首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovarian carcinoma the commonly observed gynecological cancers has a high mortality rate. In the present study effect of retinoic acid aliphatic amide (RACA) in ovarian cancer cells was investigated using proliferation, migration and invasion assays. Western blot was used to examine the Bcl-2, cleaved caspase 3, p-ERK, MMP-2, p-FAK, P-P38, p-AMPKα and HIF-1α protein expression. CoCl2 was used to induce HIF-1α expression in SKOV3ip. 1 and HEY-A8 cells. The results revealed that RACA treatment prompted cell proliferation, invasion and migration but inhibited apoptosis of SKOV3ip. 1 and HEY-A8 cells. RACA treatment also induced upregulation of Bcl-2 and MMP-2, activation of p-P38, p-ERK and p-FAK, inhibition of cleaved caspase 3. RACA treatment also caused upregulatation of HIF-1α in ovarian cells with the activation of p-AMPKα. Upregulation of HIF-1α expression in CoCl2-treated cancer cells resulted in decrease in SDHB. Thus RACA plays a key role in cell proliferation, invasion, migration and apoptosis of human ovarian carcinoma through AMPK-HIF-1α pathway.  相似文献   

2.
Malignant gliomas are a type of central nervous system cancer with extremely high mortality rates in humans. γ-secretase has been becoming a potential target for cancer therapy, including glioma, because of the involvement of its enzymatic activity in regulating the proliferation and metastasis of cancer cells. In this study, we attempted to determine whether γ-secretase activity regulates E-cadherin to affect glioma cell migration. The human glioma cell lines, including LN18 and LN229, and the γ-secretase inhibitors, including N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) and RO4929097, were used in this study. It was shown that γ-secretase activity inhibition by DAPT and RO4929097 could promote LN18 and LN229 glioma cell migration via downregulating E-cadherin mRNA and protein expressions, but not via affecting E-cadherin protein processing. In addition, γ-secretase activity inhibition was regulated by bone morphogenetic proteins-independent Smad5 activation in glioma cells. Moreover, endogenous Smad1 in glioma cells was found to play an important role in regulating E-cadherin expression and subsequent cell migration but did not affect DAPT-stimulated effects. These results help further elucidate the molecular mechanisms of γ-secretase activity regulation involved in controlling glioma cell malignancy. Information about a potential role for Smad1/5 activity upregulation and subsequent E-cadherin downregulation during inhibition of γ-secretase activity in the development of gliomas is therefore relevant for future research.  相似文献   

