首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Typical antipsychotics (haloperidol) give rise to severe motor side-effects while atypical antipsychotics like clozapine do not. Action at several neurotransmitter receptors have been implicated. To identify the critical mechanisms involved we synthesized an 8-C1 isomer of clozapine which showed an equivalent affinity to clozapine on multiple receptors (5-HT1A, 5-HT2, D1, D4, M1) but differed in having a 10-fold higher affinity at the dopamine D2/3 receptor. When tested in a series of animal models indicative of the typical/atypical distinction (catalepsy, striatal gene-induction, prolactin elevation) isoclozapine lost atypical properties and behaved like a typical antipsychotic. Simultaneous in vivo receptor occupancy studies confirmed that alterations in D2 receptor occupancy were most closely related to loss of atypicality by clozapine's isomer isoclozapine. The implications for the design of future antipsychotics is discussed.  相似文献   

2.
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   

3.
OBJECTIVE: Ziprasidone is an atypical antipsychotic drug that shows a higher affinity for serotonin 5-HT(2) receptors compared with dopamine D(2) receptors in vitro. The affinity of ziprasidone for these receptors in vivo in patients was examined in a positron emission tomography (PET) study. METHOD: The authors conducted a PET study to evaluate D(2) occupancy (using [(11)C]raclopride) and 5-HT(2) occupancy (using [(18)F]setoperone) in brain regions of interest in 16 patients with schizophrenia or schizoaffective disorder randomly assigned to receive 40, 80, 120, or 160 mg/day of ziprasidone, which reflected the recommended dose range. PET scanning was done after 3 weeks of administration and at trough plasma levels, i.e., 12-16 hours after the last dose. RESULTS: The mean 5-HT(2) receptor occupancy was significantly higher than the mean D(2) receptor occupancy (mean=76%, SD=15%, and mean=56%, SD=18%, respectively). The estimated plasma ziprasidone concentration associated with 50% maximal 5-HT(2) receptor occupancy was almost four times lower than that for D(2) receptor occupancy. CONCLUSIONS: These data affirm that ziprasidone is similar to other novel antipsychotics in having greater 5-HT(2) than D(2) receptor occupancy at therapeutic doses and suggest that the optimal effective dose of ziprasidone is closer to 120 mg/day than to the lower doses suggested by previous PET studies. The relatively high D(2) receptor occupancy, even at trough plasma levels, suggests that ziprasidone is more similar to risperidone and olanzapine in receptor occupancy profile than to clozapine and quetiapine. Since ziprasidone plasma levels show significant (more than twofold) variation within a single dose cycle, studies that are aimed at peak plasma levels (6 hours after the last dose) and that examine extrastriatal regions are required to fully characterize the in vivo occupancy profile of ziprasidone.  相似文献   

4.
Summary. The effects of 3-week treatment with a typical antipsychotic drug chlorpromazine and three atypical antipsychotic drugs (risperidone, olanzapine and perospirone) on the binding to dopamine D2 and serotonin 5-HT2A receptors were examined in the rat stratum and frontal cortex, respectively. Subchronic treatment with chlorpromazine (10 mg/kg) and perospirone (1 mg/kg) significantly increased D2 receptors, while no increase was observed with lower dose of chlorpromazine (5 mg/kg), perospirone (0.1 mg/kg), risperidone (0.25, 0.5 mg/kg) or olanzapine (1, 2 mg/kg). On the other hand, 3-week administration of chlorpromazine (5, 10 mg/kg) and olanzapine (1, 2 mg/kg) significantly decreased 5-HT2A receptors, but risperidone (0.25, 0.5 mg/kg) or perospirone (0.1, 1 mg/kg) had no effect. The measurement of in vivo drug occupation for D2 and 5-HT2A receptors using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) suggested that high occupation of 5-HT2A receptors with lower D2 receptor occupancy might be involved in the absence of up-regulation of D2 receptors after subchronic treatment with some atypical antipsychotic drugs. Received September 24, 1999; accepted December 1, 1999  相似文献   

