression analysis showed that the 30-m running speed test, combined with the height and body mass, has also predictive value for whole-body BMC and BMD (R=0.93 and R=0.90, P<0.001). In conclusion, handball participation is associated with improved physical fitness, increased lean and bone masses, and enhanced axial and appendicular BMD in young girls. The combination of anthropometric and fitness-related variables may be used to detect girls with potentially reduced bone mass.  相似文献   

8.
Summary  The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2–5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2–4% at the lumbar spine and total body in boys. Introduction  We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9–11 yrs. Methods  We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates. Results  Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance. Conclusion  AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.  相似文献   

9.
High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1–6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15–32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.  相似文献   

10.
11.
Women who exercise during their second and third decades may increase their peak bone mass and lower their eventual risk for postmenopausal fracture. However, the effects of exercise in younger women can be modulated by the use of oral contraceptives, which may prevent the normal accretion of bone mass that would otherwise occur. We hypothesized that exercise intervention in young adult women would significantly increase both bone mass and the bending rigidity of the femoral neck. We further hypothesized that exercise intervention in the presence of oral contraceptive use would have a negative effect on bone mass and bending rigidity. Women 18–31 years of age (n = 123) were classified by oral contraceptive use (OC, NOC) and age (18–23, 24–31 years), and then randomized into exercise or nonexercise groups. The exercise protocol consisted of three sessions/week of aerobic and nonaerobic exercises, and continued for 2 years. Each 6 months, the femoral neck of each subject was scanned using a Lunar dual-energy X-ray absorptiometry (DEXA) scanner, and bone mineral content, density and geometric information were used to calculate estimated stresses and bending rigidity at the hip. Percent changes from baseline were analyzed using two-way analysis of variance (ANOVA) at 6, 12, 18, and 24 months. Women who neither exercised nor took oral contraceptives (NE/NOC) had the greatest percentage increases in cross-sectional area (4.98 ± 2.29%), cross-sectional moment of inertia (9.45 ± 2.37%), total bone mineral density (2.07 ± 2.09%), fracture index (8.03 ± 2.03%), and safety factor (20.03 ± 5.79%) over the 24 month exercise program. Women who exercised and did not take oral contraceptives (E/NOC) declined on most variables related to femoral strength and bone mass, whereas those women who took oral contraceptives were usually intermediate between NE/NOC and E/NOC, whether they exercised or not. These data show that either exercise or OC use is associated with a suppression of the normal increase in bone mass and mechanical strength in the femoral neck in women 18–31 years old, but the combination of exercise and OC use appears to have a less suppressive effect.  相似文献   

12.
Mechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment protocols were tested in a pilot experiment using ovariectomized rats with loading schemes of 2 × 8 min/day, 5 days/week (n = 2 rats per protocol). Bone volume and architecture were evaluated during a 10 week follow-up using in-vivo microcomputed tomography scanning. The loading protocol in which a 45 Hz sine wave was applied at 2 Hz with an acceleration of 0.5g showed an anabolic effect on bone and was therefore further analyzed in two groups of animals (n = 6 each group) with WBV starting directly after or 3 weeks after ovariectomy and compared to a control (non-WBV) group at 0, 3, 6 and 10 weeks’ follow-up. In the follow-up experiment the WBV stimulus did not significantly affect trabecular volume fraction or cortical bone volume in any of the treatment groups during the 10 week follow-up. WBV did reduce weight gain that was induced as a consequence of ovariectomy. We could not demonstrate any significant effects of WBV on bone loss as a consequence of ovariectomy in rats; however, the weight gain that normally results after ovariectomy was partly prevented. Treatment with WBV was not able to prevent bone loss during induced osteoporosis.  相似文献   

13.
Bone strength is a function of both bone mass and its geometric distribution, a factor that is obscured in the conventional bone mineral analysis. Structural geometry is particularly important in areas such as the femoral neck that are exposed to bending loadsin vivo. Here we present results of a study examining age changes in the structural geometry of the female femoral neck derived from dual photon absorptiometry (DPA) data. In a previous study, differences in the aging patterns of males and females over the entire adult age range were demonstrated. In that study, only males showed compensatory geometric restructuring of the femoral neck which tended to offset loss of bone mineral with age. In the present study, femoral neck structural properties from 1044 women were examined for aging trends before and after the approximate age of menopause (50 years). Women in the premenopausal age range showed a 4% decline per decade in femoral neck BMD, but no change in the femoral neck cross-sectional moment of inertia (CSMI). This aging pattern is similar to that of males in our earlier study, and in both cases resulted in little or no increase in femoral neck bending stresses. After age 50, however, women show a more rapid decline in femoral neck BMD (7% per decade) accompanied by a decline in CSMI of 5% per decade. These changes result in increases in femoral neck stresses of 4–12% per decade due to the apparent lack of compensatory restructuring to offset the loss of bone mineral. These results shed further light on the age-related mechanisms underlying sex differences in fracture incidence among the elderly. They also argue for the routine use of such structural analyses in any study of age-related osteopenia or the effects of therapeutic intervention on this condition.Presented at the NIA Workshop on Aging and Bone Quality, September 3–4, 1992, Bethesda, Maryland.  相似文献   

