首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using PET with (15)O water, we characterized the time course of functional brain changes following the acute administration of a first- and a second-generation antipsychotic. Volunteers with schizophrenia were scanned while drug-free (baseline) and after single dose administration of haloperidol (n=6) or olanzapine (n=6) during a time course adapted to their plasma kinetics. To obtain brain location information, we contrasted each post-drug scan to baseline-acquired scans. We plotted the regional cerebral blood flow (rCBF) extracted in these locations and calculated the kinetic characteristics of the curves. Further, we compared and contrasted the rCBF changes induced by the drugs over the first 4 h post-drug administration. Dorsal and ventral striatum, thalamus and anterior cingulate cortex were activated with haloperidol, while frontal, temporal and cerebellum regions evidenced reduced flow. With olanzapine, ventral striatum, anterior cingulate and temporal cortices evidenced increases, and thalamus and lingual cortex decreases, in rCBF. Both drugs activated the caudate nucleus. Haloperidol induced greater activation of the dorsal striatum than did olanzapine. These data reveal important differences in patterns of brain activation between the drugs. Differences in the involvement in basal ganglia parallel known differences between the drugs in the emergence of acute EPS upon emergency administration.  相似文献   

2.
We have recently demonstrated that specific neuroanatomical patterns of Fos-like immunoreactivity are predictive of atypical antipsychotic activity. However, the fact that neuroleptics must be administered chronically in order to generate both extrapyramidal side effects and an optimal therapeutic response calls into question the relevance of acute changes in Fos-like immunoreactivity for these slowly developing events. Fos-like immunoreactivity cannot be used to identify neurons activated by chronic neuroleptic administration because the increase in Fos-like immunoreactivity produced by an acute antipsychotic injection is dramatically reduced following repeated neuroleptic administration. In contrast, expression of the immediate-early gene product ΔFosB is persistently elevated in the striatum by chronic haloperidol administration. This suggests that ΔFosB-like immunoreactivity may be used to identify neurons activated by chronic antipsychotic administration. Since typical and atypical neuroleptics elevate Fos-like immunoreactivity in different regions of the forebrain acutely, the purpose of the present study was to determine whether typical (haloperidol) and atypical (clozapine, ICI 204,636) antipsychotics produce distinct patterns of elevated ΔFosB-like immunoreactivity in the forebrain after chronic administration. Administration of haloperidol (2 mg/kg/day) to rats for 19 days induced a homogeneous elevation of neurons which displayed ΔFosB-like immunoreactivity in the ventral, medial and dorsolateral aspects of the striatum. Chronic haloperidol administration did not enhance ΔFosB-like immunoreactivity in the prefrontal cortex and lateral septal nucleus. Repeated administration of clozapine (20 mg/kg/day) and ICI 204,636 (20 mg/kg/day) for 19 days elevated ΔFosB-like immunoreactivity not only in the ventral striatum but also in the prefrontal cortex and lateral septal nucleus. However, these compounds had weak effects on ΔFosB-like immunoreactivity in the dorsolateral striatum. These results suggest that a preferential action on limbic structures such as the prefrontal cortex, ventral striatum and lateral septal nucleus may account for the ability of chronic clozapine and ICI 204,636 administration to reduce the symptoms of schizophrenia without generating extrapyramidal side effects.  相似文献   

3.
Post-mortem investigations have confirmed that glutamatergic NMDA, AMPA, and kainate receptors are involved in the pathophysiology of schizophrenia. It is still unclear, however, whether the altered number of receptors is caused by the disease itself or the medication. Therefore, animal models were investigated for effects of antipsychotic medication after treatment periods of up to 6 months, the results of which are summarized here. Generally, NMDA receptor binding was found to be increased in striatum and nucleus accumbens after therapy with haloperidol, whereas clozapine only increased the number of receptors in nucleus accumbens. While haloperidol led to an increase in AMPA receptors in the posterior cingulate gyrus, striatum, insular cortex, and n. accumbens, clozapine was found to elevate ligand binding in the anterior cingulate gyrus and infralimbic cortex. Although kainate receptor binding was increased in hippocampus by both antipsychotics, clozapine was significantly more effective. In conclusion, data reveal different effects from the typical neuroleptic haloperidol and the atypical antipsychotic clozapine. The results suggest that post-mortem findings in patients with schizophrenia may at least partially be explained by drug effects and plasticity changes induced by long-term medication with antipsychotics.  相似文献   

