首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diadenosine polyphosphates have been shown to influence renal perfusion pressure. As mesangial cells may contribute to these effects we investigated the effects of diadenosine triphosphate (Ap3A), diadenosine tetraphosphate (Ap4A), diadenosine pentaphosphate (Ap5A) and diadenosine hexaphosphate (Ap6A) on membrane voltage (V m) and membrane conductance (g m) in mesangial cells (MC) of normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats in primary and long-term culture. We applied the patch-clamp technique in the fast-whole-cell configuration to measure V m and g m. To compare the effects of diadenosine polyphosphates with hitherto known agonists we also tested adenosine 5-triphosphate (ATP) and angiotensin II (Ang II). As there was no significant difference in the V m values in MC of WKY (–42±1 mV, n=70) and SHR rats (–45±2 mV, n=99) as well as in the agonist-induced changes of V m, all data were pooled. The V m of all the cells was –44±1 mV (n=169) and g m was 15.9±1.8 nS (n=141). Ion-exchange experiments showed the presence of a K+ and a non-selective cation conductance in resting MC whereas a Cl conductance or a Na+selective conductance could not be observed. Ap3A, Ap4A, Ap5A, AP6A and ATP each at a concentration of 5 mol/l, led to a significant depolarization of V m by 5±2 mV (n=14), 7±1 mV (n=25), 3±1 mV (n=23), 2±1 mV (n=16), and 14±2 mV (n=23), respectively. For Ap4A, the most potent diadenosine polyphosphate, we determined the half-maximally effective concentration (EC 50) as 6 mol/l (n=5–25), for ATP as 2 mol/l (n=9–37), and for Ang II as 8 nmol/l (n=6–18). Ap4A 100 mol/l increased g m significantly by 55±20% (n=16), 100 mol/l ATP by 135±60% (n=18). The diadenosine polyphosphates examined were able to depolarize V m (Ang II >ATP> Ap4A>Ap3A>Ap5A>Ap6A) by activation of a Cl conductance and a non-selective cation conductance, as do ATP or Ang II.  相似文献   

2.
ATP and adenosine(5)tetraphospho(5)adenosine (Ap4A), released from adrenal chromaffin cells, are potent stimulators of endothelial cell function. Using single-cell fura-2 fluorescence recording techniques to measure free cytosolic Ca2+ concentration ([Ca2+]i), we have investigated the role of purinoceptor subtypes in the activation of cocultured chromaffin and endothelial cells. ATP evoked concentration-dependent [Ca2+]i rises (EC50=3.8 M) in a subpopulation of chromaffin cells. Both ATP-sensitive and -insensitive cells were potently activated by nicotine, bradykinin and muscarine. Reducing extracellular free Ca2+ concentration to around 100 nM suppressed the [Ca2+]i transient evoked by ATP but not the [Ca2+]i response to bradykinin. ATP-sensitive chromaffin cells were also potently stimulated by 2-methylthioadenosine triphosphate (2MeSATP; EC50= 12.5 M) and UTP, but did not respond to either adenosine 5-[-thio]diphosphate (ADP[S]), a P2Y receptor agonist, adenosine 5-[,-methylene]triphosphate (pp[CH2]pA), a P2X agonist or AMP. Adrenal endothelial cells displayed concentration-dependent [Ca2+]i responses when stimulated with ATP (EC50=0.86 M), UTP (EC50=1.6 M) and 2MeSATP (EC50= 0.38 M). 2MeSATP behaved as a partial agonist. Ap4A and ADP[S] also raised the [Ca2+]i in endothelial cells, whereas AMP and pp[CH2]pA were ineffective. Lowering extracellular free Ca2+ to around 100 nM did not affect the peak ATP-evoked [Ca2+]i rise in these cells. It is concluded that different purinoceptor subtypes are heterogeneously distributed among the major cell types of the adrenal medulla. An intracellular Ca2+-releasing P2U-type purinoceptor is specifically localized to adrenal endothelial cells, while a subpopulation of chromaffin cells expresses a non-P2X, non-P2Y subtype exclusively coupled to Ca2+ influx.  相似文献   

