首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ventral striatum is considered to be that portion of the striatum associated with the limbic system by virtue of its afferent connections from allocortical and mesolimbic areas as well as from the amygdala. The efferent projections from this striatal region in the primate were traced by using 3H aminoacids and Phaseolus vulgaris-leucoagglutinin (PHA-L). Particular attention was paid to the topographic organization of terminal fields in the globus pallidus and substantia nigra, the projections to non-extrapyramidal areas, the relationship between projections from the nucleus accumbens and the other parts of the ventral striatum, and the comparison between ventral and dorsal striatal projections. This study demonstrates that in monkeys a circumscribed region of the globus pallidus receives topographically organized efferent fibers from the ventral striatum. The ventral striatal fibers terminate in the ventral pallidum, the subcommissural part of the globus pallidus, the rostral pole of the external segment, and the rostromedial portion of the internal segment. The more central and caudal portions of the globus pallidus do not receive this input. This striatal output appears to remain segregated from the dorsal striatal efferent projections to pallidal structures. Fibers from the ventral striatum projecting to the substantia nigra are not as confined to a specific region as those projecting to the globus pallidus. Although the densest terminal fields occur in the medial portion, numerous fibers also extend laterally to innervate the dorsal stratum of dopaminergic neurons of the substantia nigra and the retrorubral area. Furthermore, they project throughout the rostral-caudal extent of the substantia nigra. Projections from the medial part of the ventral striatum reach the more caudally located pedunculopontine tegmental nucleus. Thus unlike the above described terminals in the globus pallidus, the ventral striatum project widely throughout the substantia nigra, a fact that indicates that they may contribute to the integration between limbic and other output systems of the striatum. Finally, the ventral striatum projects to non-extrapyramidal regions including the bed nucleus of the stria terminals, the nucleus basalis magnocellularis, the lateral hypothalamus, and the medial thalamus.  相似文献   

2.
Neuropeptide immunohistochemistry was used to test several hypotheses of the anatomical bases of chorea and rigidity-akinesia. To test the hypothesis that elevated concentration of striatal somatostatin causes chorea, we visually compared the density of striatal neurons containing somatostatin and neuropeptide Y in brains affected by choreic or rigid-akinetic Huntington's disease (HD). The density of these neurons was elevated in both rigid-akinetic and choreic HD specimens with an apparently normal total number of these neurons, indicating that elevated somatostatin concentration, by itself, does not lead to chorea. We tested the hypothesis that rigid-akinetic HD results from deficient dopaminergic nigrostriatal neurotransmission by examining tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra. In rigid-akinetic HD brains, there was no obvious reduction of nigral TH-IR neurons, indicating that rigid-akinetic HD is probably not due to loss of nigral dopaminergic neurons. Finally, we also examined the status of striatal projection neurons and found near total loss of all striatal neurons projecting to the lateral globus pallidus, medial globus pallidus, and substantia nigra in brains affected by rigid-akinetic HD in contrast to the preservation of neurons projecting to the medial globus pallidus in choreic HD. These results are consistent with the hypothesis that chorea results from preferential loss of striatal neurons projecting to the lateral globus pallidus and that rigid-akinetic HD is a consequence of the additional loss of striatal neurons projecting to the medial segment of the pallidum.  相似文献   

3.
We have reported previously that striatal projection neurons are differentially affected in the course of Huntington's disease, and in a prior patient report we noted that differential loss of striatal projection neurons occurs also in patients with presymptomatic Huntington's disease. Striatal neurons projecting to the external segment of the globus pallidus or the substantia nigra show evident loss, whereas those projecting to the internal segment of the globus pallidus appear relatively spared at presymptomatic and early stages of symptomatic Huntington's disease. We now report similar findings in a second apparently presymptomatic Huntington's disease allele carrier.  相似文献   

