首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[14C]‐N‐(6‐Chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5B ), an IKK inhibitor, was synthesized from [14C]‐barium carbonate in two steps in an overall radiochemical yield of 41%. The intermediate, [carboxyl‐14C]‐2‐methylnicotinic acid, was prepared by the lithiation and carbonation of 3‐bromo‐2‐methylpyridine. [13C4,D3]‐N‐(6‐chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5C ) was synthesized from [1,2,3,4‐13C4]‐ethyl acetoacetate and [D4]‐methanol in six steps in an overall yield of 2%. [13C4]‐2‐methylnicotic acid, was prepared by condensation of [13C4]‐ethyl 3‐aminocrotonate and acrolein, followed by hydrolysis with lithium hydroxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
2‐[14C]‐N‐(6‐Chloro‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐3‐pyridinecarboxamide (9A , also referred to as [14C]‐PS‐1145) was synthesized from [14C]‐paraformaldehyde in five steps in an overall radiochemical yield of 15%. The key intermediate 1‐[14C]‐6‐chloro‐1,2,3,4‐tetrahydro‐β‐carboline was obtained by Pictet–Spengler cyclization of chlorotryptamine with [14C]‐paraformaldehyde. Similar reactions were conducted with tryptamine to address the generality of the methodology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
14C‐Labelled myosmine ([2′‐14C]‐3‐(1‐pyrrolin‐2‐yl)pyridine) was synthesized for autoradiography studies starting from [carboxyl‐14C]‐nicotinic acid by initial esterification of the latter in the presence of 1,1,1‐triethoxyethane. Without any purification the ethyl nicotinate formed was directly reacted with N‐vinyl‐2‐pyrrolidinone in the presence of sodium hydride, yielding 14C‐labelled myosmine. The product was purified by silica gel column chromatography. The radiochemical yield was 15% and the specific activity 55.2 mCi/mmol. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
14C‐Labelled N‐(2‐chloro‐3,4‐dimethoxybenzylideneamino)guanidinium acetate has been synthesized as a part of a four‐step procedure which involved decarboxylation of 2‐chloro‐3,4‐dimethoxybenzoic acid by Pb(OAc)4 to give 2‐chloro‐3,4‐dimethoxy‐1‐iodobenzene, followed by a selective lithiation at the iodine position and electrophilic substitution with N,N‐dimethylformamide [α14C] and final reaction with aminoguanidine bicarbonate. The specific activity was 59 mCi/mmol and the overall yield 49%. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This report describes an efficient method of synthesizing [guanido‐13C]‐γ‐hydroxyarginine HCl salt. Iodolactonization of N‐Boc‐protected allylglycine mainly provided the cis iodo compound 2. This was converted to an amine through azide 4. The amine 5 was reacted with N‐Boc‐protected [13C]thiourea to afford N‐Boc‐protected [13C]guanidine 6, which underwent base catalyzed ring opening. Removal of the N‐Boc group afforded [guanido‐13C]‐γ‐hydroxyarginine HCl salt 7 giving a 30% overall yield of the final product from N‐Boc protected allylglycine 1 in five steps. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Tetrazoles are a common heterocyclic functionality in many biologically active molecules. [1‐14C]2‐(1H‐Tetrazol‐5‐yl)acetic acid was required as an intermediate in the synthesis of a development candidate as part of a discovery phase program to complete metabolic profiling studies. [1‐14C]2‐(1H‐Tetrazol‐5‐yl)acetic acid was prepared in 4 steps overall and in 3 radiochemical steps from K14CN in an overall 32% radiochemical yield.  相似文献   

7.
