共查询到20条相似文献,搜索用时 15 毫秒
1.
New chemotherapeutics against Dengue virus and related flaviviruses are of growing interest in antiviral drug discovery. The viral serine protease NS2B-NS3 is a promising target for the development of such agents. Drug-like inhibitors of this protease with high affinity to the target are not available at the moment. The present work describes the discovery of new retro di- and tripeptide hybrids that do not necessarily require an electrophilic "warhead" to achieve affinities in the low micromolar range. The most active sequence in this series is the tripeptide R-Arg-Lys-Nle-NH(2). By variation of the N-terminal groups (R) it could be shown that the previously described arylcyanoacrylamide moiety is a preferable group in this position. Retro tripeptide hybrids were found to be more active and more selective than retro dipeptide hybrids. A significant selectivity towards the Dengue virus protease could be shown in a counterscreen with thrombin and the West Nile virus protease. Alternative sequences to R-Arg-Lys-Nle-NH(2) did not have higher affinities towards the Dengue virus protease, similar to retro-inverse sequences with D-lysine and D-arginine residues. The results of a competition assay with the known inhibitor aprotinin indicate that the N-terminal arylcyanoacrylamide residue of this compound class binds near the catalytic center of the enzyme. 相似文献
2.
Andreas Schüller Zheng Yin C.S. Brian Chia Danny N.P. Doan Hyeong-Kyu Kim Luqing Shang Teck Peng Loh Jeffery Hill Subhash G. Vasudevan 《Antiviral research》2011,92(1):96-101
A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. 相似文献
3.
Dengue virus (DENV), a mosquito-borne member of the family Flaviviridae, is a significant global pathogen affecting primarily tropical and subtropical regions of the world and placing tremendous burden on the limited medical infrastructure that exists in many of the developing countries located within these regions. Recent outbreaks in developed countries, including Australia (Hanna et al., 2009), France (La Ruche et al., 2010), Taiwan (Kuan et al., 2010), and the USA (CDC, 2010), lead many researchers to believe that continued emergence into more temperate latitudes is likely. A primary concern is that there are no approved vaccines or antiviral therapies to treat DENV infections. Since the viral NS2B-NS3 protease (DENV NS2B-NS3pro) is required for virus replication, it provides a strategic target for the development of antiviral drugs. In this study, proof-of-concept high-throughput screenings (HTSs) were performed to unambiguously identify dengue 2 virus (DEN2V) NS2B-NS3pro inhibitors from a library of 2000 compounds. Validation screens were performed in parallel to concurrently eliminate insoluble, auto-fluorescing, and/or nonspecific inhibitors. Kinetic analyses of the hits revealed that parallel substrate fluorophore (AMC) interference controls and trypsin inhibition controls were able to reduce false positive rates due to solubility and fluorophore interference while the trypsin inhibition control additionally eliminated non-specific inhibitors. We identified five DEN2V NS2B-NS3pro inhibitors that also inhibited the related West Nile virus (WNV) protease (NS2B-NS3pro), but did not inhibit the trypsin protease. Biochemical analyses revealed various mechanisms of inhibition including competitive and mixed noncompetitive inhibition, with the lowest Ki values being 12 ± 1.5 μM for DEN2V NS2B-NS3pro and 2 ± 0.2 μM for WNV NS2B-NS3pro. 相似文献
4.
Deng J Li N Liu H Zuo Z Liew OW Xu W Chen G Tong X Tang W Zhu J Zuo J Jiang H Yang CG Li J Zhu W 《Journal of medicinal chemistry》2012,55(14):6278-6293
By virtual screening, compound 1 was found to be active against NS2B-NS3 protease (IC(50) = 13.12 ± 1.03 μM). Fourteen derivatives (22) of compound 1 were synthesized, leading to the discovery of four new inhibitors with biological activity. In order to expand the chemical diversity of the inhibitors, small-molecule-based scaffold hopping was performed on the basis of the common scaffold of compounds 1 and 22. Twenty-one new compounds (23, 24) containing quinoline (new scaffold) were designed and synthesized. Protease inhibition assays revealed that 12 compounds with the new scaffold are inhibitors of NS2B-NS3 protease. Taken together, 17 new compounds were discovered as NS2B-NS3 protease inhibitors with IC(50) values of 7.46 ± 1.15 to 48.59 ± 3.46 μM, and 8 compounds belonging to two different scaffolds are active to some extent against DENV based on luciferase reporter replicon-based assays. These novel chemical entities could serve as lead structures for discovering therapies against DENV. 相似文献
6.
HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus 总被引:1,自引:0,他引:1
Johnston PA Phillips J Shun TY Shinde S Lazo JS Huryn DM Myers MC Ratnikov BI Smith JW Su Y Dahl R Cosford ND Shiryaev SA Strongin AY 《Assay and drug development technologies》2007,5(6):737-750
West Nile virus (WNV), a member of the Flavividae family, is a mosquito-borne, emerging pathogen. In addition to WNV, the family includes dengue, yellow fever, and Japanese encephalitis viruses, which affect millions of individuals worldwide. Because countermeasures are currently unavailable, flaviviral therapy is urgently required. The flaviviral two-component nonstructural NS2B-NS3 proteinase (protease [pro]) is essential for viral life cycle and, consequently, is a promising drug target. We report here the results of the miniaturization of an NS2B-NS3pro activity assay, followed by high-throughput screening of the National Institutes of Health's 65,000 compound library and identification of novel, uncompetitive inhibitors of WNV NS2B-NS3pro that appear to interfere with the productive interactions of the NS2B cofactor with the NS3pro domain. We anticipate that following structure optimization, the identified probes could form the foundation for the design of novel and specific therapeutics for WNV infection. We also provide the structural basis for additional species-selective allosteric inhibitors of flaviviruses. 相似文献
7.
《Expert opinion on therapeutic patents》2013,23(2):267-272
Available therapies for hepatitis C viral infection, a disease with a growing impact worldwide, have limited success and serious side effects. Among different possibilities to control the infection, the NS3 serine protease inhibitors constitute a promising alternative, based on a similar approach proved successful in the case of HIV antiviral agents. However, the structural particularities of this viral serine protease make the design of small molecule inhibitors a difficult task. In contrast, the peptidic and peptidomimetic approach gave better results, allowing submicromolar levels of inhibition. In this patent, Bristol-Myers Squibb presents new tripeptide inhibitors with improved potency against NS3 protease and a very good selectivity against related serine proteases. The disclosed compounds also exhibited a good inhibitory profile against different viral strain proteases, giving good hopes to the use of NS3 protease inhibitors as a cure to treat hepatitis C viral infections. 相似文献
8.
《Expert opinion on therapeutic patents》2013,23(9):1277-1303
Background: HCV NS3 is a serine protease that plays a pivotal role in catalyzing the cleavage of the single polyprotein encoded by HCV after infection of hepatocytes. Analysis of the X-ray crystal structure of the enzyme reveals a shallow catalytic site located on the surface of the protein, which has made development of inhibitors a formidable task. Attempts to discover leads by a traditional approach of screening of compound libraries have proved futile and, therefore, researchers have adopted a structure-based drug design. Analysis of the X-ray structure of NS3 protease reveals close proximity of S1-S3 and S2-S4 pockets. Various novel approaches have been used to design preorganized, depeptidized macrocyclic inhibitors linking the P2-P4 groups and P1-P3 residues. Objective: The article summarizes efforts by various groups to develop inhibitors that bind to the active site and inhibit viral replication. Method: Review of recent patents and scientific literature. Conclusion: Macrocyclization has proved to be an effective tool for depeptidization of peptidic inhibitors with improved binding and pharmacokinetic properties. 相似文献
9.
Novel potent hepatitis C virus NS3 serine protease inhibitors derived from proline-based macrocycles 总被引:1,自引:0,他引:1
Chen KX Njoroge FG Arasappan A Venkatraman S Vibulbhan B Yang W Parekh TN Pichardo J Prongay A Cheng KC Butkiewicz N Yao N Madison V Girijavallabhan V 《Journal of medicinal chemistry》2006,49(3):995-1005
The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic alpha-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K(i*)). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K(i*) = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K(i*) = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC(50) of 130 nM in a cellular replicon assay, while IC(50) for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization. 相似文献
10.