4.
The striatum is known to contain GABA neurons projecting to the globus pallidus, entopeduncular nucleus and substantia nigra. Following lesions of striatal neurons with kainic acid, we have observed a decrease in the histochemically detectable activity of GABA-transaminase, the enzyme responsible for GABA catabolism, in both the striatum and in those areas to which it is known to send GABA projections. These results suggest that GABA-transaminase may be contained in striatal GABA neurons and thus that GABA-transaminase histochemistry may be a useful adjunct to the biochemical demonstration of GABA pathways in the brain.  相似文献   

5.
The present study describes the thalamic innervation coming from the rat parafascicular nucleus (PF) onto striatal and subthalamic efferent neurons projecting either to the globus pallidus (GP) or to the substantia nigra pars reticulata (SNr) by using a protocol for multiple neuroanatomical tracing. Both striatofugal neurons targeting the ipsilateral SNr (direct pathway) as well as striatal efferent neurons projecting to the ipsilateral GP (indirect pathway) were located within the terminal fields of the thalamostriatal afferents. In the subthalamic nucleus (STN), both neurons projecting to ipsilateral GP as well as neurons projecting to ipsilateral SNr also appear to receive thalamic afferents. Although the projections linking the caudal intralaminar nuclei with the ipsilateral striatum and STN are far more prominent, we also noticed that thalamic axons could gain access to the contralateral STN. Furthermore, a small number of STN neurons were seen to project to both the contralateral GP and PF nuclei. These ipsi- and contralateral projections enable the caudal intralaminar nuclei to modulate the activity of both the direct and the indirect pathway.  相似文献   

6.
Employing a retrograde fluorescent double labeling technique, we compared the localization of subthalamic nucleus (STN) cells projecting to the striatum and nucleus tegmenti pedunculopontinus pars compacta (TPC), with that of STN cells sending axon collaterals to both the globus pallidus and substantia nigra in the rat. The STN-striatal projections were mostly the third branches of massive STN-pallidal and STN-nigral collateral projection neurons, whereas only very rarely did the STN-TPC projections contribute to these collateral projections. The TPC projecting STN cells, giving rise to an independent output of the nucleus, were located mainly in its thin lateral strip region. The STN may integrate the somatic motor information from various cortical/subcortical brain areas (including the motor cortex, striatum, globus pallidus, thalamus and TPC), and disperse it predominantly to the pallidal complex, substantia nigra and striatum by way of axon collaterals, and to a lesser degree to the TPC through separate fibers. Thus, the STN might be in a strategic position to exert a prominent control over the basal ganglia-related somatic motor functions.  相似文献   

7.
The morphological features of striatal projection neurons and the responses of these neurons to electrical stimulation of the substantia nigra were studied in rats through the methods of intracellular recording and intracellular labeling with the enzyme horseradish peroxidase. Under urethane anesthesia, single striatal neurons were first analyzed for responsiveness to nigral stimuli and then filled electrophoretically with the enzyme in order to permit subsequent serial reconstruction.The axon of the medium spiny neuron was found to form an extensive collateral plexus within the striatum before entering the globus pallidus or the internal capsule. These medium spiny projection neurons responded to nigral stimuli with monosynaptic excitation.  相似文献   

8.
In adult-onset Huntington's disease (HD), striatal projection neurons are much more vulnerable than striatal interneurons, but even striatal projection neurons show differences in their vulnerability, with the striatal projection neurons projecting to the internal segment of the globus pallidus being the least vulnerable. Previous studies have shown that systemic chronic treatment with 3-nitropropionic acid (3NP), an inhibitor of succinate dehydrogenase, induces the preferential loss of striatal projection neurons over striatal interneurons that is characteristic of HD, which has been taken to support the hypothesis that the pathogenic defect in HD may involve impaired energy metabolism. We sought to determine whether the patterns of survival for striatal projection neurons in 4-month-old rats after chronic systemic 3NP treatment also resemble those in adult-onset HD. We assessed the projection neuron survival using neuropeptide immunolabeling of striatal efferent fibers in striatal target areas and quantified the degree of fiber loss in the striatal target areas using computer-assisted image analysis. We found that 3NP produced relatively equal loss of striatal fibers and terminals in the globus pallidus, substantia nigra, and entopeduncular nucleus, indicating a nondifferential vulnerability of striatal projection neurons to 3NP-induced impairment in energy metabolism. The results suggest that the 3NP rat model does not fully mimic adult-onset HD pathogenesis.  相似文献   