Protected morphine‐6‐glucuronide was converted into morphine‐[N‐methyl‐14C]‐6‐glucuronide by a three‐step procedure. Methyl (3‐pivaloylmorphin‐6‐yl 2,3,4‐tri‐O‐isobutyryl‐β‐D‐glucopyranosid)uronate was N‐demethylated by treatment with 1‐chloroethyl chloroformate to afford protected normorphine‐6‐glucuronide as its hydrochloride salt. The normorphine‐6‐glucuronide derivative was alkylated with iodomethane‐[14C] in the presence of potassium carbonate to produce C‐14 labelled protected morphine‐6‐glucuronide. Finally, hydrolysis of the protecting groups using 5% sodium hydroxide solution gave morphine‐[N‐methyl‐14C]‐6‐β‐D‐glucuronide with a specific activity of 41.8 mCi mmol?1 and radiochemical purity of 99.2% (HPLC). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
N‐(1‐methyl‐2‐oxo‐5‐phenyl‐2,3‐dihydro‐1H‐benzo[e][1,4]diazepin‐3‐yl)‐benzamide‐[carboxyl‐14C] has been synthesized from benzonitrile‐[cyano‐14C]. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
An ascorbate analog labeled with iodine‐131, 6‐deoxy‐ 6‐[131I]iodo‐L ‐ascorbic acid was prepared for evaluation as an in vivo tracer of L ‐ascorbic acid. The no‐carrier‐added radiosynthesis was conducted by nucleophilic bromine–iodine exchange between the brominated precursor and sodium [131I]iodide in 2‐pentanone at 130–140°C. HPLC purification using a reverse‐phase column gave 6‐deoxy‐6‐[131I]iodo‐L ‐ascorbic acid in radiochemical yield of 36–60% with high radiochemical purity and satisfactory‐specific radioactivity in a total preparation time of 90 min. Biodistribution studies in fibrosarcoma‐bearing mice showed a high uptake in the adrenal glands, accompanied by low activity of tumor accumulation, accumulation properties similar to previous results obtained with 14C‐labeled ascorbic acid and 6‐deoxy‐6‐[18F]fluoro‐L ‐ascorbic acid, in spite of high level of deiodination. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper is reported a novel reaction scheme for the no‐carrier‐added submicromolar scale radiosynthesis of [S‐methyl‐14C]‐florfenicol that has been newly designed, developed and employed by us successfully. The [14C]‐product was obtained in an overall radiochemical yield of 30% based on [14C]‐methyl iodide taken for the reaction with a radiochemical purity of more than 96%. The specific activity of the product was ~50 mCi (1.85 GBq)/mmol. Chlorosulfonation of compound I was followed by sodium salt formation in situ and it was succeeded by the introduction of [14C]‐methyl group by coupling with [14C]‐CH3I. Subsequently, the oxazolidin‐2‐one protecting group was opened up by a reaction with sulfuric acid in dioxane and later, the amino group was dichloroacetylated with methyl‐2,2‐dichloroacetate in triethylamine to obtain [S‐methyl‐14C]‐florfenicol.  相似文献   

11.
5,11‐Dihydro‐11‐ethyl‐5‐methyl‐8‐{2‐{(1‐oxido‐4‐quinolinyl)oxy}ethyl}‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one, (1), labeled with carbon‐14 in the quinoline–benzene ring, in one of the pyridine rings of the dipyridodiazepinone tricyclic moiety, and in the side chain, was prepared in three different syntheses with specific activities ranging from 44 to 47 mCi/mmol (1.63–1.75 GBq/mmol). In the first synthesis, 5,11‐dihydro‐11‐ethyl‐8‐(2‐hydroxyethyl)‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (2) was coupled to 4‐hydroxyquinoline, [benzene‐14C(U)]‐, using Mitsunobu's reaction conditions, followed by the oxidation of the quinoline nitrogen with 3chloroperoxybenzoic acid to give ([14C]‐(1a)) in 43% radiochemical yield. Second, 3‐amino‐2‐chloropyridine, [2,6‐14C]‐, was used to prepare 8‐bromo‐5,11‐dihydro‐11‐ethyl‐5‐methyl‐6H‐dipyrido[3,2‐b:2′,3′‐e][1,4]diazepin‐6‐one (8), and then Stille coupled to allyl(tributyl)tin followed by ozonolysis of the terminal double bond and in situ reduction of the resulting aldehyde to alcohol (10). Mitsunobu etherification and oxidation as seen before gave ([14C]‐(1b)) in eight steps and in 11% radiochemical yield. Finally, carbon‐14 potassium cyanide was used to prepare isopropyl cyanoacetate (12), which was used to transform bromide (8) to labeled aryl acetic acid (13) under palladium catalysis. Trihydroborane reduction of the acid gave alcohol (14) labeled in the side chain, which was used as described above to prepare ([14C]‐(1c)) in 4.3% radiochemical yield. The radiochemical purities of these compounds were determined by radio‐HPLC and radio‐TLC to be more than 98%. To prepare [13C6]‐(1), [13C6]‐4‐hydroxyquinoline was prepared from [13C6]‐aniline and then coupled to (2) and oxidized as seen before. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A model palladium‐mediated carbonylation reaction synthesizing N‐benzylbenzamide from iodobenzene and benzylamine was used to investigate the potential of four N‐heterocyclic carbenes (N,N′‐bis(diisopropylphenyl)‐4,5‐dihydroimidazolinium chloride ( I ), N,N′‐bis(1‐mesityl)‐4,5‐dihydroimidazolinium chloride ( II ), N,N′‐bis(1‐mesityl)imidazolium chloride ( III ) and N,N′‐bis(1‐adamantyl)imidazolium chloride ( IV )) to act as supporting ligands in combination with Pd2(dba)3. Their activities were compared with other Pd‐diphosphine complexes after reaction times of 10 and 120 min. Pd2(dba)3 and III were the best performing after 10 min reaction (20%) and was used to synthesize radiolabelled [11C]N‐benzylbenzamide in good radiochemical yield (55%) and excellent radiochemical purity (99%). A Cu(Tp*) complex was used to trap the typically unreactive and insoluble [11C]CO which was then released and reacted via the Pd‐mediated carbonylation process. Potentially useful side products [11C]N,N′‐dibenzylurea and [11C]benzoic acid were also observed. Increased amounts of [11C]N,N′‐dibenzylurea were yielded when PdCl2 was the Pd precursor. Reduced yields of [11C]benzoic acid and therefore improved RCP were seen for III /Pd2(dba)3 over commonly used dppp/Pd2(dba)3 making it more favourable in this case. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The clinical advantages of no‐carrier‐added (n.c.a) radioiodinated meta‐iodobenzylguanidine ([*I]mIBG) over its carrier‐added (c.a.) analogue have previously been reported. A large‐scale synthesis of n.c.a. [123I]mIBG was therefore investigated in this study, using a slightly adapted literature method. Two bis (t‐butyloxycarbonyl)‐protected (bis‐Boc) stannylated benzylguanidine precursors were prepared. The bis‐Boc‐trimethylstannyl precursor was used to optimize radioiodination conditions. N‐chlorosuccinimide (NCS) was used as oxidant. An HPLC method was developed to monitor radioiodination and de‐protection steps. Amounts of 200 g precursor and 2000 g NCS resulted in HPLC yields of Boc‐protected radioiodinated compounds in excess of 90%. De‐protection was carried out with trifluoroacetic acid at 110°C. A robust solid phase extraction method was developed to purify reaction mixtures. Radiochemical yields at radioactivity levels ranging between 1900 and 3280 MBq were 85±2.2% (n=4). A twice scaled up reaction at 5340 MBq gave a similar yield. Radiochemical purities were in excess of 98% and the specific activity estimated at approximately 1 TBq.µmol?1. Yields obtained from an HPLC‐purified bis‐Boc‐tributylstannyl precursor were generally lower and ranged from 61 to 81%. Results obtained in this study suggest that n.c.a [123I]mIBG could be synthesized on a GBq scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The antimalarial [quinoline‐3‐14C]‐SSR97193 (ferroquine) ( 8 ), an analogue of chloroquine (CQ) ( 1 ), was synthesized from [2‐14C]‐malonic acid with an overall radiochemical yield of 15%. The synthetic route via [14C]‐Meldrum's acid ( 9 ) was designed to minimize the intermediacy of radiolabelled volatiles. This synthesis involves a four‐step route to labelled 4,7‐dichloroquinoline, which is the key intermediate for the synthesis of many analogues of CQ. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A novel series of iodinated indomethacin derivatives was synthesized, and evaluated as selective inhibitors of COX‐2. Two candidate compounds N‐(p‐iodobenzyl)‐2‐(1‐(p‐chlorobenzoyl)‐5‐methoxy‐2‐methyl‐1H‐indol‐3‐yl)acetamide (3) and 1‐(p‐iodobenzyl)‐5‐methoxy‐2‐methyl‐3‐indoleacetic acid (9) possessed optimum properties suitable for potential in vivo imaging. Arylstannane precursors for radioiododestannylation were synthesized in 70–85% yield from the iodo compounds by reaction with hexabutylditin and tetrakis(triphenylphosphine)palladium(0) in refluxing dioxane. Radioiododestannylation was conducted by reaction with carrier‐added Na[123I] in the presence of Chloramine‐T in an EtOAc/H2O binary system under acidic conditions (pH 3.5), allowing direct isolation of the labeled products by separation of the organic phase. Radioiodinated products [123I]3 and [123I]9 were recovered in a decay‐corrected radiochemical yield of 86–87% and radiochemical purity of 98–99%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A method for the enzymatic synthesis of [1‐14C‐N‐acetyl, P18O2] cytidine monophosphate neuraminic acid (CMP‐NeuAc) is described. Central to the synthesis of [1‐14C‐N‐acetyl, P18O2]CMP‐NeuAc was the enzymatic preparation of [γ‐P18O3]ATP for use in a reaction with uridine kinase and cytidine to provide 5′‐[P18O3]CMP. The [1‐14C‐N‐acetyl, P18O2]CMP‐NeuAc isotopomer was then synthesized from a reaction involving nucleoside monophosphate kinase, pyruvate kinase and CMP‐NeuAc synthetase. The isolated reaction yield was 35%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Radiolabelled drug lead candidate leukocyte function‐associated antigen 1 antagonist [14C]spyrocyclic hydantoin: 5‐(((5S,9R)‐9‐(4‐[14C]‐cyanophenyl)‐3‐(3,5‐dichlorophenyl)‐1‐methyl‐2,4‐dioxo‐1,3,7‐triazaspiro[4.4]nonan‐7‐yl)methyl)thiophene‐3‐carboxylic acid, 12 , was conveniently prepared in three radiochemical steps from (5S,9R)‐tert‐butyl 9‐(4‐bromophenyl)‐3‐(3,5‐dichlorophenyl)‐1‐methyl‐2,4‐dioxo‐1,3,7‐triazaspiro[4.4]nonane‐7‐carboxylate 9 . The radiochemical yield of 12 was 28.5% from the resolved bromide 9 . The preparation of the racemic spyrocyclic hydantoin 3 was obtained via a [3+2]dipolar cycloaddition reaction between 2 and N‐benzyl‐N‐(methoxymethyl)trimethylsilylmethylamine. The introduction of [14C] cyanide was completed via a palladium (0) catalyzed reaction by the addition of Zn(14CN)2 to aryl bromide 9 . The radiochemical and chiral purities of 12 determined by high‐performance liquid chromatography were 98.7 and 99.7%, respectively. The specific activity of 12 was 87.5 µCi/mg (48.6 mCi/mmol). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
[13CD3]‐TAK‐459 (1A), an HSP90 inhibitor, was synthesized from [13CD3]‐sodium methoxide in three steps in an overall yield of 29%. The key intermediate [13CD3]‐2‐methoxy‐6‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine was synthesized in two steps from 2,6‐dibromopyridine and stable isotope‐labeled sodium methoxide. [14C]‐TAK‐459 (1B) was synthesized from [14C(U)]‐guanidine hydrochloride in five steps in an overall radiochemical yield of 5.4%. The key intermediate, [14C]‐(R)‐2‐amino‐7‐(2‐bromo‐4‐fluorophenyl)‐4‐methyl‐7,8‐dihydropyrido[4,3‐d]pyrimidin‐5(6H)‐one, was prepared by microwave‐assisted condensation.  相似文献   

19.
PI‐88, uniformly labelled with [14C] was prepared by incorporating D ‐[14C]glucose into the fermentation of Pichia (Hansenula) holstii NRRL Y‐2448 under controlled conditions to produce [14C]‐labelled extracellular phosphomannan. Subsequent acid catalyzed hydrolysis gave the [14C]‐labelled oligosaccharide phosphate fraction which was sulfonated with excess sulfur trioxide pyridine complex to give [14C]PI‐88. [35S]‐labelled PI‐88 was similarly prepared by the sulfonation of unlabelled oligosaccharide phosphate fraction with [35S] sulfur trioxide pyridine complex. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
An efficient synthesis of [1‐13C]‐para‐xylene ( 1a ) and [2‐13C]‐para‐xylene ( 1b ) is described. The incorporation of the label has been achieved by cyclocondensation of suitable 1,5‐bis(bromomagnesio)alkanes with either ethyl [1‐13C]acetate or ethyl [13C]formate which gave [ring13C]‐labelled dimethylcyclohexanols. Dehydration of these alcohols followed by dehydrogenation of the intermediate dimethylcyclohexenes furnished the title compounds in 32 and 40% overall yield, respectively. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号