5.
BACKGROUND: Central serotonin2C (5-HT2C) receptors are known to play a role in the mechanism of action of the antipsychotic drugs (APDs) clozapine and haloperidol. However, evidence for the involvement of the constitutive activity of 5-HT2C receptors in the dopamine (DA)ergic effects of APDs is lacking in vivo. METHODS: Using in vivo microdialysis in halothane-anesthetized rats, we assessed the ability of selective 5-HT2C compounds to modulate the release of DA induced by haloperidol and clozapine in the nucleus accumbens and striatum. RESULTS: Both APDs induced a dose-dependent increase in accumbal and striatal DA extracellular levels. The effect of .01 mg/kg haloperidol was potentiated by the 5-HT2C inverse agonist SB 206553 (5 mg/kg) but unaltered by the 5-HT2C antagonists SB 243213 and SB 242084 (1 mg/kg). Conversely, the effect of 1 mg/kg clozapine, a dose able to reverse the decrease in DA outflow induced by the 5-HT2C agonist Ro 60-0175 (3 mg/kg), was unaffected by SB 206553 but blocked by SB 243213 (1 mg/kg) and SB 242084 (.3 and 1 mg/kg). CONCLUSIONS: These results show that clozapine and haloperidol differentially alter the constitutive activity of 5-HT2C receptors and suggest that clozapine behaves as a 5-HT2C inverse agonist in vivo.  相似文献   

6.
Summary. In vivo occupation of dopamine D1, D2 and serotonin (5-HT)2A receptors by a novel antipsychotic drug, SM-9018 (perospirone hydrochloride; cis-N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]cyclohexane-1,2-dicarboximide monohydrochloride) and its major metabolite (ID-15036; N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]-1-hydroxy-1,2-cyclohexanedicarboximide) was measured in rat brain using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), an irreversible antagonist, at these receptor sites. SM-9018 and its metabolite, ID-15036, dose-dependently reversed EEDQ-induced 5-HT2A and D2 receptor inactivation, but not D1 receptor inactivation. At lower doses (0.1 mg/kg i.p.), SM-9018 showed a preferential occupation of the 5-HT2A receptors, with only a small effect on the D2 receptors; while at higher doses (1.0 and 5.0 mg/kg i.p.), it was nearly equipotent in its occupation of both the D2 (77.8%) and the 5-HT2A receptors (78.6%). On the other hand, ID-15036 was more potent in occupying the 5-HT2A than the D2 receptors even at higher doses (1.0 and 5.0 mg/kg i.p.). We previously reported that atypical antipsychotic drugs, such as clozapine, were characterized by a high occupancy of the 5-HT2A receptors, with a low or minimum occupancy of the D2 receptors in vivo. The present study suggests that SM-9018 and its metabolite ID-15036 show a preferential tendency to occupy 5-HT2A receptors, and that the clozapine-like atypical properties of SM-9018 may be due to some pharmacological action of both the SM-9018 itself and its metabolite, ID-15063. Accepted December 26, 1997; received July 23, 1997  相似文献   

7.
O Giorgi  G Biggio 《Brain research》1990,533(1):53-59
The unilateral intrastriatal injection of the irreversible dopamine (DA) receptor blocker N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induces a marked decrease in the density of D1 (-48%) and D2 (-51%) DA receptors available for binding to [3H]SCH 23390 and [3H]raclopride, respectively. A challenge dose of the D2 agonist LY 171555 (1 mg/kg, i.p., 24 h after EEDQ) causes intensive ipsiversive circling behavior, whereas the selective D1 agonist SKF 38393 (20 mg/kg, i.p., 24 h after EEDQ) is unable to induce rotations. The density of D1 and D2 DA receptors returns to basal levels by 7 days after the intrastriatal infusion of EEDQ. This biochemical recovery is associated with a progressive decrease in the number of rotations elicited by a challenge dose of LY 171555, suggesting that EEDQ does not cause any relevant neuronal damage. A selective inactivation of striatal D1 or D2 DA receptors can be obtained by injecting EEDQ 30 min after the administration of the D2 antagonist raclopride (20 mg/kg, i.p.) or of the D1 antagonist SCH 23390 (2 mg/kg, s.c.), respectively. The intensity of the circling behavior induced by LY 171555 24 h after EEDQ in animals with a selective inactivation of D2 DA receptors is similar to that found in rats in which both D1 and D2 DA receptors have been inactivated. In contrast, LY 171555 does not cause rotations when the density of D1 DA receptors is selectively decreased by EEDQ in rats pretreated with raclopride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
OBJECTIVE: Aripiprazole has a unique pharmacological profile that includes partial agonism at D(2) receptors, antagonism at 5-HT(2) receptors, and partial agonism at 5-HT(1A) receptors. The authors conducted a positron emission tomography (PET) study to characterize the simultaneous effects of aripiprazole at the D(2), 5-HT(2), and 5-HT(1A) receptors in patients with schizophrenia or schizoaffective disorder. METHOD: Twelve patients who had previously received antipsychotic treatment were randomly assigned to receive 10 mg, 15 mg, 20 mg, or 30 mg of aripiprazole. After at least 14 days of treatment, participants underwent high-resolution PET scans using [(11)C]raclopride, [(18)F]setoperone, and [(11)C]WAY100635. RESULTS: Very high occupancy was observed at striatal D(2) receptors (average putamen, 87%; caudate, 93%; and ventral striatum, 91%), lower occupancy at 5-HT(2) receptors (54%-60%), and even lower occupancy at 5-HT(1A) receptors (16%). D(2) occupancy levels were significantly correlated with plasma drug concentrations, and even the lowest dose (10 mg) led to 85% D(2) occupancy. Extrapyramidal side effects were seen only in two of the four participants with occupancies exceeding 90%. CONCLUSIONS: Aripiprazole exhibits a unique occupancy profile as compared with other conventional and atypical antipsychotics. The threshold for response appears to be higher than 60%, extrapyramidal side effects appear to be uncommon even at occupancies that exceed the conventional extrapyramidal side effects threshold of 80%, and 5-HT(2) occupancy is lower than D(2) occupancy. Implications for aripiprazole's mechanism of action are discussed.  相似文献   