3.
The integrin α6β1 and its main ligand laminin-111 are overexpressed in glioblastoma, as compared with normal brain tissue, suggesting they may be involved in glioblastoma malignancy. To address this question, we stably expressed the α6 integrin subunit in the U87 cell line via retroviral-mediated gene transfer. We show that cell surface expression of the α6β1 integrin led to dramatic changes in tumor U87 cell behavior, both in vitro and in vivo. Nude mice receiving either subcutaneous or intracerebral inoculation of α6β1-expressing cells developed substantially more voluminous tumors than mice injected with control cells. The difference in tumor growth was associated with a marked increase in vascularization in response to α6β1 integrin expression and may also be related to changes in the balance between cell proliferation and survival. Indeed, expression of α6β1 enhanced proliferation and decreased apoptosis of U87 cells both in the tumor and in vitro. Additionally, we demonstrate that α6β1 is implicated in glioblastoma cell migration and invasion and that laminin-111 might mediate dissemination of α6β1-positive cells in vivo. Our results highlight for the first time the considerable role of the integrin α6β1 in glioma progression.Malignant brain tumors have an increasing incidence in both children and adults. In adults, the most common type of primary brain tumor, malignant glioma, is considered as one of the deadliest of human cancers. Despite recent advances in both diagnostic modalities and therapeutic strategies, the 5-year survival rate of less than 3% in patients with glioblastoma is among the lowest for all cancers.1 Patients with the most malignant histopathological subtype, glioblastoma, carry the worst prognosis, with median survival rate of less than 1 year, despite aggressive surgery associated with adjuvant radiotherapy and chemotherapy.1 Glioblastoma are characterized by rapidly dividing cells, high degree of vascularity, invasion into normal brain tissue, and an intense resistance to death-inducing stimuli.2,3 Since integrins, the major family of extracellular matrix (ECM) receptors, are involved in these events, they are one of the most promising molecules to consider for a targeted therapy.Integrins are cell surface transmembrane αβ heterodimers that recognize specific ECM ligands. The combination of α and β subunits, leading to the formation of at least 24 receptors, determines the ligand specificity.4 Glioblastoma commonly displays enhanced expression of several integrins along with their ECM ligands: αvβ3 and αvβ5 (tenascin and vitronectin receptors), α5β1 (fibronectin receptor), α2β1 (collagens receptor), and α3β1, α6β4, and α6β1 (laminins receptors).5 Numerous studies have focused on the αv integrin family. The integrins αvβ3 and αvβ5 are markers of glioblastoma malignancy6 and influence a variety of processes in glioblastoma progression in vivo, including proliferation, apoptosis, and angiogenesis.7 Furthermore, cilengitide, an αvβ3 and αvβ5 integrins antagonist, extends mouse survival by delaying the tumor growth8,9 and is nowadays in clinical trial for recurrent malignant glioma. Two other integrins, α5β1 and α3β1, have been shown to be implicated in glioma cell adhesion and migration in vitro.10,11 In addition, the use of α5β1 antagonists reduces glioma cell proliferation in vitro,10 while α3β1 antagonists inhibited glioma invasion in vivo.11The α6 integrin subunit associates with β1 or β4 subunits to form functional heterodimers that selectively bind laminins. The α6β4 integrin is essential for the organization and maintenance of epithelial hemidesmosomes that link the intermediate filaments with the extracellular matrix.12 The major ligand of α6β4 is the laminin-332, while α6β1 is a well-characterized laminin-111 receptor. Overexpression of α6β1 integrin has been associated with the progression of many epithelial tumors. In particular, induction of α6β1 expression is an early event in hepatocellular carcinogenesis.13,14 In the same way, during prostate cancer progression α6β1 is continually expressed and found in micrometastases.15 Expression of α6β1 integrin has also been linked to metastatic potential of melanoma cells,16 and has been involved in the survival and metastatic potential of human breast carcinoma cells.17,18 Moreover, in a recent study using the α6-blocking antibody GoH3, Lee et al19 inhibited angiogenesis and breast carcinoma growth in vivo.Several studies concerning gliomas and the α6β1 ligand laminin-111 have been reported in the literature. Using immunohistochemistry studies, Gingras et al20 showed that α6 integrin was strongly expressed in glioblastoma tissue, whereas it was weakly expressed in normal brain. Previtali et al21 confirmed that the expression of α6 was increased in glioblastoma and in other central nervous system tumors, such as meningioma, astrocytoma, and neuroblastoma, when compared with the autologous normal tissue counterpart. In glioblastoma biopsies, laminin-111 is highly expressed on tumor blood vessels, but also within the brain tumor as punctuate deposits and at the tumor invasion front.22 In vitro, glioma cells can both secrete laminin-111 and induce its expression in normal brain tissue.22,23,24 Moreover, laminin-111 is one of the most permissive substrates for adhesion and migration of glioma cells in vitro.25,26,27 Additionally, over laminin-111, migrating glioma cells are protected from apoptosis.28 For all these reasons, we hypothesized that laminin-111 and its main receptor α6β1 may contribute to glioblastoma progression.In the present study we investigated the role of integrin α6β1 in glioblastoma malignancy by using U87, a well-characterized glioblastoma cell line. We report that stable expression of α6β1 in this α6-negative cell line leads to enhanced tumor progression and tumor growth in vivo. We demonstrate that α6β1 is pro-angiogenic and acts on the balance between proliferation and apoptosis. Additionally, we show that α6β1 is involved in glioblastoma cell migration and invasion. Our results highlight for the first time the considerable role of integrin α6β1 in the malignant phenotype of glioblastoma cells and demonstrate that the α6β1-expressing cell is an appropriate model for the study of glioblastoma progression.  相似文献   