14.
15.
For normal bone, aging has been associated with a decrease of both density and failure strength, and with the development of pathologies such as osteoporosis. Conversely, it has been reported that another common disease, osteoarthritis, may alter these age-related changes in cancellous bone, suggesting that it may have a protective role against osteoporosis and the correspondent fracture risk. It was reported that in the principal compressive region of the femoral head in osteoarthritis the bone density does not depend on age. However, it is not clear if this independence on age of the cancellous bone density corresponds also to a reduced dependence on age of the strength to failure. The present work examined cancellous bone from the principal compressive region of the femoral head of 37 patients having severe osteoarthritis. The aim was (1) to investigate the dependence on age of both the structural parameters and the ultimate stress and (2) to investigate the relationships between the ultimate stress and the structural parameters. Using X-ray microcomputed tomography, three-dimensional structural parameters, such as bone volume fraction, direct trabecular thickness and structure model index were calculated. Then the specimens were compressed to failure to determine the ultimate stress. It was found that none of the investigated structural parameters did depend on age, and also the ultimate stress did not depend on age (p>0.05 for all regressions on age). In addition, the ultimate stress was significantly correlated with the structural parameters, primary with the minimum bone volume fraction and the average bone volume fraction (R(2)=0.95 and R(2)=0.84, respectively). These findings show that severe osteoarthritis or a related factor may change the age dependences of both the structural parameters and the mechanical properties usually reported for normal cancellous bone. These results suggest for this pathology to have a protective role against the age-related decrease in density, the age-related deterioration of the microarchitecture and the age-related decrease of the failure strength for the cancellous bone in the principal compressive region of the human femoral head.  相似文献   

16.
A group of 48 men (22 aged 65-75 years, 26 aged 80-90 years) and 59 women (32 aged 65-75 years, 27 aged 80-90 years) were enrolled in the Age, Gene/Environment Susceptibility-Reykjavik study and imaged with in vivo volumetric Quantitative Computed Tomography (QCT) to investigate the effects of age and sex on femoral neck structure and strength. Femoral neck cross-sectional moment of inertia for bending directions near those of standing and walking (I(AP)), bending strength (M(y)), and axial compressive strength (F(y)) were computed at the location of minimum cross-sectional area (minCSA). Local cortical thickness was computed in the inferior femoral neck based on density profiles extending through the cortex of the minCSA femoral neck section. Multivariate models accounting for height, weight, and age group (younger or older) showed that men had a 46% higher M(y) and a 23% higher F(y) than women, while women had a 13% thicker inferior cortex than men. Cortical thickness in the inferoposterior region of the femoral neck was significantly related to bending and axial strength after adjusting for overall volumetric bone mineral density. Both minCSA and I(AP) were higher in the older, gender-pooled age group, but F(y) and M(y) did not differ between the two age groups. The results suggest that age-related expansion of the femoral neck primarily occurs in the superior and inferior directions and helps maintain homeostasis of femoral neck stiffness and strength. The higher bending strength of the male femoral neck may partly explain why elderly men have a lower risk of hip fracture than elderly women.  相似文献   

17.
Study of the design of the FN in vivo in 697 women and in vitro in 200 cross-sections of different sizes and shapes along each of 13 FN specimens revealed that strength in old age was largely achieved during growth by differences in the distribution rather than the amount of bone material in a given FN cross-section from individual to individual. INTRODUCTION: We studied the design of the femoral neck (FN) to gain insight into the structural basis of FN strength in adulthood and FN fragility in old age. MATERIALS AND METHODS: Studies in vivo were performed using densitometry in 697 women and in vitro using high-resolution microCT and direct measurements in 13 pairs of postmortem specimens. RESULTS: The contradictory needs of strength for loading yet lightness for mobility were met by varying FN size, shape, spatial distribution, and proportions of its trabecular and cortical bone in a cross-section, not its mass. Wider and narrower FNs were constructed with similar amounts of bone material. Wider FNs were relatively lighter: a 1 SD higher FN volume had a 0.67 (95% CI, 0.61-0.72) SD lower volumetric BMD (vBMD). A 1 SD increment in height was achieved by increasing FN volume by 0.32 (95% CI, 0.25-0.39) SD with only 0.15 (95% CI, 0.08-0.22) SD more bone, so taller individuals had a relatively lighter FN (vBMD was 0.13 [95% CI, 0.05-0.20 SD] SD lower). Greater periosteal apposition constructing a wider FN was offset by even greater endocortical resorption so that the same net amount of bone was distributed as a thinner cortex further from the neutral axis, increasing resistance to bending and lowering vBMD. This was recapitulated at each point along the FN; varying absolute and relative degrees of periosteal apposition and endocortical resorption focally used the same amount of material to fashion an elliptical FN of mainly cortical bone near the femoral shaft to offset bending but a more circular FN of proportionally more trabecular and less cortical bone to accommodate compressive loads adjacent to the pelvis. This structural heterogeneity was largely achieved by adaptive modeling and remodeling during growth-most of the variance in FN volume, BMC, and vBMD was growth related. CONCLUSIONS: Altering structural design while minimizing mass achieves FN strength and lightness. Bone fragility may be the result of failure to adapt bone's architecture to loading, not just low bone mass.  相似文献   