9.
In this study, autoradiographical techniques are introduced to investigate the occupancy of serotonin 5-HT2, dopamine D2 and alpha 1-adrenergic receptors after the in vivo administration of ritanserin, a selective, potent and long-acting 5-HT2 antagonist and of risperidone, a very potent 5-HT2 antagonist and potent D2 and alpha 1 antagonist. Unoccupied 5-HT2 and alpha 1-receptors were labelled with [125I]7-amino-8-iodoketanserin ([125I]AMIK) and D2 receptors with [125I]iodosulpride in horizontal rat brain section. Receptor occupancy by the drugs was quantified by image analysis of the autoradiograms. Ritanserin produced 50% occupancy of the 5-HT2 receptors at a dose of 0.02 mg/kg s.c., while at 40 mg/kg s.c. ritanserin still did not occupy 50% of the D2 and alpha 1 receptors. Risperidone occupied 50% of the 5-HT2, alpha 1 and D2 receptors at 0.0075, 0.32 and 2.5 mg/kg s.c., respectively. Ex vivo autoradiography was found to be applicable where radioligand binding techniques using brain homogenates had failed for the study of ex vivo receptor occupancy due to rapid drug dissociation. Ex vivo autoradiography is hitherto the sole technique which allowed the measurement of alpha 1 receptor occupancy by risperidone after in vivo administration of the drug.  相似文献   

10.
BACKGROUND: Ziprasidone (Zeldox) is a novel antipsychotic with a unique combination of antagonist activities at monoaminergic receptors and transporters and potent agonist activity at serotonin 5-HT(1A) receptors. 5-HT(1A) receptor agonism may be an important feature in ziprasidone's clinical actions because 5-HT(1A) agonists increase cortical dopamine release, which may underlie efficacy against negative symptoms and reduce dopamine D(2) antagonist-induced extrapyramidal side effects. This study investigated the in vivo 5-HT(1A) agonist activity of ziprasidone by measuring the contribution of 5-HT(1A) receptor activation to the ziprasidone-induced cortical dopamine release in rats. METHODS: Effects on dopamine release were measured by microdialysis in prefrontal cortex and striatum. The role of 5-HT(1A) receptor activation was estimated by assessing the sensitivity of the response to pretreatment with the 5-HT(1A) antagonist, WAY-100635. For comparison, the D(2)/5-HT(2A) antagonists clozapine and olanzapine, the D(2) antagonist haloperidol, the 5-HT(2A) antagonist MDL 100,907 and the 5-HT(1A) agonist 8-OHDPAT were included. RESULTS: Low doses (<3.2 mg/kg) of ziprasidone, clozapine, and olanzapine increased dopamine release to approximately the same extent in prefrontal cortex as in striatum, but higher doses (> or =3.2 mg/kg) resulted in an increasingly preferential effect on cortical dopamine release. The 5-HT(1A) agonist 8-OHDPAT produced a robust increase in cortical dopamine (DA) release without affecting striatal DA release. In contrast, the D(2) antagonist haloperidol selectively increased striatal DA release, whereas the 5-HT(2A) antagonist MDL 100,907 had no effect on cortical or striatal DA release. Prior administration of WAY-100635 completely blocked the cortical DA increase produced by 8-OHDPAT and significantly attenuated the ziprasidone- and clozapine-induced cortical DA increase. WAY-100635 pretreatment had no effect on the olanzapine-induced DA increase. CONCLUSIONS: The preferential increase in DA release in rat prefrontal cortex produced by ziprasidone is mediated by 5-HT(1A) receptor activation. This result extends and confirms other in vitro and in vivo data suggesting that ziprasidone, like clozapine, acts as a 5-HT(1A) receptor agonist in vivo, which may contribute to its activity as an antipsychotic with efficacy against negative symptoms and a low extrapyramidal side effect liability.  相似文献   

