首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
Trace eyeblink conditioning was investigated in 31 patients with focal cerebellar lesions and 19 age-matched controls. Twelve patients presented with lesions including the territory of the superior cerebellar artery (SCA). In 19 patients lesions were restricted to the territory of the posterior inferior cerebellar artery (PICA). A 3D magnetic resonance imaging was used to determine the extent of the cortical lesion and possible involvement of cerebellar nuclei. Eyeblink conditioning was performed using a 40 ms tone as conditioned stimulus (CS) followed by a stimulus free trace-interval of 400 ms and a 100 ms air-puff as unconditioned stimulus (US). In SCA patients with lesions including parts of the cerebellar interposed nucleus trace eyeblink conditioning was significantly impaired. Pure cortical lesions of the superior cerebellum were not sufficient to reduce acquisition of trace conditioned eyeblink responses. PICA patients were not impaired in trace eyeblink conditioning. Consistent with animal studies the findings of the present human lesion study suggest that, in addition to forebrain areas, the interposed nucleus is of importance in trace eyeblink conditioning. Although cortical cerebellar areas appear less important in trace compared with delay eyeblink conditioning, the present data strengthen the view that cerebellar structures contribute to different forms of eyeblink conditioning paradigms.  相似文献   

2.
A number of studies investigating trace eyeblink conditioning have found impaired, but not eliminated, acquisition of conditioned responses (CRs) in both animals and humans with hippocampal removal or damage. The underlying mechanism of this residual learning is unclear. The present study investigated whether the impaired level of learning is the product of residual hippocampal function or whether it is mediated by another memory system that has been shown to function normally in delay eyeblink conditioning. Performance of bilateral medial temporal lobe amnesic patients who had a prior history of participating in eyeblink conditioning studies was compared to a control group with a similar training history and to an untrained control group in a series of single cue trace conditioning tasks with 500 ms, 250 ms, and 0 ms trace intervals. Overall, patients acquired CRs to a level similar to the untrained controls, but were significantly impaired compared to the trained controls. The pattern of acquisition suggests that amnesic patients may be relying on the expression of previously acquired, likely cerebellar based, procedural memory representations in trace conditioning.  相似文献   

3.
Delay eyeblink conditioning was examined in patients with genetically-defined heredoataxias and age-matched control subjects. 24 patients with spinocerebellar ataxia type 6 (SCA6), type 3 (SCA3), and Friedreichs ataxia (FRDA) participated. SCA6 affects primarily the cerebellum, whereas extracerebellar involvement is common in SCA3 and FRDA. Testing was performed in three sessions six months apart. Severity of ataxia was defined based on the International Ataxia Cooperative Rating Scale (ICARS). As expected, cerebellar patients were significantly impaired in eyeblink conditioning compared to controls. Signs of retention and further learning across sessions were present in controls, but not in the cerebellar patients. In addition, findings of disturbed timing of conditioned responses were observed. Both onsets and peaks of the conditioned responses (CRs) occurred significantly earlier in cerebellar patients. Shortened CR responses were most prominent in patients with primarily cerebellar cortical disease (SCA6). In the group of all cerebellar patients, the SCA3 and the FRDA group correlations between learning deficits and clinical findings were weak. Moderate-to-strong correlations were found in the SCA6 patients. There was no significant change, however, in clinical ataxia scores and CR incidence across the three sessions. In summary, impaired learning of conditioned eyeblink responses is a stable finding across multiple sessions in patients with degenerative cerebellar disorders. Eyeblink conditioning may be a useful measure of cerebellar impairment in patients with hereditary ataxias that primarily affect the cerebellum (such as SCA6). In other heredoataxias (such as SCA3 and FRDA), extracerebellar involvement not assessed by ICARS likely contributes to eyeblink conditioning abnormalities.  相似文献   