Hepatitis C virus (HCV) encodes a viral protease, nonstructural (NS)3/4A, that is critical for virus maturation. Although NS3/4A has emerged as a promising target for anti-HCV drug discovery, no anti-HCV therapy has succeeded yet based on inhibition of NS3/4A. We have previously shown that EG(delta4AB)SEAP, a reporter consisting of enhanced green fluorescent protein (EG), the NS3-NS4A protease decapeptide recognition sequence (delta4AB), and secreted alkaline phosphatase (SEAP), is an efficient reporter for reflecting NS3/4A proteolytic activity inside cells. In this study, we describe the generation and characterization of a stable cell line, 293EEG(delta4AB)SEAP-NS3/4A, which constitutively expresses EG(delta4AB)SEAP reporter protein and NS3/4A protease. The reporter assay is validated with the compound BILN 2061, a specific and potent peptidomimetic inhibitor of the HCV NS3 protease. Additionally, we show here that this cell line allows screening for NS3/4A protease activity of living cells in 96-well plate format, with a Z factor >0.6. Thus, this cell-based assay may be used for high-throughput screening of chemical libraries. 相似文献
11.
Binder J Tetangco S Weinshank M Maegley K Lingardo L Diehl W Love R Patick AK Smith GJ 《Antiviral research》2011,91(2):102-111
Several potent inhibitors of hepatitis C virus (HCV) NS3/4A protease have been identified that show great clinical potential against genotype 1. Due to the tremendous genetic diversity that exists among HCV isolates, development of broad spectrum inhibitors is challenging. With a limited number of lab strains available for preclinical testing, new tools are required for assessing protease inhibitor activity. We developed a chimeric replicon system for evaluating NS3 protease inhibitor activity against naturally occurring isolates. NS3/4A genes were cloned from the plasma of HCV-infected individuals and inserted into lab strain replicons, replacing the native sequences. The chimeric reporter replicons were transfected into Huh 7.5 cells, their replication monitored by luciferase assays, and their susceptibilities to inhibitors determined. Viable chimeras expressing heterologous genotypes 1, 2, 3, and 4 protease domains were identified that exhibited varying susceptibilities to inhibitors. Protease inhibitor spectrums observed against the chimeric replicon panel strongly correlated with published enzymatic and clinical results. This cell-based chimeric replicon system can be used to characterize the activities of protease inhibitors against diverse natural isolates and may improve the ability to predict dose and clinical efficacy. 相似文献
12.
Chen KX Njoroge FG Pichardo J Prongay A Butkiewicz N Yao N Madison V Girijavallabhan V 《Journal of medicinal chemistry》2006,49(2):567-574
The NS3 protease of hepatitis C virus (HCV) has emerged as one of the best characterized targets for next-generation HCV therapy. The tetrapeptide 1 and pentapeptide 2 are alpha-ketoamide-type HCV serine protease inhibitors with modest potency. We envisioned that the 1,2,3,4-tetrahydroisoquinoline-3-carboxylamide (Tic) moiety could be cyclized to the P3 capping group. The resulting macrocycle could enhance the binding through its extra contact with the Ala156 methyl group. Macrocyclization could also provide a less peptidic HCV inhibitor. Synthesis started from dipeptide 5, which was obtained via a coupling of two amino acid derivatives. The N-terminal was capped as hept-6-enoylamide to give 6. Hydroboration of the double bond afforded alcohol 7, the precursor to the macrocycle 8. The macrocyclization was achieved under Mitsunobu conditions (PPh(3), ADDP). The macrocyclic acid 9 was then combined with appropriate right-hand fragments 12, 14, or 16, which was prepared from common intermediate 11. Finally, oxidation of alpha-hydroxyamide provided target molecule alpha-ketoamides 17, 18, and 21. The C-terminal esters were then elaborated to carboxylic acids 19 and 20, and amides 20 and 23. The inhibitors 17-23 were tested in HCV NS3 protease continuous assay. Tripeptide 17 was more potent than the larger acyclic tetrapeptide 1. The tetrapeptides 18-20 were as active as 17. Most significantly, the pentapeptides (21-23) were much better inhibitors (K(i) = 0.015-0.26 microM). The carboxylic acid (22) and amide (23) were 57-80 times more potent than the acyclic analogue 2. The X-ray crystal structure of compound 23 bound to the protease revealed that the macrocycle adopted a donutlike conformation and had close contact with the Ala156 methyl group. The ketone carbonyl formed a reversible covalent bond with Ser139. The n-propyl of P1 novaline and the aromatic ring of P2' phenylglycine formed a C-shaped clamp around the Lys136 side chain. 相似文献
13.