9.
The caudate-putamen, globus pallidus and substantia nigra pars reticulata of the guinea pig contain high densities of the 5-HT1D receptor subtype. The cellular localization of these sites in the striatonigral pathway was investigated using receptor autoradiography and selective neurotoxin lesions. In guinea pigs with unilateral 6-hydroxydopamine lesions of the nigral dopaminergic cells, no significant decrease was observed in any of the components of the striatonigral pathway. In contrast, when quinolinic acid was injected in the caudate-putamen, marked reductions in [3H]5-HT binding were seen in the caudate-putamen, the globus pallidus and the substantia nigra pars reticulata, on the side ipsilateral to the lesion. These data, which are comparable to previous results in human pathologies where similar cell populations are known to degenerate (Parkinson disease and Huntington's chorea), indicate a presynaptic localization of 5-HT1D receptors on the terminals of the striatal neurons projecting to the pars reticulata of the substantia nigra. In addition, these receptors could be located on the cell bodies or dendrites of these neurons in the striatum, postsynaptically to serotoninergic fibers.  相似文献   

10.
Using 32P-labeled oligonucleotides derived from the coding region of human dopamine D1 receptor mRNA we have localized in the human and rat brain the cells containing the mRNAs coding for this receptor. Dopamine D1 receptor mRNA in human brain was found to be contained in the neurons of the caudate and putamen nuclei as well as in the nucleus accumbens, some cortical regions and some nuclei of the amygdala. In the rat brain, cells containing D1 receptor mRNA were enriched in caudate-putamen and accumbens nuclei, olfactory tubercle, islands of Calleja, some cortical areas and in several thalamic nuclei. Moreover, in both species, it was absent from the neurons of the substantia nigra both pars compacta and pars reticulata and ventral tegmental area as well as from the globus pallidus pars lateralis and medialis in human and globus pallidus and entopeduncular nucleus in rat. In general, a good agreement was found with the distribution of binding sites labeled with the D1 antagonist SCH 23390. The main exception was the absence of D1 receptor mRNA in globus pallidus and substantia nigra, regions where high densities of receptor sites are found. These data support the notion that sites in these two regions are localized to projections from striatal neurons and that dopaminergic neurons do not express this receptor.  相似文献   

11.
In electron micrographs of the squirrel monkey (Saimiri sciureus) brain the striatal efferents were observed at two different levels in their course: (1) in cross-sectioned radial fiber bundles just before they enter the globus pallidus; (2) in cross-sectioned “comb” bundle fibers just before they enter the substantia nigra. In the radial bundles nearly all of the fibers are myelinated; in the “comb” bundle most are unmyelinated. The polarity of all the “comb” bundle fibers is descending. None of them degenerate following a large lesion in the substantia nigra but they do degenerate following a large lesion in the striatum. Also following this latter lesion the endings with large synaptic vesicles, which make up most of the endings in the globus pallidus and the substantia nigra, degenerate. For computer measurements, electron micrographs of the radial bundle were enlarged photographically to a final magnification of 20,000; those of the “comb” bundle to × 50,000. Measurements of 1309 radial fibers revealed a mean axis-cylinder diameter of 0.68 microns, and measurements of 749 unmyelinated “comb” bundle fibers gave a mean axis-cylinder diameter of 0.21 microns. Myelinated fibers were not included in the “comb” bundle measurements because it contains myelinated fibers of pallidal origin in addition to myelinated fibers of striatal origin. The results here indicate that the striatal efferents undergo a decided decrease in axis-cylinder diameter during their transit through the globus pallidus. It is suggested that the large non-spine bearing neurons in the striatum are the source of the striatal efferents and that they send their axons into the substantia nigra and enroute spend a great quantity of their axoplasm by extending extensive collaterals in both segments of the globus pallidus. This could account for the decreased caliber of the striatal efferents in the “comb” bundle and other findings in the striatum, globus pallidus and substantia nigra.  相似文献   