4.
Several studies in nonhuman primates have shown that neurons in the dorsolateral prefrontal cortex have activity that persists throughout the delay period in delayed matching to sample tasks, and age-related changes in the microcolumnar organization of the prefrontal cortex are significantly correlated with age-related declines in cognition. Activity that persists beyond the presentation of a stimulus could mediate working memory processes, and disruption of those processes could account for memory deficits that often accompany the aging process. These potential memory and aging mechanisms are being systematically examined with eyeblink conditioning paradigms in nonprimate mammalian animal models including the rabbit. The trace version of the conditioning paradigm is a particularly good system to explore declarative memory since humans do not acquire trace conditioning if they are unable to become cognitively aware of the association between a conditioning tone and an airpuff to the eye. This conditioning paradigm has been used to show that the hippocampus and cerebellum interact functionally since both conditioned responses and conditioned hippocampal pyramidal neuron activity are abolished following lesions of the cerebellar nuclei and since hippocampal lesions prevent or abolish trace conditioned blinks. However, because there are no direct connections between the hippocampal formation and the cerebellum, and because the hippocampus is not necessary for trace conditioning after a period of consolidation has elapsed, we and others have been examining the prefrontal cortex for its role in forebrain-dependent trace eyeblink conditioning. This review examines some of the literature which suggests that the prefrontal cortex serves to orchestrate a neuronal network that interacts with the cerebellum to mediate adaptively timed conditioned responses.  相似文献   

5.
Structural changes of the cerebellum have been reported in several psychiatric diseases like schizophrenia, autism and attention-deficit/hyperactivity disorder (ADHD). Beside behavioral deficits children with ADHD often show slight motor abnormalities. Cerebellar malfunction may contribute. The cerebellum is a structure essential for motor coordination, various forms of motor learning and timing of motor responses. In the present study, eyeblink conditioning was applied to investigate learning and timing of motor responses both in children with ADHD and children with cerebellar lesions. Acquisition, timing and extinction of conditioned eyeblink responses were investigated in children with ADHD, children with chronic surgical cerebellar lesions and controls using a standard delay paradigm with two different interstimulus intervals. Timing of conditioned eyeblink responses was significantly impaired in children with ADHD in the long interstimulus interval condition. Also in children with cerebellar lesions conditioned responses (CR) tended to occur earlier than in controls. Incidences of CRs were significantly reduced in children with cerebellar lesions and tended to be less in children with ADHD than in controls. Extinction of the CRs was impaired in children with cerebellar lesions in both interstimulus interval conditions and in children with ADHD in the long interstimulus interval condition. Cerebellar malfunction may contribute to disordered eyeblink conditioning in ADHD. However, because CR abnormalities differed between ADHD and cerebellar subjects, dysfunction of non-cerebellar structures cannot be excluded.  相似文献   

6.
The cerebellum has been proved to be essential for the acquisition of delay eyeblink conditioning, but its contribution to the acquisition of trace eyeblink conditioning (TEBC) has not been fully determined. In the present study, using chemically reversible inactivation techniques, we examined the relative contribution of ipsilateral cerebellum to the acquisition of TEBC using different time length of trace interval (TI) in guinea pigs. It was found that inactivations of the left intermediate cerebellum with a GABAA receptor agonist muscimol during training completely prevented the acquisition of TEBC using a relatively short (50 ms) TI, instead of the acquisition of TEBC using a relatively long (250 ms) TI. However, inactivations of the left intermediate cerebellum totally abolished the well-established left trace conditioned eyeblink responses (CRs) regardless of the time length of TI. These results suggested that while the ipsilateral cerebellum is essential for the expression of trace CRs, its contribution to the acquisition of trace CRs appears to mainly depend on the time length of TI.  相似文献   

7.
Recent evidence suggests a role for cerebellum in pathophysiology of dystonia. Here we explored, the cerebellar modulation of motor cortex in patients with focal upper limb dystonia. Eight patients and eight controls underwent a transcranial magnetic stimulation protocol to study the cerebellar-brain-inhibition (CBI): a conditioning cerebellar stimulus (CCS) was followed 5 ms after by the contralateral motor cortex stimulation (test stimulus: TS). We explored the effects of CBI on MEP amplitude, short intracortical inhibition (SICI) and intracortical facilitation (ICF) measures. At baseline no differences in TS-MEP amplitude, SICI or ICF were found between patients and controls. Cerebellar-conditioning significantly reduced TS-MEP amplitude, increased ICF, and decreased SICI in control subjects. In contrast, no changes in these neurophysiological measures were observed in the motor cortex of patients, regardless of which side was tested. If further confirmed, these findings suggest a reduced cerebellar modulation of motor cortex excitability in patients with focal dystonia.  相似文献   