11.
Kruzich PJ  See RE 《Brain research》2000,875(1-2):35-43
A widely postulated mechanism of action for the atypical profile of many novel antipsychotic drugs (APDs) is their relatively high affinity for 5-HT(2) receptors. The present study investigated motor function and striatal dopamine (DA) efflux and metabolism in rats given 21 daily injections of drugs that differed in 5-HT(2) affinity. These drugs included: risperidone (high 5-HT(2A/2C)/high D(2)), clozapine (high 5-HT(2A/2C)/low D(2)), haloperidol (low 5-HT(2A/2C)/high D(2)), haloperidol+ritanserin (selective 5-HT(2A/2C)), or vehicle. Rats injected with haloperidol (0.5 mg/kg) or haloperidol+ritanserin (0.5 mg/kg and 1.0 mg/kg, respectively) showed extreme catalepsy on day 1, but significantly decreased catalepsy when tested again on days 7 and 21. Acute or subchronic risperidone (0.05 or 0.5 mg/kg), clozapine (20 mg/kg), or vehicle did not induce significant catalepsy. Microdialysis performed 24 h after the last injection demonstrated that rats treated with risperidone, clozapine, or vehicle showed similar increases in DA efflux and metabolism following an acute injection of a selective DA D(2/3) antagonist (raclopride, 0.5 mg/kg). DA efflux showed an attenuated response to raclopride in the haloperidol alone group; this effect was less apparent in the haloperidol+ritanserin group. However, both of these groups showed a similar tolerance effect to the raclopride-induced increase in DA metabolites. These results suggest that the profile seen after subchronic risperidone more closely resembles clozapine than haloperidol. While ritanserin reduced the tolerance-like effects of haloperidol on striatal DA efflux, the overall results demonstrate that potent 5-HT(2) blockade alone may not entirely account for the distinctive profile of novel APDs.  相似文献   

12.
Because long-term administration of antipsychotics can cause behavioral dopamine supersensitivity, this study examined whether the antipsychotic sertindole could elicit biochemical changes indicative of dopamine supersensitivity. In rats, behavioral dopamine supersensitivity is consistently associated with an increased proportion of dopamine receptors that have high affinity for dopamine, namely D2(High), in homogenized striata. Nine days of subcutaneously injected sertindole (1.25 mg/kg/day) increased the proportion of D2(High) receptors between 186% and 215%, although the total population of D2 receptors did not change. Although the findings suggest that rats or patients treated with sertindole might exhibit behavioral dopamine supersensitivity, the drug-induced increase in D2(High) receptors was less than that previously found with haloperidol.  相似文献   

13.
The effects of acute administration of sertindole on DA output were examined in the shell part of the nucleus accumbens (NACS) and the striatum (STR), areas which are associated with limbic functions and motor control, respectively, by using in vivo differential normal pulse voltammetry in rats. The effect of sertindole was compared to those obtained with the reference antipsychotic drugs clozapine and haloperidol, new generation antipsychotics represented by risperidone, olanzapine, ziprasidone, quetiapine, and aripiprazole, as well as, with those of preferential D2/3, D4, 5-HT1A, 5-HT2A, 5-HT2C, alpha1, and alpha2 receptor ligands. In similarity with the new generation antipsychotics, sertindole preferentially increase DA output in the NACS as compared to the STR whereas the opposite was true for haloperidol. The regional specific effect of the partial D2 receptor agonist aripiprazole was mainly driven by a decrease in striatal rather that by an increase in accumbal DA output. The selective 5-HT2A and D4 receptor antagonists MDL100,151 and Lu 38-012, respectively, both preferentially increased DA output in the NACS. Thus, the present results are in line with the hypothesis that 5-HT2A receptor antagonism is of importance for the observed limbic selectivity of new generation antipsychotics and, in turn, to their favorable clinical profile especially as regards extrapyramidal side effects (EPS) liability. For some compounds, blockade of D4 receptors may also play a role in this regard.  相似文献   