4.
Despite multiple lines of investigation the effect of neuroleptics on glutamate-mediated neurotransmission remains controversial. To study the effects of typical and atypical neuroleptics on selected parameters of glutamate-mediated neurotransmission, male Sprague-Dawley rats were randomly assigned to a 21-day oral treatment course with vehicle, haloperidol (HDL), or clozapine (CLZ). Coronal slices of rat brain were then incubated with tritiated ligands to measure NMDA, AMPA, and kainate receptor, and glutamate reuptake site density. Regions of interest included the frontal cortex, anterior cingulate cortex, dorsal striatum, ventral striatum, and the nucleus accumbens. CLZ increased the density of AMPA receptors significantly in the frontal and anterior cingulate cortices compared with normal controls. In the dorsal and ventral striatum, and nucleus accumbens as a whole, CLZ-treated rats had a higher AMPA receptor density compared with both the HDL- and vehicle-treated controls. Additionally, within the nucleus accumbens, CLZ-treated rats had a higher density of AMPA receptors compared with the HDL group in the core, and at trend level in the shell. There was a group by region interaction for NMDA receptor density, primarily reflecting the tendency of HDL treated rats to have high receptor densities in the frontal and anterior cingulate cortices. Kainate receptors and glutamate reuptake site densities did not differ significantly across groups. These results suggest a critical role for glutamate in the mediation of atypical antipsychotic drug action in anatomically-specific regions, and further encourage the investigation of glutamate neurotransmitter systems in schizophrenia.  相似文献   

5.
The 5-hydroxytryptamine (5-HT; serotonin)-6 receptor (5-HT6R) is a putative target of atypical antipsychotic drugs and its mRNA expression is altered in schizophrenia. [125I]SB-258585 is a selective 5-HT6R antagonist which has been well characterized for use in the rat brain. The present study evaluated its suitability for receptor autoradiography in the human brain and its application to quantitative studies. The affinity (K(d) approximately 1.2 nM) and relative distribution of binding sites (striatum > cortex approximately hippocampus) were similar to the rat. The distribution of [125I]SB-258585 binding in these regions was also consistent with that of 5-HT6R mRNA, determined in parallel using in situ hybridization. [125I]SB-258585 binding site densities were measured in dorsolateral prefrontal cortex of 20 patients with chronic schizophrenia and compared with 17 normal subjects. No differences were seen between groups. Neither were [125I]SB-258585 binding site densities affected in the frontal cortex or striatum of rats following 2 weeks' administration of the antipsychotic drugs haloperidol, chlorpromazine, olanzapine, risperidone, or clozapine. In summary, [125I]SB-258585 is a suitable radioligand for studies of human brain 5-HT6R binding sites and shows that their distribution is broadly similar to that of the rodent. The lack of effect of schizophrenia or antipsychotic drug administration on [125I]SB-258585 binding suggests that an altered receptor density does not contribute to any involvement which the 5-HT6R may have in the disease or its treatment.  相似文献   

6.
7.
Antipsychotic drugs act on the dopaminergic system (first‐generation antipsychotics, FGA), but some also directly affect serotonergic function (second‐generation antipsychotics, SGA) in the brain. Short and long‐term effects of these drugs on brain physiology remain poorly understood. Moreover, it remains unclear whether any physiological effect in the brain may be different for FGAs and SGAs. Immediate (+3.30 h) and different effects of single‐dose FGA (haloperidol, 3 mg) and a SGA (aripiprazole, 10 mg) on resting cerebral blood flow (rCBF) were explored in the same 20 healthy volunteers using a pulsed continuous arterial spin labeling (pCASL) sequence (1.5T) in a placebo‐controlled, repeated measures design. Both antipsychotics increased striatal rCBF but the effect was greater after haloperidol. Both decreased frontal rCBF, and opposite effects of the drugs were observed in the temporal cortex (haloperidol decreased, aripiprazole increased rCBF) and in the posterior cingulate (haloperidol increased, aripiprazole decreased rCBF). Further increases were evident in the insula, hippocampus, and anterior cingulate after both antipsychotics, in the motor cortex following haloperidol and in the occipital lobe the claustrum and the cerebellum after aripiprazole. Further decreases were observed in the parietal and occipital cortices after aripiprazole. This study suggests that early and different rCBF changes are evident following a single‐dose of FGA and SGA. The effects occur in healthy volunteers, thus may be independent from any underlying pathology, and in the same regions identified as structurally and functionally altered in schizophrenia, suggesting a possible relationship between antipsychotic‐induced rCBF changes and brain alterations in schizophrenia. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Administration of 4 antipsychotic drugs, haloperidol, chlorpromazine, thioridazine and clozapine, for 21 days elicited increased dopamine metabolism in frontal cortex of rat brain. Only clozapine failed to decrease the apparent firing rate of dopamine neurons in the striatum, as indexed by [homovanillic acid]/[dopamine]. These data support the hypotheses that frontal cortex dopamine neurons may be a common site for antipsychotic action while decreased release of dopamine in the striatum may be associated with the development of extrapyramidal side effects.  相似文献   