8.
Previous studies demonstrated that the development of auditory conditioned stimulus (CS) input to the cerebellum may be a neural mechanism underlying the ontogenetic emergence of eyeblink conditioning in rats. The current study investigated the role of developmental changes in the projections of the cochlear nucleus (CN) in the ontogeny of eyeblink conditioning using electrical stimulation of the CN as a CS. Rat pups were implanted with a bipolar stimulating electrode in the CN and given six 100-trial training sessions with a 300 ms stimulation train in the CN paired with a 10 ms periorbital shock unconditioned stimulus (US) on postnatal days (P) 17-18 or 24-25. Control groups were given unpaired presentations of the CS and US. Rats in both age groups that received paired training showed significant increases in eyeblink conditioned responses across training relative to the unpaired groups. The rats trained on P24-25, however, showed stronger conditioning relative to the group trained on P17-18. Rats with missed electrodes in the inferior cerebellar peduncle or in the cerebellar cortex did not show conditioning. The findings suggest that developmental changes in the CN projections to the pons, inferior colliculus, or medial auditory thalamus may be a neural mechanism underlying the ontogeny of auditory eyeblink conditioning.  相似文献   

9.
Electrical stimulation over the cerebellum is known to transiently suppress the contralateral motor cortex in humans. However, projections from the cerebellar nuclei to the primary motor cortex are disynaptic excitatory pathways through the ventral thalamus. In the present investigation we studied facilitatory effects on the motor cortical excitability elicited by electrical stimulation over the cerebellum by recording surface electromyographic (EMG) responses from the first dorsal interosseous (FDI) muscle in nine normal volunteers. For primary motor cortical activation magnetic stimuli were given over the contralateral hand motor area with a figure-of-eight shaped coil with a current to preferentially elicit I3-waves (test stimulus). For cerebellar stimulation high-voltage electric stimuli were given with an anode on the ipsilateral mastoid process and a cathode over the contralateral process as previously described (conditioning stimulus). The effect of conditioning-test interstimulus intervals was investigated. Anodal cerebellar stimuli increased the size of EMG responses to magnetic cortical stimulation at an interstimulus interval of 3 ms. Reversing the current of conditioning stimulus abolished the facilitation. The same (anodal) conditioning stimuli did not affect electrically evoked cortical responses. Based on the effective polarity of the conditioning stimulus and the time course of facilitation we consider that this effect is due to motor cortical facilitation elicited by activation of the excitatory dentatothalamocortical pathway at the deep cerebellar nuclei or superior cerebellar peduncle. We conclude that the motor cortical facilitation is evoked by cerebellar stimulation in humans  相似文献   

10.
Electrical stimulation of the auditory cortex (AC) was used as a conditioned stimulus (CS) in the rabbit conditioned eyeblink preparation to trace the functional anatomical connections between the AC and the circuitry underlying this conditioned response. Conditioning was shown to be dependent on the cerebellar interpositus nucleus and the pontine nuclei (PN), structures that are essential for conditioning using a peripheral CS. The results suggest that the cerebellum and associated brain stem circuitry are a necessary part of the memory trace circuit for the conditioned eyeblink response, even when the cerebral cortex is artifically engaged as a CS by electrical stimulation. The results also suggest that the PN are a site of convergence between the CS circuit subserving classical conditioning for peripheral stimuli and the AC, and may therefore be a site where the AC can modulate more elaborate forms of conditioning.  相似文献   

11.
Evidence grows that the cerebellum and its associated circuitry are the essential neural substrates for standard delay classical eyeblink conditioning. To further investigate the relative roles of the cerebellar cortex and nuclei in eyeblink conditioning, a novel mouse model with Purkinje cell atrophy was studied. The 78 kDa-glucose regulated protein, a chaperone molecule, was knocked out leading to postnatal Purkinje cell degeneration (Wang et al., 2010), and standard delay eyeblink conditioning was performed in the conditional knockout mice. Learning was impaired, yet not completely prevented. Histological studies showed a reduction in the cell number and the size of the anterior interpositus nucleus. When the anterior interpositus nucleus was lesioned bilaterally, eyeblink conditioning was completely prevented. The important roles of both cerebellar cortex and AIP nucleus in eyeblink conditioning were seen.  相似文献   