12.
Organization of the striatum: Collateralization of its Efferent Axons   总被引:2,自引:0,他引:2  
The anatomical structure of the basal ganglia indicates that the input from the cerebral cortex is funnelled through the striatum to the globus pallidus and substantia nigra. This structure implies integration of the information as it is transferred through the basal ganglia. In order to investigate this integration, we studied the collateralization of striatal efferents to the globus pallidus and the substantia nigra-ventral tegmental area. Retrogradely transported fluorescent tracers were injected into the target areas of striatal efferents. Nuclear yellow or propidium iodide was injected into the substantia nigra-ventral tegmental area (SN-VTA) and 4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) into the globus pallidus (GP) of adult albino rats. SITS was chosen for the pallidal injections because it is not taken up by fibers-of-passage. The pressure injections resulted in large injection sites which covered the majority of each efferent target area, and as a result retrogradely labeled cell bodies were found throughout the entire extent of the striatum. Cell bodies double-labeled with both dyes were found intermingled with single-labeled cell bodies. In rats injected with propidium iodide in the SN-VTA and SITS in the GP, 70% of all neurons (as revealed by Nissl staining) were labeled. Of these labeled cells, 40% were double labeled, 20% contained only SITS and 40% contained only propidium iodide. Thus a substantial number of the striatal neurons that project to the SN-VTA also possess collateral axons to the GP. Some striatal neurons appear to project to only the SN-VTA or only to the GP. The cells projecting to only one of these striatal target regions tend to cluster together in patches. The organizational pattern of these patches does not seem to coincide in any simple way with the mosaic pattern of striatal opiate receptors, nor with the previously described mosaic pattern of striatal afferents and various neurotransmitter substances.  相似文献   

13.
Light microscopic analysis of rat subthalamic (STH) neurons which were intracellularly labeled with horseradish peroxidase, following the acquisition of electrophysiological data, revealed the following: (1) The somata of STH neurons were polygonal or oval with occasionally a few somatic spines. Usually three or four primary dendrites arose from the soma. Dendritic trunks tapered slightly and divided into long, thin, sparsely spined branches. Dendrites of some STH neurons extended into the cerebral peduncle. (2) Reconstruction of the dendritic field was made in three different planes. In either sagittal or frontal planes, the dendritic field was usually oval and the long axis was parallel to the main axis of STH. In the horizontal plane, the dendritic field of all neurons was polygonal. (3) The axons of all the neurons analyzed originated from the soma and were traced beyond the borders of STH, thus indicating that they were projection neurons. All the parent axons bifurcated at least once. After bifurcation, one axon branch coursed dorsolaterally within the cerebral peduncle and terminated in the globus pallidus. The other branch coursed caudally or mediocaudally and arborized in the substantia nigra. Frequently, the axon branches projecting toward the globus pallidus emitted fine axon collaterals within the entopeduncular nucleus. (4) About one-half of the analyzed STH neurons had intranuclear axon collaterals. The neurons with intranuclear collaterals had a higher dendritic tips/stems ratio than neurons without intranuclear collaterals. This observation indicated that STH neurons could be divided into two groups according to their axonal morphology. (5) The axonal terminal arborization observed in all the target sites (i.e., globus pallidus, entopeduncular nucleus, STH, and substantia nigra) were formed with varicose collateral branches which also gave rise to short filaments with beaded endings. Some of these projection neurons could therefore communicate with the target neurons in the globus pallidus, substantia nigra, entopeduncular nucleus, as well as STH through their collateral system.  相似文献   