9.
Subanesthetic doses of N-methyl- -aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in -2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.  相似文献   

10.
Regional cerebral blood flow (rCBF) and regional cerebral metabolic rate of glucose (rCMRglc) were measured in aged and young monkeys by positron emission tomography (PET). Our purpose was to examine whether the age-related changes observed in the human brain also occur in the monkey brain. Studies were performed on six aged and six young-adult male rhesus monkeys (Macaca mulatta). rCBF and the rCMRglc were serially measured using PET with [(15)O]H(2)O and 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG), respectively. In order to minimize the bias induced by anesthesia, the PET emission scans were performed in the conscious state. ROIs were taken for the cerebellum, hippocampus with adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex and cingulate. Group differences and correlations between rCBF and rCMRglc in each group were determined. Aged monkeys had significantly lower rCBF in the cerebellum, hippocampus with the adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex, and significantly lower rCMRglc in the cerebellum, hippocampus with the adjacent cortex, striatum, occipital cortex, temporal cortex, frontal cortex and cingulate, compared to young monkeys. There were significant correlations between rCBF and rCMRglc in both the aged and young groups, but no significant difference was found in relationship between the two groups. Age-related changes were observed not only in rCMRglc, but also in rCBF in aged monkeys, while the coupling between rCBF and rCMRglc was maintained even in aged monkeys. These results demonstrated the potential of aged monkeys to serve as an aged human model using PET.  相似文献   

11.
Schizophrenia is associated with abnormal processing of salient stimuli, which may contribute to clinical symptoms. We used fMRI and a standard auditory three-stimulus task to examine attention processing. Target stimuli and novel distractors were presented to 17 patients and 21 healthy controls and activation was correlated with negative and positive symptoms. To targets, patients overactivated multiple regions including premotor cortex, anterior cingulate, temporal cortex, insula, and hippocampus, and also showed attenuated deactivation within occipital cortex. To distractors, patients overactivated left ventrolateral prefrontal cortex. This overactivation may reflect hypersensitivity to salient stimuli in schizophrenia. Patients also exhibited an inverse correlation between negative symptom severity and activation to novel distractors in the dorsolateral prefrontal cortex, premotor area, and ventral striatum. Novelty-induced activity within prefrontal cortex and ventral striatum may represent a useful intermediate phenotype for studies of negative symptoms.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.  相似文献   

13.
We compared the effects of subchronic clozapine and haloperidol administration on the expression of SNAP-25 and synaptophysin in an animal model of schizophrenia based on the glutamatergic hypothesis. Mice were first treated with a non-competitive NMDA antagonist MK-801 (0.3 mg/kg/day) or saline for 5 days, and then clozapine (5 mg/kg/day), haloperidol (1 mg/kg/day) or saline was administered for two weeks. The locomotion test, as a behavioral model of the positive symptoms of schizophrenia, was applied after MK-801/saline administration on day 6 for acute effects and after antipsychotic/saline administration on day 19 for enduring effects on mice activity. Memory function was assessed by the Novel Object Recognition (NOR) test, one day after the last day of antipsychotic/saline administration (day 20). Western Blotting technique was used to determine SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Both antipsychotics reversed the enhanced locomotion effects of MK-801. MK-801 and haloperidol decreased recognition memory performance. On the other hand, clozapine did not compromise memory. It also did not reverse the negative effects of MK-801 on memory performance. MK-801 did not change SNAP-25 and synaptophysin expressions in the hippocampus and frontal cortex. Clozapine increased hippocampal SNAP-25, decreased hippocampal synaptophysin expression, whereas frontal SNAP-25 and synaptophysin expressions remained unchanged. Haloperidol had no effects on levels of SNAP-25 and synaptophysin in the frontal cortex and hippocampus. These findings support the idea that the differential effects of clozapine might be related to its plastic effects and synaptic reorganization of the hippocampus.  相似文献   