12.
Eyeblink conditioning is a relatively simple form of associative learning that shows neurobiological and behavioral parallels across several species, including humans. Aged subjects acquire eyeblink conditioning more slowly than young ones. In addition, eyeblink conditioning effectively discriminates patients with Alzheimer's disease from healthy older adults. The present study evaluated the effect of a novel L-type Ca2+ channel antagonist, MEM 1003, on delay and trace eyeblink conditioning in older (mean 33.4 months old) female New Zealand white rabbits. In the delay conditioning paradigm, an 850 ms tone conditioning stimulus (CS) was followed 750 ms after its onset by a 100 ms corneal air puff. Several trace conditioning paradigms were evaluated, with a silent period of 300, 400 or 500 ms between the end of the tone CS and the delivery of the air puff. Learning was more difficult in the longer trace paradigms than in the delay paradigm. MEM 1003, at a dose of 2.0 mg/kg, s.c., given daily 30 min prior to training on each of the 15 training days, enhanced learning compared to vehicle injections in both delay and trace paradigms. However, higher or lower doses were ineffective. These results support previous work demonstrating that modulation of Ca2+ channel activity can reduce age-related cognitive impairments.  相似文献   

13.
To examine the isolated effects of altered currents in cerebellar Purkinje neurons, the authors used Scn8a-super(flox/flox), Purkinje cell protein-CRE (Pcp-CRE) mice in which Exon 1 of Scn8a is deleted only in Purkinje neurons. Twenty male Purkinje Scn8a knockout (PKJ Scn8a KO) mice and 20 male littermates were tested on the Morris water maze (MWM). Subsequently, half were tested in 500-ms delay and half were tested in 500-ms trace eyeblink conditioning. PKJ Scn8a KO mice were impaired in delay conditioning and MWM but not in trace conditioning. These results provide additional support for the necessary participation of cerebellar cortex in normal acquisition of delay eyeblink conditioning and MWM and raise questions about the role, if any, of cerebellar cortex in trace eyeblink conditioning.  相似文献   

14.
Acquisition of trace eyeblink conditioning involves the association of a conditioned stimulus (CS) with an unconditioned stimulus (US) separated by a stimulus-free trace interval. This form of conditioning is dependent upon the hippocampus and the caudal anterior cingulate cortex (AC), in addition to brain stem and cerebellar circuitry. Hippocampal involvement in trace eyeblink conditioning has been studied extensively, but the involvement of caudal AC is less well understood. In the present study, we compared neuronal responses from rabbits given either paired (trace conditioning) or unpaired (pseudoconditioning) presentations of the CS and US. Presentation of the CS elicited significant increases in neuronal activity at the onset of both trace conditioning and pseudoconditioning. A robust CS-elicited neuronal response persisted throughout the first 2 days of trace conditioning, declining gradually across subsequent training sessions. In contrast, the magnitude of the CS-elicited excitatory response during pseudoconditioning began to decline within the first 10 trials. Neurons exhibiting excitatory responses to the CS during trace conditioning also exhibited excitatory responses to the US that were significantly greater in magnitude than US-elicited responses during pseudoconditioning. CS-elicited decreases in neuronal activity became more robust over the course of trace conditioning compared to pseudoconditioning. Reductions in activity during the CS interval consistently preceded excitation in both training groups, suggesting that the CS-elicited decreases in neuronal activity may serve to increase the signal-to-noise ratio of the excitatory response to the tone. Taken together, these data suggest that the caudal AC is involved early in trace eyeblink conditioning and that maintenance of the CS-elicited excitatory response may serve to signal the salience of the tone.  相似文献   