Stoermer MJ Chappell KJ Liebscher S Jensen CM Gan CH Gupta PK Xu WJ Young PR Fairlie DP 《Journal of medicinal chemistry》2008,51(18):5714-5721
West Nile virus (WNV) has spread rapidly around the globe, efficiently crossing species from migrating birds into humans and other mammals. The viral protease NS2B-NS3 is important for WNV replication and recognizes dibasic substrate sequences common to other flaviviral proteases but different from most mammalian proteases. Potent inhibitors of WNV protease with antiviral activity have been elusive to date. We report the smallest and most potent inhibitors known for this enzyme, cationic tripeptides with nonpeptidic caps at the N-terminus and aldehyde at the C-terminus. One of these, compound 3 ( Ki = 9 nM) is stable in serum (>90% intact after 3 h, 37 degrees C), cell permeable, and shows antiviral activity (IC 50 1.6 microM) without cytotoxicity (IC 50 >400 microM), thereby validating the approach of inhibiting WNV protease to suppress WNV replication. 相似文献
14.
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide and afflicts > 170 million people. The HCV-encoded NS3 protease is essential for viral replication and has long been recognised as a prime target for antiviral drugs. However, the peculiar active site structure of this enzyme, a shallow dent on the surface of the protein, has rendered the development of small-molecule inhibitors a highly challenging task. Nevertheless, perseverance and creativity has led to significant progress in this field over the last few years resulting in three compounds that are reported to enter the clinic. The impressive reduction of HCV RNA plasma levels observed with two of these inhibitors (ciluprevir and VX-950) in clinical trials has undoubtedly illustrated the potential of this viral enzyme-targeted drug discovery approach. 相似文献
15.
《Expert opinion on investigational drugs》2013,22(9):1129-1144
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide and afflicts > 170 million people. The HCV-encoded NS3 protease is essential for viral replication and has long been recognised as a prime target for antiviral drugs. However, the peculiar active site structure of this enzyme, a shallow dent on the surface of the protein, has rendered the development of small-molecule inhibitors a highly challenging task. Nevertheless, perseverance and creativity has led to significant progress in this field over the last few years resulting in three compounds that are reported to enter the clinic. The impressive reduction of HCV RNA plasma levels observed with two of these inhibitors (ciluprevir and VX-950) in clinical trials has undoubtedly illustrated the potential of this viral enzyme-targeted drug discovery approach. 相似文献
16.
Rancourt J Cameron DR Gorys V Lamarre D Poirier M Thibeault D Llinàs-Brunet M 《Journal of medicinal chemistry》2004,47(10):2511-2522
The structure-activity relationship at the C-terminal position of peptide-based inhibitors of the hepatitis C virus NS3 protease is presented. The observation that the N-terminal cleavage product (DDIVPC-OH) of a substrate derived from the NS5A/5B cleavage site was a competitive inhibitor of the NS3 protease was previously described. The chemically unstable cysteine residue found at the P1 position of these peptide-based inhibitors could be replaced with a norvaline residue, at the expense of a substantial drop in the enzymatic activity. The fact that an aminocyclopropane carboxylic acid (ACCA) residue at the P1 position of a tetrapeptide such as 1 led to a significant gain in the inhibitory enzymatic activity, as compared to the corresponding norvaline derivative 2, prompted a systematic study of substituent effects on the three-membered ring. We report herein that the incorporation of a vinyl group with the proper configuration onto this small cycle produced inhibitors of the protease with much improved in vitro potency. The vinyl-ACCA is the first reported carboxylic acid containing a P1 residue that produced NS3 protease inhibitors that are significantly more active than inhibitors containing a cysteine at the same position. 相似文献
17.