3.
The pancreatic duct has been regarded as a typical cAMP-regulated epithelium, and our knowledge about its Ca2+ homeostasis is limited. Hence, we studied the regulation of intracellular calcium, [Ca2+]i, in perfused rat pancreatic ducts using the Ca2+-sensitive probe fura-2. In some experiments we also measured the basolateral membrane voltage, V bl, of individual cells. The resting basal [Ca2+]i was relatively high, corresponding to 263±28 nmol/l, and it decreased rapidly to 106±28 nmol/l after removal of Ca2+ from the bathing medium (n=31). Carbachol increased [Ca2+]i in a concentration-dependent manner. At 10 mol/l the fura-2 fluorescence ratio increased by 0.49±0.06 (n=24), corresponding to an increase in [Ca2+]i by 111±15 nmol/l (n=17). ATP, added to the basolateral side at 0.1 mmol/l and 1 mmol/l, increased the fluorescence ratio by 0.67±0.06 and 1.01±14 (n=46; 12), corresponding to a [Ca2+]i increase of 136±22 nmol/l and 294±73 nmol/l respectively (n= 15; 10). Microelectrode measurements showed that ATP (0.1 mmol/l) hyperpolarized V bl from –62±3 mV to-70±3 mV, an effect which was in some cases only transient (n=7). This effect of ATP was different from that of carbachol, which depolarized Vbl. Applied together with secretin, ATP delayed the secretin-induced depolarization and prolonged the initial hyperpolarization of V bl (n=4). Several other putative agonists of pancreatic HCO 3 secretion were also tested for their effects on [Ca2+]i. Bombesin (10 nmol/l) increased the fura-2 fluorescence ratio by 0.24±0.04 (n=8), neurotensin (10 nmol/l) by 0.25±0.04 (n=6), substance P (0.1 mol/l) by 0.22±0.06 (n=6), and cholecystokinin (10 nmol/l) by 0.14±0.03 (n=7). Taken together, our studies show that Ca2+ homeostasis plays a role in pancreatic ducts. The most important finding is that carbachol and ATP markedly increase [Ca2+]i, but their different electrophysiological responses indicate that intracellular signalling pathways may differ.Preliminary reports of the present study have been presented at the 72nd Meeting of the German Physiological Society, March 1993  相似文献   

4.
Effects of 5-hydroxytryptamine (5-HT) and forskolin on intracellular free calcium concentration ([Ca2+]i) were studied in suspensions of fura-2 loaded smooth-muscle cells from the anterior byssus retractor catch muscle ofMytilus edulis. The successive addition of 5 mM carbachol (CCh) and 100 mM KCl to the suspension evoked a transient elevation of [Ca2+]i from the resting value of 124±2.7 nM (mean ± SE,n=18) to 300–400 nM, which was associated with contraction. The change in [Ca2+]i induced CCh was concentration-dependent with the EC50 of 10–5 M. The resting [Ca2+]i was unaffected by 10 M 5-HT. The change in [Ca2+]i induced by 5 mM CCh was suppressed by 5-HT from 167±14.0 (n=11) to 124±14.9 (n=8) nM whereas that induced by 100 mM KCl was enhanced from 321±31.9 to 405±17.6 nM (n=8). 5-HT applied during the decaying phase of the CCh response caused a rapid decline in [Ca2+]i. In both the responses to CCh and KCl, the falling phase was accelerated by 5-HT. 10 M forskolin, a potent activator of adenylate cyclase, mimicked the effects of 5-HT as did a membrane-permeant cyclic AMP analogue, 8-parachlorophenylthio cyclic AMP (cpt-cAMP). Application of 100 M cpt-cAMP partially suppressed the Ca2+ i response to CCh and enhanced that to KCl.d-Tubocurarine (500 M) added during the decaying phase of the response induced by 100 M CCh, caused a rapid decline in [Ca2+]i similar to that caused by both 5-HT and forskolin. In essentially Ca2+-free sea water, or in the presence of 10 M D600 in seawater containing 4 mM, Ca2+, the response to CCh was partially suppressed, whereas that to KCl was completely abolished, demonstrating a CCh-induced release of intracellularly stored Ca2+. The remaining component of the response to CCh, in either Ca2+-free sea water or in the presence of D600, was abolished by both 5-HT and forskolin. The results suggest that 5-HT has multiple effects on [Ca2+]i in the ABRM, and implicate cyclic AMP in this effect, and that one of the mechanisms underlying these responses is the inhibition of an agonist-induced release of stored Ca2+. In addition, that Ca2+ i is at, or close to resting values during the catch state.  相似文献   