18.
Sarcopenia is associated with a greater fracture risk. This relationship was originally thought to be explained by an increased risk of falls in sarcopenic individuals. However, in addition, there is growing evidence of a functional muscle‐bone unit in which bone health may be directly influenced by muscle function. Because a definition of sarcopenia encompasses muscle size, strength, and physical performance, we investigated relationships for each of these with bone size, bone density, and bone strength to interrogate these hypotheses further in participants from the Hertfordshire Cohort Study. A total of 313 men and 318 women underwent baseline assessment of health and detailed anthropometric measurements. Muscle strength was measured by grip strength, and physical performance was determined by gait speed. Peripheral quantitative computed tomography (pQCT) examination of the calf and forearm was performed to assess muscle cross‐sectional area (mCSA) at the 66% level and bone structure (radius 4% and 66% levels; tibia 4% and 38% levels). Muscle size was positively associated with bone size (distal radius total bone area β = 17.5 mm2/SD [12.0, 22.9]) and strength (strength strain index (β = 23.3 mm3/SD [18.2, 28.4]) amongst women (p < 0.001). These associations were also seen in men and were maintained after adjustment for age, height, weight‐adjusted‐for‐height, limb‐length‐adjusted‐for‐height, social class, smoking status, alcohol consumption, calcium intake, physical activity, diabetes mellitus, and in women, years since menopause and estrogen replacement therapy. Although grip strength showed similar associations with bone size and strength in both sexes, these were substantially attenuated after similar adjustment. Consistent relationships between gait speed and bone structure were not seen. We conclude that although muscle size and grip strength are associated with bone size and strength, relationships between gait speed and bone structure and strength were not apparent in this cohort, supporting a role for the muscle‐bone unit. © 2013 American Society for Bone and Mineral Research  相似文献   

19.
Most measures of femoral neck strength derived using dual‐energy X‐ray absorptiometry or computed tomography (CT) assume the femoral neck is a cylinder with a single cortical thickness. We hypothesized that these simplifications introduce errors in estimating strength and that detailed analyses will identify new parameters that more accurately predict femoral neck strength. High‐resolution CT data were used to evaluate 457 cross‐sectional slices along the femoral neck of 12 postmortem specimens. Cortical morphology was measured in each cross‐section. The distribution of cortical thicknesses was evaluated to determine whether the mean or median better estimated central tendency. Finite‐element models were used to calculate the stresses in each cross‐section resulting from the peak hip joint forces created during a sideways fall. The relationship between cortical morphology and peak bone stress along the femoral neck was analyzed using multivariate regression analysis. In all cross‐sections, cortical thicknesses were non‐normally distributed and skewed toward smaller thicknesses (p < 0.0001). The central tendency of cortical thickness was best estimated by the median, not the mean. Stress increased as the median cortical thickness decreased along the femoral neck. The median, not mean, cortical thickness combined with anterior‐posterior diameter best predicted peak bone stress generated during a sideways fall (R2 = 0.66, p < 0.001). Heterogeneity in the structure of the femoral neck determines the diversity of its strength. The median cortical thickness best predicted peak femoral neck stress and is likely to be a relevant predictor of femoral neck fragility. © 2013 American Society for Bone and Mineral Research.  相似文献   

20.
This prospective study set out to determine factors that underlie changes in bone characteristics and physical performance during postmenopausal years. Of 101 peri-menopausal women that originally participated in a randomized, controlled exercise intervention trial, 80 attended the follow-up measurements 9 years later. At follow-up, bone mineral content (BMC) of the lumbar spine, femoral neck and distal radius, as well as the maximal isometric muscle strength of leg extensors and arm flexors, and maximal oxygen uptake, were measured with the same protocols and devices as at the baseline. In addition, the hip structure analysis (HSA) was used to assess changes in the structure and strength at the narrowest section of the femoral neck. Changes in physical fitness or bone characteristics were independent of the original exercise intervention. In general, physical fitness declined with age from 5% to 30% and bone characteristics from 3% to 10%, except for the lumbar spine BMC and the periosteal diameter of the femoral neck, where no changes were observed. The use of hormone therapy (HRT) was the major factor accounting for the maintenance of BMC. Use of HRT alone explained 44% of the variability in the change at the femoral neck BMC, but it was not associated with changes in physical fitness. Change in the body weight was the only factor associated with the change in physical fitness: better maintenance in body weight predicted better maintenance of physical fitness. In conclusion, our results indicate that HRT helps to maintain bone mass and structure, which are important factors in prevention of fragility fractures in later life. However, HRT had no effect on physical fitness, which is highly associated with the risk of falling, the most important cause of fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号