Hepatitis C virus NS3/4A protease. 总被引:1,自引:0,他引:1
Despite an urgent medical need, a broadly effective anti-viral therapy for the treatment of infections with hepatitis C viruses (HCVs) has yet to be developed. One of the approaches to anti-HCV drug discovery is the design and development of specific small molecule drugs to inhibit the proteolytic processing of the HCV polyprotein. This proteolytic processing is catalyzed by a chymotrypsin-like serine protease which is located in the N-terminal region of non-structural protein 3 (NS3). This protease domain forms a tight, non-covalent complex with NS4A, a 54 amino acid activator of NS3 protease. The C-terminal two-thirds of the NS3 protein contain a helicase and a nucleic acid-stimulated nucleoside triphosphatase (NTPase) activities which are probably involved in viral replication. This review will focus on the structure and function of the serine protease activity of NS3/4A and the development of inhibitors of this activity. 相似文献
18.
Ontoria JM Di Marco S Conte I Di Francesco ME Gardelli C Koch U Matassa VG Poma M Steinkühler C Volpari C Harper S 《Journal of medicinal chemistry》2004,47(26):6443-6446
The design of a series of peptidomimetic inhibitors of the hepatitis C virus NS3 protease is described. These inhibitors feature an indoline-2-carboxamide as a novel heterocyclic replacement for the P3 amino acid residue and N-terminal capping group of tripeptide based inhibitors. The crystal structure of the ternary NS3/NS4A/inhibitor complex for the most active molecule in this series highlights its suitability as an N-terminal capping group of a dipeptide inhibitor of the NS3 protease. 相似文献
19.
Knox JE Ma NL Yin Z Patel SJ Wang WL Chan WL Ranga Rao KR Wang G Ngew X Patel V Beer D Lim SP Vasudevan SG Keller TH 《Journal of medicinal chemistry》2006,49(22):6585-6590
A series of inhibitors related to the benzoyl-norleucine-lysine-arginine-arginine (Bz-nKRR) tetrapeptide aldehyde was synthesized. When evaluated against the West Nile virus (WNV) NS3 protease, the measured IC(50) ranges from approximately 1 to 200 microM. Concurrently, a modeling study using the recently published crystal structure of the West Nile NS3/NS2B protease complex (pdb code 2FP7) was conducted. We found that the crystal structure is relevant in explaining the observed SAR for this series of tetrapeptides, with the S1 and S2 pockets being the key peptide recognition sites. In general, a residue capable of both pi-stacking and hydrogen bonding is favored in the S1 pocket, while a positively charged residue is preferred in the S2 pocket. This study not only confirms the importance of the NS2B domain in substrate-based inhibitor binding of WNV, it also suggests that the crystal structure would provide useful guidance in the drug discovery process of related Flavivirus proteases, given the high degree of homology. 相似文献
20.
Wyss DF Arasappan A Senior MM Wang YS Beyer BM Njoroge FG McCoy MA 《Journal of medicinal chemistry》2004,47(10):2486-2498
NMR-based screening of a customized fragment library identified 16 small-molecule hits that bind weakly (K(D) approximately 100 microM to 10 mM) to substrate binding sites of the NS4A-bound NS3 protease of the hepatitis C virus (HCV). Analogues for five classes of NMR hits were evaluated by a combination of NMR and biochemical data yielding SAR and, in most cases, optimized hits with improved potencies (K(D) approximately K(I) approximately 40 microM to 1 mM). NMR chemical shift perturbation data were used to establish the binding location and orientation of the active site directed scaffolds in these five analogue series. Two of these scaffolds, which bind the enzyme at the proximal S1-S3 and S2' substrate binding sites, were linked together producing competitive inhibitors of the HCV NS3 protease with potencies in the micromolar range. This example illustrates that the low molecular weight scaffolds discovered from structure-based NMR screening can be optimized with focused structure-guided chemistry to produce potent nonpeptidic small-molecule inhibitors of the HCV NS3 protease. 相似文献