14.
Atypical antipsychotics: mechanism of action.   总被引:23,自引:0,他引:23  
BACKGROUND: Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. METHOD: This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. RESULTS: Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. CONCLUSION: Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. RELEVANCE: The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.  相似文献   

15.
1. EEDQ inactivates unoccupied receptors in vivo in brain tissue and is useful in determining which receptors are occupied by a drug treatment. 2. alpha-MPT, inhibits the synthesis of dopamine, reducing D2-type receptor occupancy by dopamine and enhances the amount of receptor inactivation by EEDQ. 3. Amphetamine releases dopamine resulting in increased occupancy of dopamine D2-type receptors and we have shown that it protects those receptors from EEDQ. 4. Clozapine and remoxipride, two antipsychotic agents, occupied the dopamine receptors in both the caudate and cortex. 5. These findings are important because they substantiate other results obtained with amphetamine and SPECT, which demonstrated an exaggerated dopamine neurotransmission in schizophrenic patients versus normal controls.  相似文献   

16.
1. It has been unequivocally shown that antipsychotic compounds reduce dopaminergic transmission. A relationship in vitro between the potency for the antipsychotic effect and the blockade of D2-dopamine receptors has been shown. No such relationships have been demonstrated for any other central receptor population. 2. Positron emission tomography (PET) has made it possible to investigate interactions of psychotropic drugs with central receptors in the living human brain. Using the selective D2 receptor antagonist raclopride labelled with positron emitting isotope 11C, it has been shown that chemically distinct classical neuroleptics in conventional doses occupy a high degree (65-89%) of the D2-receptors in the human brain. The results substantiate the opinion that the antipsychotic effects is mediated by a blockade of D2-dopamine receptors. 3. The degree of binding to D1-receptors using the 11C-labelled D1-antagonist from Schering (SCH 23390) as the ligand was also determined. The D1-receptor occupancy seemed to be dependent on the type of the antipsychotic compound studied. 4. The atypical neuroleptic compound clozapine demonstrated a different binding profile than the classical neuroleptics. Thus, clozapine in conventional doses occupied D2-receptors to a smaller extent (40%, 40%, 65%) than classical neuroleptics. The occupation of D1-receptors was higher (40%, 42%) than that of classical compounds (0-36%). 5. The unique clinical profile of clozapine may be related to its potency on both D1- and D2-receptors. The distribution of D1-receptors varies from that of D2-receptors in the human brain which may be one reason for the importance of blocking both D1- and D2-receptors for a full antipsychotic response.  相似文献   

17.
1. Muscle rigidity was assessed quantitatively and objectively as increases in electromyographic (EMG) activity (muscle rigidity) in the hindlimb muscles of the rat following subcutaneous administration of haloperidol, fluphenazine and thioridazine. 2. Behavioural changes were assessed as increases in the catalepsy score, defined as the time taken for an animal to move off an inclined grid. 3. Increased tonic EMG activity, or the presence of catalepsy was related to the level of occupancy of dopamine D2 receptors in the striatum and substantia nigra of the brain, measured using ex vivo quantitative autoradiography. 4. Increases in tonic EMG activity and the induction of catalepsy were associated with >80% occupancy of striatal and nigral D2 receptors by fluphenazine, while haloperidol increased tonic EMG activity at D2 occupancies of >57%. 5. Thioridazine at doses ranging from 1-15 mg/kg failed to increase EMG activity and occupied <61% of striatal D2 receptors. 6. Overall the findings support the hypothesis that muscle rigidity is observed when a threshold level of D2 receptors in the striatum and substantia nigra are occupied by antipsychotic drugs. 7. This conclusion is consistent with the results of positron emission tomography (PET) studies in humans, and those from our past studies in rats using raclopride, chlorpromazine and clozapine, in which a threshold of approximately 70% striatal and nigral D2 receptor occupancy has been demonstrated.  相似文献   