14.
Damage of striatal neurons by kainic acid (KA) induces an anterograde and transsynaptic degeneration 'en cascade' in the globus pallidus (GP) and substantia nigra (SN). By causing only degeneration of projections arising from KA-sensitive striatal neurons while sparing the connections of KA-resistant striatal neurons, the lesion-induced alterations of the basal ganglia show a characteristic pattern which bears a close resemblance with the neuropathological changes occurring in Huntington's disease: (1) severe degeneration of small and medium-sized striatal neurons, of pallidal neurons and the neurons of the pars reticulata of the SN, and (2) sparing of large striatal neurons, 'peripallidal' (nucleus basalis) neurons and neurons of the pars compacta of the SN. The probable interconnections of both the degenerated and the spared neuronal groups are discussed with respect to the present concept of the neuronal organization and biochemical neuroanatomy of the basal ganglia.  相似文献   

15.
Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.  相似文献   

16.
Neuronal localization of cannabinoid receptors in the basal ganglia of the rat   总被引:14,自引:0,他引:14  
Cannabinoid receptors have recently been characterized and localized using a high-affinity radiolabeled cannabinoid analog in section binding assays. In rat brain, the highest receptor densities are in the globus pallidus and substantia nigra pars reticulata. Receptors are also dense in the caudate-putamen. In order to determine the neuronal localization of these receptors, selective lesions of key striatal afferent and efferent systems were made. Striatal neurons and efferent projections were selectively destroyed by unilateral infusion of ibotenic acid into the caudate-putamen. The nigrostriatal pathway was selectively destroyed in another set of animals by infusion of 6-hydroxydopamine into the medial forebrain bundle. After 2- or 4-week survivals, slide-mounted brain sections were incubated with ligands selective for cannabinoid ([3H]CP 55,940), dopamine D1 3H]SCH-23390) and D2 ([3H]raclopride) receptors, and dopamine uptake sites ([3H]GBR-12935). Slides were exposed to 3H-sensitive film. The resulting autoradiography showed ibotenate-induced losses of cannabinoid, D1 and D2 receptors in the caudate-putamen and topographic losses of cannabinoid and D1 receptors in the globus pallidus, entopeduncular nucleus, and substantia nigra pars reticulata at both survivals. Four weeks after medial forebrain bundle lesions (which resulted in amphetamine-induced rotations), there was loss of dopamine uptake sites in the striatum and substantia nigra pars compacta but no change in cannabinoid receptor binding. The data show that cannabinoid receptors in the basal ganglia are neuronally located on striatal projection neurons, including their axons and terminals. Cannabinoid receptors may be co-localized with D1 receptors on striatonigral neurons. Cannabinoid receptors are not localized on dopaminergic nigrostriatal cell bodies or terminals.  相似文献   

17.
The distribution of cells immunoreactive to choline acetyltransferase (ChAT-IR) in, and around the globus pallidus were studied in the squirrel monkey. Intrinsic pallidal ChAT-IR neurons in the globus pallidus were most numerous in ventrocaudal regions of the lateral pallidal segment (LPS) and in the oral pole of the medial pallidal segment (MPS). Smaller numbers of ChAT-positive cells were seen in portions of the medullary laminae of the pallidum. Computer measurements of somal areas of ChAT-IR cells in the globus pallidus, substantia innominata and putamen were made. Morphological features and somal areas of ChAT-IR cells in the globus pallidus and in the Ch4 group of the substantia innominata were strikingly similar. Cholinergic pallidal neurons appear to be part of the Ch4 cell group and have similar widespread cortical projections. The smaller cholinergic neurons in the striatum are considered to be intrinsic neurons which primarily act upon spiny striatal projection neurons. The possible local interaction of pallidal cholinergic neurons upon GABAergic neurons is unknown.  相似文献   

18.
Single pulse stimulation of the sensory motor cortex of rats anesthetized with urethane was observed to inhibit the activity of neurons in the globus pallidus. When a train of 10 pulses delivered to the substantia nigra, preceded the cortical stimulation, the inhibitory response was significantly reduced in 46 of 66 globus pallidus neurons tested. A single pulse stimulus to the substantia nigra had no effect on the inhibitory response of globus pallidus neurons to cortical stimulation. Similar interaction experiments were performed in rats treated with haloperidol (HPL), a dopamine antagonist, or with 6-hydroxydopamine. In such experiments a train of stimulus pulses delivered to the substantia nigra did not attenuate the inhibitory response of globus pallidus neurons to cortical stimulation, suggesting that the observed interactions are dopamine-mediated.  相似文献   