15.
Extensive previous research has implicated the hippocampus as an important structure for the acquisition of trace eyeblink conditioning. Evidence from multiple species and various lesioning methods shows that the disruption of conditioned responding (CR) may be partially dependent on the relative lengths of the conditioned stimulus (CS) period and the trace interval. The present study systematically manipulated the length of the CS and the trace interval while matching the interstimulus intervals (ISI) in rats with or without ibotenic acid hippocampal lesions. The long-trace interval condition had a CS duration of 50 ms and a trace interval of 500 ms. The short-trace interval condition had a 500 ms CS and a 50 ms trace interval. We found that control animals in the long-trace interval condition learned at a slower rate than the control animals in the short-trace interval condition. Lesioned animals in both the trace conditions showed deficits in acquisition. Lesioned animals in the short-trace interval condition acquired conditioned responses at a rate almost identical to that of the control animals in the long-trace interval condition. CR onset latencies were impaired for lesioned animals. Peak latencies were not different, indicating no difference in the adaptiveness of the CRs. These results suggest that while the hippocampus is important for acquisition of trace eyeblink conditioning, performance also depends on the parameters used for the task. In particular, the relative lengths of the CS period and the trace interval appear to be important.  相似文献   

16.
Clinical observations and data from animal experiments point to a physiological facilitatory influence of the deep cerebellar structures on the motor system through the cerebello-thalamo-cortical pathways. The aim of the present study was to explore the long-term effects of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over the cerebellum on short intracortical inhibition (SICI) and facilitation (ICF) of the motor cortex in normal subjects. Eight healthy subjects (mean age 26.9 ± 3.1) underwent 1 Hz frequency rTMS delivered on the right cerebellar hemisphere. Before and after cerebellar rTMS, SICI and ICF were assessed in the motor cortex contralateral to the stimulated cerebellar hemisphere by means of a paired pulse paradigm with a conditioning subthreshold stimulus set to 80% of the motor threshold (MT) followed by a testing stimulus at 120% of MT intensity. Five different interstimulus intervals (ISIs) were used to assess SICI (2 and 4 ms) and ICF (7, 10 and 15 ms). Amplitude of the responses was expressed as the percentage of motor evoked potential (MEP) to test stimulus alone. Results showed a significant decrease of ICF at 10 ms ISI that persisted up to 20 min after cerebellar rTMS. This was the only significant modulatory effect of cerebellar stimulation on intracortical motor excitability A suppressive effect of the low-frequency TMS on Purkinje cells could be supposed, even if, the lack of effects on other facilitatory ISIs, stands for more complex modulatory effects of rTMS over cerebellum. The study is a further demonstration that rTMS over the cerebellum induces a long-lasting modulatory effect on the excitability of the interconnected motor area.  相似文献   

17.
We have addressed the source and nature of the persistent neural activity that bridges the stimulus-free gap between the conditioned stimulus (CS) and unconditioned stimulus (US) during trace eyelid conditioning. Previous work has demonstrated that this persistent activity is necessary for trace eyelid conditioning: CS-elicited activity in mossy fiber inputs to the cerebellum does not extend into the stimulus-free trace interval, which precludes the cerebellar learning that mediates conditioned response expression. In behaving rabbits we used in vivo recordings from a region of medial prefrontal cortex (mPFC) that is necessary for trace eyelid conditioning to test the hypothesis that neurons there generate activity that persists beyond CS offset. These recordings revealed two patterns of activity during the trace interval that would enable cerebellar learning. Activity in some cells began during the tone CS and persisted to overlap with the US, whereas in other cells, activity began during the stimulus-free trace interval. Injection of anterograde tracers into this same region of mPFC revealed dense labeling in the pontine nuclei, where recordings also revealed tone-evoked persistent activity during trace conditioning. These data suggest a corticopontine pathway that provides an input to the cerebellum during trace conditioning trials that bridges the temporal gap between the CS and US to engage cerebellar learning. As such, trace eyelid conditioning represents a well-characterized and experimentally tractable system that can facilitate mechanistic analyses of cortical persistent activity and how it is used by downstream brain structures to influence behavior.  相似文献   