5.
The effect of antidiuretic hormone ([Arg]vasopressin, ADH) on intracellular calcium activity [Ca2+]i of isolated perfused rabbit cortical thick ascending limb (cTAL) segments was investigated with the calcium fluorescent dye fura-2. The fluorescence emission ratio at 500–530 nm (R) was monitored as a measure of [Ca2+]i after excitation at 335 nm and 380 nm. In addition the transepithelial potential difference (PD te) and transepithelial resistance (R te) of the tubule were measured simultaneously. After addition of ADH (1–4 nmol/l) to the basolateral side of the cTAL R increased rapidly, but transiently, from 0.84±0.05 to 1.36±0.08 (n = 46). Subsequently, within 7–12 min R fell to control values even in the continued presence of ADH. The increase in R evoked by the ADH application corresponded to a rise of [Ca2+]i from a basal level of 155±23 nmol/l [Ca2+]i up to 429±53 nmol/l [Ca2+]i at the peak of the transient, as estimated by intra- or extracellular calibration procedures. The electrical parameters (PD te and R te) of the tubules were not changed by ADH. The ADH-induced Ca2+ transient was dependent on the presence of Ca2+ on the basolateral side, whereas luminal Ca2+ had no effect. d(CH2)5[Tyr(Me)2]2,Arg8vasopressin, a V1 antagonist (Manning compound, 10 nmol/l), blocked the ADH effect on [Ca2+]i completely (n = 5). The V2 agonist 1-desamino-[d-Arg8]vasopressin (10 nmol/l, n=4), and the cAMP analogues, dibutyryl-cAMP (400 mol/l, n = 4), 8-(4-chlorophenylthio)-cAMP (100 mol/l, n = 1) or 8-bromo-cAMP (200 mol/1, n = 4) had no influence on [Ca2+]i. The ADH-induced [Ca2+]i increase was not sensitive to the calcium-channel blockers nifedipine and verapamil (100 mol/l, n = 4). We conclude that ADH acts via V1 receptors to increase cytosolic calcium activity transiently in rabbit cortical thick ascending limb segments, possibly by an initial Ca2+ release from intracellular stores and by further Ca2+ influx through Ca2+ channels in the basolateral membrane. These channels are insensitive to L-type Ca2+ channel blockers, e.g. nifedipine and verapamil.Supported by DFG GR 480/10  相似文献   

6.
The free intracellular calcium concentration, [Ca2+]i, was studied in single myotubes using the fluorescent Ca2+ indicator fura-2. Myotubes cultured from satellite cells of small muscle specimens from Duchenne muscular dystrophy (DMD) patients were compared with human control myotubes and with myotubes cultured from MDX and control mouse muscle satellite cells. The resting [Ca2+]i levels in DMD and control myotubes were not significantly different, i. e. 104 ±26 nM (mean ± SD, n=190 cells from eight DMD patients) compared with 97±25 nM (175/seven controls) and were not significantly lower than the corresponding murine values (154±33 nM, n=135 MDX myotubes; 159±34 nM, n=135 controls). All myotubes reacted to 10 M acetylcholine or 40 mM KCl with fast transient increases of [Ca2+]i. After application of a hyposmotic (130 mOsm) solution, [Ca2+]i was increased 1.5- to 3-fold within 2–3 min, the DMD myotubes tending to stronger reactions (significantly higher [Ca2+]i in 2 out of 6 cases). The response was usually transient, [Ca2+]i decreasing to the initial level within 10 min. Gadolinium (50 M) reduced the response by 50%–70%, indicating that the osmotic shock increased Ca2+ influx. During exposure to high (15 mM) [Ca2+]e, [Ca2+]i of DMD and control cells was 1.5- to 2-fold higher. Adult muscle fibres from MDX mice and controls showed identical Ca2+ resting levels (n=45 fibres from three mice in each case), but did not respond to decreased external osmolarity with a change in [Ca2+]i. The results indicate that lack of dystrophin in muscle fibres does not necessarily lead to increased [Ca2+]i. It is suggested that increased [Ca2+]i is probably a secondary consequence of fibre damage.  相似文献   