19.
The regional distribution of 5-hydroxytryptamine (5-HT4) receptors labelled with [3H]GR113808 was examined in rat basal ganglia and hippocampus after specific lesions. Lesion of serotonin neurons induced by injections of 5,7-dihydroxytryptamine into the dorsal and medial raphe nuclei resulted in increased 5-HT4 receptor binding in most regions examined, compared with controls. More precisely, there was a 78% increase in the rostral but no change in the caudal part of caudate-putamen, and 83% and 54% increases in the shell and core of the nucleus accumbens respectively. In the substantia nigra, the increase in 5-HT4 binding was larger (72%) than that in the globus pallidus (32%). In the hippocampus, 63%, 30% and 28% increases were measured in CA2, CA1 and CA3 respectively. Following lesion of dopamine neurons by intranigral injection of 6-hydroxydopamine, increased 5-HT4 receptor binding was observed in the caudal (59%), but not the rostral part of caudate-putamen, as well as in the globus pallidus (93%). Since no decreases in 5-HT4 receptor density were detected after the dopamine lesion, it was concluded that these receptors are not expressed in dopamine neurons. Kainic acid lesions of the caudate-putamen were associated with dramatic local decreases in 5-HT4 receptor binding on the injected side (-89%), which suggested that striatal neurons express 5-HT4 receptors. Corresponding decreases of 72 and 20% in receptor density were detected in globus pallidus and substantia nigra, consistent with a presumed localization of 5-HT4 receptors on striatal GABA neurons projecting to these regions. In the substantia nigra, the decrease in [3H]GR113808 binding was localized to the pars lateralis, indicating that striatal neurons belonging to the cortico-striato-nigrotectal pathway, and containing GABA and dynorphin, express 5-HT4 receptors.  相似文献   

20.
The GABA(B) receptor is a G-protein linked metabotropic receptor that is comprised of two major subunits, GABA(B)R1 and GABA(B)R2. In this study, the cellular distribution of the GABA(B)R1 and GABA(B)R2 subunits was investigated in the normal human basal ganglia using single and double immunohistochemical labeling techniques on fixed human brain tissue. The results showed that the GABA(B) receptor subunits GABA(B)R1 and GABA(B)R2 were both found on the same neurons and followed the same distribution patterns. In the striatum, these subunits were found on the five major types of interneurons based on morphology and neurochemical labeling (types 1, 2, 3, 5, 6) and showed weak labeling on the projection neurons (type 4). In the globus pallidus, intense GABA(B)R1 and GABA(B)R2 subunit labeling was found in large pallidal neurons, and in the substantia nigra, both pars compacta and pars reticulata neurons were labeled for both receptor subunits. Studies investigating the colocalization of the GABA(A) alpha(1) subunit and GABA(B) receptor subunits showed that the GABA(A) receptor alpha(1) subunit and the GABA(B)R1 subunit were found together on GABAergic striatal interneurons (type 1 parvalbumin, type 2 calretinin, and type 3 GAD neurons) and on neurons in the globus pallidus and substantia nigra pars reticulata. GABA(B)R1 and GABA(B)R2 were found on substantia nigra pars compacta neurons but the GABA(A) receptor alpha(1) subunit was absent from these neurons. The results of this study provide the morphological basis for GABAergic transmission within the human basal ganglia and provides evidence that GABA acts through both GABA(A) and GABA(B) receptors. That is, GABA acts through GABA(B) receptors, which are located on most of the cell types of the striatum, globus pallidus, and substantia nigra. GABA also acts through GABA(A) receptors containing the alpha(1) subunit on specific striatal GABAergic interneurons and on output neurons of the globus pallidus and substantia nigra pars reticulata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号