14.
One of the most consistent findings in postmortem studies of schizophrenia is increased GABAA receptor binding and reduced glutamic acid decarboxylase (GAD67) expression. Due to long-term antipsychotic treatment before death, these findings may reflect not only the consequences of schizophrenia but also medication effects. To differentiate between these options, we used an animal model and evaluated long-term effects of typical (haloperidol) and atypical (clozapine) antipsychotic drugs on the GABAergic system. A total of 33 adult male rats were treated in three cohorts over a period of 6 months. One cohort of 11 animals received clozapine (45 mg/kg/day), another one received haloperidol (1.5 mg/kg/day) and a third one received pH-adapted minimal concentrations of HCl in the drinking water. Receptor autoradiography of the GABAA receptor ([3H]-muscimol binding) and in situ hybridization in adjacent sections with 35S-labeled cRNA probes of the y-aminobutyric acid (GABA)-producing enzyme, GAD67, was performed. While haloperidol increased GABAA receptor binding in striatum and nucleus accumbens (NA), it suppressed GABAA receptor binding in temporal (TEMPC) and parietal (PARC) cortex. Clozapine induced GABAA receptor binding in infralimbic cortex (ILC) and similar like haloperidol in anterior cingulate cortex (ACC), two regions of the limbic cortex. In addition, either drug increased gene expression of GAD67. It is concluded that antipsychotic drugs differentially alter the GABAergic system, strongly suggesting that drug effects are partially responsible for the up-regulation of GABAA receptor binding in certain brain regions as observed in postmortem brains of schizophrenic patients. However, the reduced GAD67 expression seen in postmortem brains does not appear to reflect drug effects, since our animal model demonstrated increased gene expression.  相似文献   

15.
BACKGROUND: Proton magnetic resonance spectroscopy (1H-MRS) studies of schizophrenia suggest an effect of the disease or of antipsychotic medications on brain N-acetyl aspartate (NAA), a marker of neuronal viability. We studied in the rat the effect of antipsychotic drugs on NAA in several brain regions where NAA reductions have been reported in chronically medicated patients with schizophrenia. METHODS: Three groups of nine rats each were treated with haloperidol (6 mg/kg/day), clozapine (70 mg/kg/day) and vehicle for 6 weeks and were sacrificed. Concentrations of NAA were determined by high-performance liquid chromatography (HPLC) from the following brain regions: cortex, striatum, thalamus, hippocampus and cerebellum. RESULTS: Mixed-factorial ANOVA of NAA concentrations revealed no significant effect of drug group [F(2, 24) = 0.034; p = 0.966] or a group by brain region interaction [F(8, 44) = 0.841; p = 0.572]. There was a significant main effect of region [F(4, 21) = 6.104; p = 0.002] with higher NAA in the cortex. CONCLUSIONS: These results are consistent with the only other study of the effect of typical and atypical antipsychotic drugs on NAA in the rat brain. The well-documented lower NAA in chronically treated schizophrenia patients is probably not a simple effect of antipsychotic medications.  相似文献   

16.
Atypical antipsychotic drugs (APDs) such as clozapine, but not the typical APD haloperidol, improve some aspects of cognition in schizophrenia. This advantage has been attributed, in part, to the ability of the atypical APDs to markedly increase acetylcholine (ACh) and dopamine (DA) release in rat medial prefrontal cortex (mPFC), while producing a minimal effect in the nucleus accumbens (NAC) or striatum. The atypical APD-induced preferential release of DA, but not ACh, in the mPFC is partially inhibited by the selective 5-HT(1A) antagonist WAY100635. However, little is known about these effects of atypical APDs in the ventral hippocampus (vHIP), another possible site of action of atypical APDs with regard to cognitive enhancement. The present study demonstrates that clozapine (10 mg/kg) comparably increases both ACh and DA release in the vHIP and mPFC. The increases in DA, but not ACh, release in both regions were partially attenuated by WAY100635 (0.2 mg/kg), which had no effect by itself on the release of either neurotransmitter in either region. Tetrodotoxin (TTX; 1 microM), a Na(+) channel blocker, in the perfusion medium, eliminated the clozapine (10 mg/kg)-induced ACh and DA release in the vHIP, indicating their neuronal origin. Haloperidol produced a slight increase in ACh release in the vHIP at 1 mg/kg, and DA release in the mPFC at 0.1 mg/kg. In conclusion, clozapine increases ACh and DA release in the vHIP and mPFC, whereas haloperidol has minimal effects on the release of these two neurotransmitters in either region. These differences may contribute, at least in part, to the superior ability of clozapine, compared to haloperidol, to improve cognition in schizophrenia. 5-HT(1A) agonism is important to the ability of clozapine and perhaps other atypical APDs to increase DA, but not ACh, release in the vHIP, as well as the mPFC. The role of hippocampus in the cognitive effects of atypical APDs warrants more intensive study.  相似文献   