7.
Ca2+ channel blockers (CCB) have been shown to be protective against ischaemic damage of the kidney, suggesting an important role for intracellular Ca2+ ([Ca2+]i) in generating cell damage. To delineate the mechanism behind this protective effect, we studied [Ca2+]i in cultured proximal tubule (PT) cells during anoxia in the absence of glycolysis and the effect of methoxyverapamil (D600) and felodipine on [Ca2+]i during anoxia. A method was developed whereby [Ca2+]i in cultured PT cells could be measured continuously with a fura-2 imaging technique during anoxic periods up to 60 min. Complete absence of O2 was realised by inclusion of a mixture of oxygenases in an anoxic chamber. [Ca2+]i in PT cells started to rise after 10 min of anoxia and reached maximal levels at 30 min, which remained stable up to 60 min. The onset of this increase and the maximal levels reached varied markedly among individual cells. The mean values for normoxic and anoxic [Ca2+]i were 118±2 (n=98) and 662±22 (n=160) nM, respectively. D600 (1 M), but not felodipine (10 M), significantly reduced basal [Ca2+]i in normoxic incubations. During anoxia 1 M and 100 M D 600 significantly decreased anoxic [Ca2+]i levels by 22 and 63% respectively. Felodipine at 10 M was as effective as 1 M D600. Removal of extracellular Ca2+ and addition of 0.1 mM La3+ completely abolished anoxia-induced increases in [Ca2+]i. We conclude that anoxia induces increases in [Ca2+]i in rabbit PT cells in primary culture, which results from Ca2+ influx. Since this Ca2+ influx is partially inhibited by low doses of CCBs, Ltype Ca2+ channels may be involved.  相似文献   

8.
Calcium transport systems of isolated ileal epithelial cells were investigated. The concentration of cytosolic free calcium ions, [Ca2+]i, was monitored with a fluorescent Ca2+ dye, fura-2. The fluorescence intensity ratio (I 340/I 380) was used as an index of [Ca2+]i. [Ca2+]i of the cells suspended in the nominally Ca2+-free solution was estimated at 52±3 nM. Ca2+ uptake was followed for as long as 5 min in the presence of 100–1000 M added CaCl2. Most of the experiments were performed at 200 M CaCl2. The Ca2+ uptake was abolished by 0.8 mM Ni2+ and 50 M Mn2+ and partitally antagonized by 50 M verapamil and 50 M diltiazem but not affected by 20 M nifedipine. The Ca2+ entry was reduced by increasing concentrations of extracellular K+ in the presence of valinomycin, suggesting a voltage-dependent nature of the uptake. On the other hand, the Ca2+ transport doubled in the presence of Bay K8644 (8 M), a Ca2+ channel agonist. The Bay-K-8644-induced uptake was inhibited by either 10 M nifedipine, 10 M verapamil or 10 M diltiazem and was relatively independent of extracellular K+ concentration. These results suggest that there are at least two distinct Ca2+ transport systems in the rat ileal epithelial cells, one resistant to organic Ca2+ channel blockers but relatively sensitive to membrane potential (basal uptake) and another inducible by Bay K 8644 and sensitive to the channel blockers but relatively independent of membrane potential.  相似文献   

9.
Effects of exogenous adenosine 5-triphosphate (ATP) were studied by measurements of intracellular Ca2+ concentration ([Ca2+]i) and membrane currents in myocytes freshly isolated from the human saphenous vein. At a holding potential of –60 mV, ATP (10 M) elicited a transient inward current and increased [Ca2+]i. These effects of ATP were inhibited by ,-methylene adenosine 5-triphosphate (AMPCPP, 10 M). The ATP-gated current corresponded to a non-selective cation conductance allowing Ca2+ entry. The ATP-induced [Ca2+]i rise was abolished in Ca2+-free solution and was reduced to 30.1±5.5% (n=14) of the control response when ATP was applied immediately after caffeine, and to 23.7±3.8% (n=11) in the presence of thapsigargin. The Ca2+-induced Ca2+ release blocker tetracaine inhibited the rise in [Ca2+]i induced by both caffeine and ATP, with apparent inhibitory constants of 70 M and 100 M, respectively. Of the ATP-induced increase in [Ca2+]i 29.3±3.9% (n=8) was tetracaine resistant. It is concluded that the effects of ATP in human saphenous vein myocytes are only mediated by activation of P2x receptor channels. The ATP-induced [Ca2+]i rise is due to both Ca2+ entry and Ca2+ release activated by Ca2+ ions that enter the cell through P2x receptor channels.  相似文献   