18.
Doubly transgenic 12-month-old amyloid precursor protein and presenilins 1 (APP+PS1) mice (n=14) and littermate control mice (n=17) were tested on eyeblink classical conditioning-a task impaired in humans with Alzheimer's disease (AD). Mice were also tested on a motor learning task (rotorod) and on sensory tasks (prepulse inhibition [PPI] and acoustic startle). Transgenic mice had impaired motor performance on rotorod. Overall, APP+PS1 mice performed similarly to controls on both 500ms delay and 500ms trace eyeblink conditioning as well as on prepulse inhibition (PPI) and acoustic startle. However, within the transgenic group, cortical amyloid burden correlated significantly with decreased trace eyeblink conditioning. Moreover, cortical amyloid burden and hippocampal microglia activation correlated significantly with decreased PPI. These data suggest that only those transgenic mice with the most severe amyloid pathology exhibited deficits in hippocampus-dependent tasks. Transgenic mouse models of amyloid deposition differ from Alzheimer patients not only by the absence of major neuronal loss, but also by the general absence of severe impairments in eyeblink conditioning, except for mice with the greatest amyloid pathology.  相似文献   

19.
The ontogeny of delay versus trace eyeblink conditioning was examined in 19-, 23-, and 30-day-old rat pups. Pairings of a tone conditioned stimulus (CS) and periocular shock unconditioned stimulus (US; 100-ms) were presented in one of three conditioning paradigms: standard delay [380-ms CS, 280-ms interstimulus interval (ISI)], trace (380-ms CS, 500-ms trace interval), or long-delay (980-ms CS, 880-ms ISI). The results of two experiments indicated that standard delay conditioning emerged between 19 and 23 days of age whereas trace and long-delay eyeblink conditioning emerged more slowly from postnatal Days 19 to 30. Because the acquisition profile for long-delay paralleled that of trace and not standard delay, it appears that the relative deficits in the emergence of trace eyeblink conditioning during development reflect difficulty in forming associations over long ISIs rather than the short-term memory demands of the trace conditioning paradigm.  相似文献   

20.
Classical eyeblink conditioning has been known to depend critically on the cerebellum. Apparently consistent with this, glutamate receptor subunit delta2 null mutant mice, which have serious morphological and functional deficiencies in the cerebellar cortex, are severely impaired in delay paradigm. However, these mutant mice successfully learn in trace paradigm, even in '0-trace paradigm,' in which the unconditioned stimulus starts just after the conditioned stimulus terminates. Our previous studies revealed that the hippocampus and the muscarinic acetylcholine receptors play crucial roles in 0-trace paradigm in glutamate receptor subunit delta2 null mutant mice unlike in wild-type mice, suggesting a large contribution of the forebrain to 0-trace conditioning in this type of mutant mice. In the present study, we investigated the role of N-methyl-D-aspartate receptors in 0-trace eyeblink conditioning in glutamate receptor subunit delta2 null mutant mice. Mice were injected intraperitoneally with the noncompetitive N-methyl-d-aspartate receptor antagonist (+)MK-801 (0.1mg/kg) or saline, and conditioned with 350-ms tone conditioned stimulus followed by 100-ms periorbital shock unconditioned stimulus. Glutamate receptor subunit delta2 null mutant mice that received (+)MK-801 injection exhibited a severe impairment in acquisition of the conditioned response, compared with the saline-injected glutamate receptor subunit delta2 null mutant mice. In contrast, wild-type mice were not impaired in acquisition of 0-trace conditioned response by (+)MK-801 injection. After the injection solution was changed from (+)MK-801 to saline, glutamate receptor subunit delta2 null mutant mice showed a rapid and partial recovery of performance of the conditioned response. On the other hand, when the injection solution was changed from saline to (+)MK-801, glutamate receptor subunit delta2 null mutant mice showed a marked impairment in expression of the pre-acquired conditioned response, whereas impairment of the expression was small in wild-type mice. Injection of (+)MK-801 had no significant effects on spontaneous eyeblink frequency or startle eyeblink frequency to the tone conditioned stimulus in either glutamate receptor subunit delta2 null mutant mice or wild-type mice. These results suggest that N-methyl-D-aspartate receptors play critical roles both in acquisition and expression of the conditioned response in 0-trace eyeblink conditioning in glutamate receptor subunit delta2 null mutant mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号