17.
N-acetylaspartate (NAA) is present in high concentrations in the CNS and is found primarily in neurons. NAA is considered to be a marker of neuronal viability. Numerous magnetic resonance spectroscopy (MRS) and postmortem studies have shown reductions of NAA in different brain regions in schizophrenia. Most of these studies involved patients chronically treated with antipsychotic drugs. However, the effect of chronic antipsychotic treatment on NAA remains unclear. In the present study, we measured NAA in brain tissue taken from 43 male Long-Evans rats receiving 28.5 mg/kg haloperidol decanoate i.m. every 3 weeks for 24 weeks and from 21 controls administered with vehicle. Determination of tissue concentrations of NAA was achieved by HPLC of sections of frozen tissue from several brain regions with relevance to schizophrenia. Chronic administration of haloperidol was associated with a significant increase (+23%) in NAA in the striatum (p<0.05) when compared to controls, with no significant changes in the other regions investigated (frontal and temporal cortex, thalamus, hippocampus, amygdala, and nucleus accumbens). NAA appears to be selectively increased in the striatum of rats chronically receiving haloperidol. This increase may reflect a hyperfunction of striatal neurons and relate to the reported increase in somal size of these cells and/or the increase in synaptic density seen in this region following antipsychotic administration. The lack of effect in other regions indicates that the well-documented NAA deficits seen in chronically treated schizophrenia patients is not an effect of antipsychotic medication and may in fact be related to the disease process.  相似文献   

18.
19.
The effect of antipsychotic treatment on basal and phencyclidine (PCP)-induced heat shock protein-70 (hsp70) mRNA expression was studied in the rat striatum and in the prefrontal cortex. Abaperidone, a novel drug with an atypical antipsychotic profile, was compared, at pharmacologically equivalent doses, with the atypical antipsychotics clozapine and risperidone and also with haloperidol, a classical antipsychotic. Abaperidone and clozapine reduced basal hsp70 mRNA expression in the rat striatum and in the prefrontal cortex. No change in either region was found after haloperidol, whereas risperidone reduced hsp70 mRNA in the striatum but not in the prefrontal cortex. The N-methyl-D-aspartate (NMDA) receptor antagonist PCP significantly elevated hsp70 mRNA levels in the prefrontal cortex, an elevation that was potentiated by haloperidol and prevented by all of the atypical antipsychotics tested. Since hsp70 has been associated to some schizophrenia symptoms, we suggest that reduced hsp70 in the prefrontal cortex, a cortical area that plays a critical role in the etiology of many schizophrenia symptoms, may be linked to an atypical profile of antipsychotics, such as clozapine, and possibly also abaperidone.  相似文献   

20.
OBJECTIVE: The authors' goal was to test the hypothesis of extrastriatal D(2) receptor selectivity as the mechanism of action of clozapine. METHOD: Positron emission tomography (PET) was used to examine extrastriatal as well as striatal dopamine D(2) receptor occupancy in four patients treated with clozapine and three patients treated with haloperidol. The reference radioligand [(11)C]raclopride was used for determination of D(2) receptor occupancy in the striatum. The radioligand [(11)C]FLB 457 was chosen for determination of D(2) receptor occupancy in the thalamus, the temporal cortex, and the frontal cortex. RESULTS: In patients treated with haloperidol the D(2) receptor occupancy was high in all examined brain regions. In clozapine-treated patients the D(2) receptor occupancy was relatively low in both the striatum and the extrastriatal regions. CONCLUSIONS: The results from the present study give no support for the hypothesis of regional selectivity as the mechanism of action for clozapine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号