10.
We have measured the effects of thapsigargin, a specific inhibitor of endoplasmic Ca2+-adenosine 5-triphosphatase (Ca2+-ATPase), on membrane currents and on the intracellular Ca2+ concentration ([Ca2+]i) in single endothelial cells from the human umbilical cord vein. Currents were recorded by means of the patchclamp technique in the whole-cell mode and [Ca2+]i was measured using Fura II. Application of thapsigargin at concentrations between 0.2 and 2 mol/l induced a slow increase in [Ca2+]i to a peak value of 400±110 nmol/l above a resting level of 120±35 nmol/l, and then slowly declined to a new steady-state level of 315±90 nmol/l (n=33). The thapsigargin-induced increase in [Ca2+]i depended on the extracellular Ca2+ concentration ([Ca2+]o: it declined after removal of extracellular Ca2+, but increased again when [Ca2+]o was augmented, indicating that the response depends on a transmembrane influx of Ca2+ ions. The peak amplitude of the histamine-induced Ca2+ transient was reduced in the presence of thapsigargin. This reduction was more pronounced when histamine was applied at the peak of the increase in [Ca2+]i induced by thapsigargin than during the rising phase of the changes in [Ca2+]i. The decline of the Ca2+ transient induced by histamine after washing out the agonist was also affected by thapsigargin. Before application of thapsigargin, this decline could be described by a single exponential with a time constant equal to 24.5±5 s (n=7). In the presence of thapsigargin, the decline was much slower (n =8 cells), although in four cells a fraction of about 23% still exchanged with a similar fast value of 29.4±4 s. Thapsigargin also induced a slowly developing inward current in endothelial cells at a holding potential of –40 mV. Voltage ramps applied before and during the development of this current indicated that a non-selective cation channel with a reversal potential near 0 mV was activated. In contrast with the Ca2+ transients, these currents did not show a declining phase. These results indicate that inhibition of the endoplasmic Ca2+ pump in endothelial cells increases [Ca2+]i. The tonic component of this increase might be partly due to opening of non-selective Ca2+-permeable cation channels activated by depletion of intracellular stores.  相似文献   

11.
The effects of diethylstilbestrol (DES) on steady-state intracellular calcium concentration ([Ca2+]i) and resting Ca2+ influx were examined in primary cultures of bovine lens epithelial cells using conventional fluorometric techniques (Fura-2). At low concentrations (10 M), DES usually induced relatively rapid increases in [Ca2+]i that occurred over an interval of 10–50 s and that persisted for several minutes in the continued presence of the drug. In about 10% of the cells, cyclic oscillations in [Ca2+]i were seen after adding 10 M DES. At higher concentrations (100 M), the drug induced more prolonged increases in [Ca2+]i lasting several minutes. DES did not affect Mn2+ quench determinations of resting Ca2+ influx, and neither 100 M GdCl3, which blocked resting Ca2+ influx, nor low [Ca2+]o solutions substantially diminished the influence of DES on [Ca2+]i. Pretreatment of cells with the smooth endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors cyclopiazonic acid (CPA) or thapsigargin completely abolished the effect of 10 M DES on [Ca2+]i, while the IP3 receptor blocker 2-aminoethoxydiphenyl borane (2-APB) had no effect. These results indicate that DES releases CPA-sensitive stores of intracellular Ca2+, perhaps by inhibiting SERCA-dependent Ca2+ sequestration.  相似文献   

12.
 Diadenosine tri-, tetra-, penta-, and hexaphosphate (Ap3A, Ap4A, Ap5A and Ap6A) have been described as having various effects on vascular tone depending on the number of phosphate groups. This study examined the effect of diadenosine polyphosphates on Ca2+ ATPase activity. The activity of the enzyme was measured spectrophotometrically as the difference in hydrolysis of ATP in the presence and absence of Ca2+ with various concentrations of ATP and diadenosine polyphosphates. The diadenosine polyphosphates increased the activity of the Ca2+ ATPase. The effect tended to be stronger with Ap5A and Ap6A than with Ap3A and Ap4A in the order of potency: Ap3A≈AP4A<Ap5A≈AP6A. The stimulatory effect of diadenosine polyphosphates was not competitive with that of ATP, suggesting an allosteric activation of Ca2+ ATPase by diadenosine polyphosphates. This effect may be physiologically relevant for limiting the increase in cytosolic free Ca2+ concentration elicited by diadenosine polyphosphates by receptor activation and modulating Ca2+ ATPase function under resting conditions. Received: 24 January 1997 / Accepted: 9 May 1997  相似文献   