18.
BACKGROUND: Loxapine is a typical antipsychotic while isoloxapine, its 8Cl-isomer, shows atypicality in some animal models. The basis for this difference is not well understood. The purpose of this study was to systematically compare the two drugs in in vitro and in vivo animal models, and to understand mechanisms underlying their differential typical/atypical profiles. METHODS: The in vitro and in vivo receptor profiles as well as the action of loxapine and isoloxapine on rat conditioned avoidance response (CAR), catalepsy (CAT), striatal FOS expression and prolactin levels were determined. To understand loxapine's typical profile, we added MDL100,907, to provide loxapine+MDL the same in vivo 5-HT2/D2 ratio as isoloxapine, while holding its D2 component constant. RESULTS: Isoloxapine behaved as an "atypical" antipsychotic demonstrating CAR inhibition, low CAT, no significant prolactin elevation, and minimal FOS expression in the dorsolateral striatum. Loxapine behaved like a typical antipsychotic, showing unexpectedly high in vivo D2 occupancy. Addition of MDL100,907, which resulted in a very high 5-HT2/D2 in vivo ratio, did not alter loxapine + MDL's typical profile. CONCLUSIONS: Loxapine's behaviour as a typical antipsychotic is most likely due to its disproportionately high D2 occupancy. Appropriate action at D2 receptors in vivo, rather than the high 5-HT2/D2 ratio, seems to be critical in determining why isoloxapine behaves like an atypical antipsychotic.  相似文献   

19.
Serotonin (5-HT)(1A) receptor agonism may be of interest in regard to both the antipsychotic action and extrapyramidal symptoms (EPS) of antipsychotic drugs (APD) based, in part, on the effect of 5-HT(1A) receptor stimulation on the release of dopamine (DA) in the nucleus accumbens (NAC) and striatum (STR), respectively. We investigated the effect of R(+)-8-hydroxy-2-(di-n-propylamino)-tetralin (R(+)-8-OH-DPAT) and n-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-n-(2-pyridinyl)cyclohe xanecarboxamide trihydrochloride (WAY100635), a selective 5-HT(1A) receptor agonist and antagonist, respectively, on basal and APD-induced DA release. In both STR and NAC, R(+)-8-OH-DPAT (0.2 mg/kg) decreased basal DA release; R(+)-8-OH-DPAT (0.05 mg/kg) inhibited DA release produced by the 5-HT(2A)/D(2) receptor antagonists clozapine (20 mg/kg), low dose risperidone (0.01 and 0. 03 mg/kg) and amperozide (10 mg/kg), but not that produced by high dose risperidone (0.1 and 1.0 mg/kg) or haloperidol (0.01-1.0 mg/kg), potent D(2) receptor antagonists. This R(+)-8-OH-DPAT-induced inhibition of the effects of clozapine, risperidone and amperozide was antagonized by WAY100635 (0.05 mg/kg). WAY100635 (0.1-0.5 mg/kg) alone increased DA release in the STR but not NAC. The selective 5-HT(2A) receptor antagonist M100907 (1 mg/kg) did not alter the effect of R(+)-8-OH-DPAT or WAY100635 alone on basal DA release in either region. These results suggest that 5-HT(1A) receptor stimulation inhibits basal and some APD-induced DA release in the STR and NAC, and that this effect is unlikely to be mediated by an interaction with 5-HT(2A) receptors. The significance of these results for EPS and antipsychotic action is discussed.  相似文献   

20.
In a previous study, we showed that the psychoactive drug caffeine alters the expression of the dopamine 2 receptor (D2R) gene in vitro and in vivo. Here, we report that acute administration of antipsychotic and anti-parkinsonian drugs also regulate D2R gene expression in PC12 cells and in the mouse striatum. Treatment of PC12 cells with the atypical antipsychotic and specific 5-HT antagonist clozapine (60 microM) reduced D2R/luciferase reporter expression by 46% after 24 h. However, male and female mice treated with a clinical dose of clozapine (10 mg/kg) showed no changes in striatal D2R mRNA expression when assayed by quantitative RT-PCR. Treatment of PC12 cells with the specific D2R agonist anti-parkinsonian drug, bromocriptine mesylate (BCM; 5 microM) also resulted in decreased D2R/luciferase reporter activity (27%). In contrast to clozapine, a clinical dose of BCM (16 mg/kg) led to a 21% decrease and a 45% increase in striatal D2R mRNA expression in male and female mice, respectively, after 24 h. Coadministration of clozapine and BCM in PC12 cells resulted in a synergistic decrease in D2R/luciferase reporter expression (68%), and coadministration of these drugs in vivo led to decreases in striatal D2R mRNA expression in both male and female mice (45% and 22%, respectively). Collectively, these results indicate that clozapine, BCM, or a combination of these drugs have differential effects on dopamine receptor gene expression and might also affect striatal physiology in a sexually dimorphic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号