13.
Cytoplasmic calcium changes and calcium influx evoked by adenosine triphosphate (ATP) were investigated in primary cultures of rabbit proximal convoluted tubule cells. Extracellular ATP (50 M) induced a biphasic increase of [Ca2+]i measured with the calcium probe fura-2. In the early phase, the mobilization of intracellular pools resulted in a transient increase of [Ca2+]i from 106±11 nM (n=36) to 1059±115% (n=29) of the resting level within 10 s. In the presence of external calcium, [Ca2+]i then decreased within 3 min to a sustained level (398±38%,n=8). Measurements of fura-2 quenching by external manganese revealed that this phase was the result of an increased Ca2+ uptake, blocked by lanthanum (10 M) and verapamil (100 M) but not by the nifedipin (25 M). Internal calcium store depletion by ATP induced an increased calcium influx through lanthanum- and verapamil-sensitive, nifedipininsensitive calcium channels, located on the apical membrane of the cells. As indicated by86Rb+ efflux measurements, ATP activated a potassium efflux that was blocked by barium andLeiurus quinquestriatus hebraeus (LQH) venom (containing charybdotoxin) indicating the involvement of Ca2+-sensitive K+ channels. Moreover, in the presence of the LQH venom, the internal calcium stores were not replenished after being depleted by ATP. Our results indicate that an ATPevoked hyperpolarization of the plasma membrane leads to increased Ca2+ influx, which facilitates the replenishment of the internal stores.  相似文献   

14.
Isolated smooth muscle cells (SMC) from guinea pig taenia coli were employed. Suspension of cells were externally loaded in saline with the fluorescent calcium indicators quin-2/AM or fura-2/AM at 20–40 M or 4 M respectively, resulting in an estimated intracellular concentration of 100–200 M for quin-2 or 10–20 M fura-2 (free acid). On addition of 100 M carbachol or high K o + (80 mM) depolarization, fura-2 loaded cells contracted (104±47 m,n=121 rest: 39±13 m,n=59 contracted) identically to control (103±35 m,n=232 rest: 39±16 m,n=89 contracted) cells, whereas quin-2 loaded cells were unresponsive to these protocols and there was no significant length change. The Ca i 2+ of fura-2 loaded cells was 100±18 nM (mean±SD,n=15) and was not significantly different from quin-2 loaded cells 107±26 nM (n=13). Treatment of fura-2 loaded cells with 100 M ouabain saline for 10–60 min progressively elevated the Ca i 2+ to a mean of 266±83 nM (n=15). Reduction of Na p + (96% Li+ replaced) significantly increased Ca i 2+ to 317±77 nM (n=8). After pretreatment with ouabain (100 M), Na o + replacement (Li+) increased Ca i 2+ at a significantly faster rate [3.6 nM min–1 (control) cf. 19.8 nM min–1 (ouabain)].  相似文献   

15.
The variations of intracellular free calcium concentration ([Ca2+]i) were recorded on-line from guinea-pig isolated vestibular sensory cells using a fura-2 fast fluorescent photometry system, during mechanical displacements of the hair bundle. Repetitive displacements of the hair bundle towards the kinocilium (positive stimulation 7°, 300 ms, 2Hz for 10 s), revealed [Ca2+]i variations detectable only in the cuticular plate. [Ca2+]i increased from 105 to 145 nM. Single mechanical displacements of the hair bundle (7°, 200 ms, 0.5Hz) evoked increases of [Ca2+]ifrom 50±23 nM to 139±79 (n=12). In the opposite direction, the mechanical stimulations (8°, 400ms, 0.5Hz) evoked a decrease of [Ca2+]i from 68±17 nM to 37±12 nM (n= 8). The variations of [Ca2+]i detected in the cuticular plate during positive displacements of the hair bundle were reversibly abolished in the presence of 100 M gentamicin and they could not be evoked in 0.1 mM calcium in the external medium. From these experiments, it has been concluded that the [Ca2+]i variations recorded in the cuticular plate were due to a limited entry of calcium ions through transduction channels localized in the hair bundle. The typical kinetics of variations of [Ca2+]i evoked during positive displacements of the hair bundle should account for the presence of strong calcium regulation systems in the hair bundle and cuticular plate.  相似文献   

16.
The outer hair cell isolated from the guinea-pig was superfused in vitro and the cytosolic calcium concentration ([Ca2+]i) and sodium concentration ([Na+]i) were measured using fluorescence indicators. Under the resting condition, [Ca2+]i and [Na+]i were 91±9 nM (n = 51) and 110±5 mM (n = 12), respectively. Removal of external Na+ by replacing with N-methyl-D-glucamine (NMDG+) increased [Ca2+]i by 270±79% (n = 27) and decreased [Na+]i by 23±4 mM (n = 6). Both changes in [Ca2+]i and [Na+]i were totally reversible on returning external Na+ to the initial value and were inhibited by addition of 0.1 mM La3+ or 100 M amiloride 5-(N,N-dimethyl) hydrochloride. Elevation of external Ca2+ ions to 20 mM reversibly decreased [Na+]i by 8±6 mM (n = 5). Moreover, the chelation of the intracellular Ca2+ with 1,2-bis (2-aminophenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) exerted an inhibitory action on the NMDG+-induced reduction in [Na+]i. Exposure to 5 mM NaCN for 2 min significantly and reversibly increased [Ca2+]i by 290±37% (n = 5), but did not affect the [Ca2+]i elevation induced by the NMDG+ solution. The rise in [Ca2+]i induced by the NMDG+ solution was not enhanced by ouabain pretreatment. Addition of ouabain did not alter the [Na+]i. The present results are best explained by the presence of an Na+-Ca2+ exchanger in cell membrane and indicate that the activity of Na+/K+ pump is poor in outer hair cells.  相似文献   

17.
Microfluorimetric studies were carried out to investigate the effects of hypoosmotic swelling on intracellular Ca2+ concentration ([Ca2+]i) in single rat epididymal cells. In Ca2+-free solution containing 50 mol/l ethylenebis(oxonitrilo)tetraacetate (EGTA) hypoosmotic swelling (–160 mosmol/l) induced a transient rise in [Ca2+]i which was either monophasic, biphasic or oscillatory. The [Ca2+]i responses to repeated hypoosmotic stimulations followed a decremental pattern. However, if 2.5 mmol/l Ca2+ was admitted during the recovery period between successive stimulations, the second and the third [Ca2+]i responses were slightly greater than the first. Increasing the change in osmolarity from –14±1.0 to –154±1.5 mosmol/l increased the rise in [Ca2+]i but reduced the [Ca2+]i response to subsequent ionomycin stimulation (4 mol/l). The swelling- and the ionomycin-induced rises in [Ca2+]i followed a reciprocal pattern. It was suggested that intracellular Ca2+ release in response to cell swelling in the epididymal epithelium might play a role in cell volume regulation and the control of epididymal fluid osmolarity.  相似文献   

18.
The free intracellular calcium ion concentration ([Ca2+]i) was measured simultaneously with isometric force in strips of guinea-pig mesotubarium using the Fura-2 technique. During the relaxed period (5–15 min) between spontaneous contractions [Ca2+]i continues to decrease after full mechanical relaxation to reach a minimal level of 86±8 nM (n=9) just before the start of the next contraction. During the spontaneous contractions (5–15 min) [Ca2+]i reached a maximum of 211±19 nM and then oscillated between 155±16 nM and 194±9 nM. Increased extracellular Ca2+ concentration to 10 mM from the standard concentration of 1.5 mM caused a decreased frequency of spontaneous contractions and an increase in [Ca2+]i both in the relaxed and contracted states. In 10 mM extracellular Ca2+, addition of AlF4 , as 1 mM NaF + 10 M AlCl3, caused a sustained increase in [Ca2+]i and maintained force. Addition of verapamil (10 M) in this situation decreased [Ca2+]i to the resting level. The results suggest that the cyclic appearance of trains of action potentials is related to variation in [Ca2+]i, possibly via inactivation of Ca2+-dependent K+ channels.  相似文献   

19.
Vascular smooth muscle cells of rabbit aorta were enzymatically dispersed, kept in primary culture, and studied between days 1 and 7 in a bath rinsed with Ringer-like solution at 37°C. The electrical membrane potential difference (PD) was measured with microelectrodes. The mean value of PD was –50±0.4 mV (n=53). Cromakalim (BRL 34915), 1 mol/l and 10 mol/l, hyperpolarized the membrane potential by 9±1 mV (n=11) and 15±1 mV (n=53) respectively. Glibenclamide (10 mol/l) abolished the hyperpolarizing effect of cromakalim (n=6). Simultaneous addition of cromakalim and glibenclamide (both 10 mol/l, n=11) and glibenclamide itself (10 mol/l, n=7) had no effect on PD. In patch-clamp experiments in outside-out-oriented Ca2+-sensitive K+ channels, cromakalim increased the open probability (P o) only slightly and only with a cytosolic Ca2+ activity of 1 mol/l. In all other series cromakalim had no effect on the P o of these channels. Forskolin (10 mol/l) hyperpolarized PD by 6±1 mV (n=13). The nucleotides UTP, ATP and ITP (10 mol/l) depolarized PD by 12±1 mV (n=7), 8±1 mV (n=65) and 5±1 mV (n=6) respectively. GTP, [,-methylene]ATP and adenosine had no significant effect. Mn2+ (1 mmol/l, n=18), Ni2+ (1 mmol/l, n=13), Co2+ (1 mmol/l, n=11), Zn2+ (1 mmol/l, n=6) and the Ca2+-channel blockers verapamil and nifedipine (both 0.1 mmol/l, n=6) did not attenuate the depolarization induced by 10 mol/l ATP. Fetal calf serum (100 ml/l, n=7) depolarized PD by 11±2 mV. This effect was not abolished by nifedipine or by replacing NaCl by choline chloride. The data indicate that PD of vascular smooth muscle cells is depolarized by P2 agonists and hyperpolarized by the K+-channel opener cromakalim. The effect of cromakalim is antagonized by glibenclamide. The effect of cromakalim is probably not mediated by the K+ channel identified in excised patches.Supported by DFG Gr 480/10  相似文献   

20.
Cholecystokinin (CCK) analogs, JMV-180 and OPE, release Ca2+ from intracellular stores and induce oscillations in the concentration of cytosolic Ca2+ ([Ca2+]i), but do not generate a detectable rise in inositol 1,4,5-trisphosphate (InsP 3) levels. In contrast, high concentrations of CCK elevate InsP 3, as well [Ca2+]i, to a peak which decreases to near basal levels without oscillations. The mechanisms which underlie inhibition of [Ca2+]i oscillations observed with high CCK concentrations are unclear, but are believed to involve a low-affinity CCK receptor state. Alternately, CCK analogs may be weak partial agonists of the phospholipase C pathway, whereas native CCK, as a full agonist of this pathway, stimulates low levels of protein kinase C (PKC) activity. Preincubation of acini with 1 nM 12 O-tetradecanoyl-phorbol 13-acetate (TPA) for 15 min at 37°C did not affect OPE binding to acini, but abolished OPE-induced (at 1 M) [Ca2+]i oscillations without affecting the initial [Ca2+]i spike. These transformed OPE-induced [Ca2+]i responses mimicked those induced by supramaximal CCK octapeptide (CCK-8) concentrations. Inhibition of [Ca2+]i oscillations by 1 nM TPA was reversed by the PKC inhibitor staurosporine (0.2 M). After [Ca2+]i oscillations were induced with OPE or low concentrations of CCK-8 (20 pM), 1 nM TPA caused a gradual slowing of oscillation frequency over 15–20 min without affecting [Ca2+]i spike amplitude. In contrast, 1 M TPA inhibited OPE binding and caused a more generalized inhibition of OPE- and CCK-evoked Ca2+ signals. These data suggest that inhibitory effects of low-level PKC activation on agonist-evoked Ca2+ signalling are distinct from the effects of high-level PKC activation by 1 M TPA, and do not require the transition of the CCK receptor from a high-affinity to a low-affinity state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号