4.
This study investigated VE-statin/Egfl7 expression and its role and regulatory mechanism in malignant glioma progression. Forty-five paraffin-embedded glioma (grade I-II: n=24; grade III-IV: n=21) were examined. VE-statin/Egfl7 protein expression was detected via immunohistochemistry, and its correlation with pathological grade was evaluated. Three-dimensional cell culture was then performed to investigate the influence of VE-statin/Egfl7 on the angiogenesis of umbilical vein endothelial cells. Microarray detection was used to molecularly profile VE-statin/Egfl7 and relevant signaling pathways in malignant glioma (U251 cells). Data showed that VE-statin/Egfl7 protein was mainly expressed in the cytoplasm of cancer and vascular endothelial cells and was significantly related to the degree of malignancy (t=4.399, P<0.01). Additionally, VE-statin/Egfl7 expression was low in certain gray-matter neurons but undetectable in glial cells. VE-statin/Egfl7 gene silencing significantly inhibited angiogenesis in umbilical vein endothelial cells. The following microarray results were observed in VE-statin/Egfl7-silenced U251 cells: 1) EGFR family members showed the highest differential expression, accounting for 5.54% of differentially expressed genes; 2) cell survival-related signaling pathways changed significantly; and 3) the integrin ανβ3 signaling pathway was markedly altered. Thus, malignant glioma cells and glioma vascular endothelial cells highly express VE-statin/Egfl7, which is significantly correlated with the degree of malignancy. Moreover, VE-statin/Egfl7 plays an important role in glioma angiogenesis. Microarray results indicate that VE-statin/Egfl7 may regulate EGFR and integrins to influence the FAK activity of downstream factors, triggering the PI3K/Akt and Ras/MAPK cascades and subsequent malignant glioma development.  相似文献   

5.
6.
Integrins are cell surface adhesion molecules (CAM) that regulate via intercellular and cell-matrix signaling various cellular processes including wound healing, cell differentiation, division, growth, migration and metastatic dissemination. Although a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, has been reported, its role in colorectal liver metastases remains unclear. This study aimed to evaluate the expression of β1 integrin in colorectal liver metastases and to correlate the pattern of expression with clinicopathological features and to investigate the putative role of β1 integrin expression on survival of these patients. Methods: Formalin-fixed, paraffin-embedded (FFPE) tumor samples of 81 patients who were operated because of colorectal liver metastases without any neoadjuvant therapy were obtained and stained with hematoxylin and eosin (H & E). An immunohistochemical examination was performed using Dako, Peroxidase/DAB kit and a primary monoclonal β1 integrin (CD29, fibronectin receptor subunit beta; ab3167, Abcam plc). β1 integrin expression was evaluated according to the immunoreactive score of Remmele and Stegner and was related with clinicopathological features of prognostic significance and with disease-free and overall survival as well. Statistical analysis was performed using SPSS version 21.0. Results: β1 integrin was overexpressed in tumor cells in 37 (48%) patients and in stromal cell in 27 (33%) patients. The β1 expression was not statistically correlated with clinicopathological features of the primary tumors but it was statistically correlated (p=0.03) with the histological grading of liver metastases. Kaplan-Meier survival analysis showed that there is a tendency but no statistically significant correlation in disease-free and overall survival. Conclusion: Considering that expression of β1 integrin in colorectal liver metastases remains controversial, specially its relation with survival of patients, we showed that the β1 expression represents a reliable prognostic factor regarding the grading of liver metastases of CRC and our findings imply that β1 integrin expression profiles may have further potential in identifying the stage of colorectal liver metastases and being a marker of prognosis in these patients.  相似文献   

7.
The radiotherapy as a local and regional modality is widely applied in treatment of glioma, but most glioblastomas are commonly resistant to irradiation treatment. It remains challengeable to seek out efficient strategies to conquer the resistance of human glioblastoma cells to radiotherapy. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a newly discovered tumor suppressor which involved in regulation of chemosensitivity in various human cancer cells. In the present study, we established a radioresistant U251 cell line (U251R) to investigate the role of LRIG1 in regulation of radiosensitivity in human glioblastoma cells. Significantly decreased expression level of LRIG1 and enhanced expression of EGFR and phosphorylated Akt were detected in U251R cells compared with the parental U251 cells. U251R cells exhibited an advantage in colony formation ability, which accompanied by remarkably reduced X-ray-induced γ-H2AX foci formation and cell apoptosis. LRIG1 overexpression significantly inhibited the colony formation ability of U251R cells and obviously enhanced X-ray-inducedγ-H2AX foci formation and cell apoptosis. In addition, up-regulated expression of LRIG1 suppressed the expression level of EGFR and phosphorylated Akt protein. Our results demonstrated that LRIG1 expression was related to the radiosensitivity of human glioblastoma cells and may play an important role in the regulation of cellular radiosensitivity of human glioblastoma cells through the EGFR/Akt signaling pathway.  相似文献   

8.
Cervical cancer is a malignancy with high morbidity and mortality among women. Interleukin (IL)-1β, chemokine (C-C motif) ligand 2 (CCL-2), and activation of NF-κB have been proven to be closely related to the progression of various tumors. However, their role in cervical cancer remains unclear. Cell proliferation, migration, and invasion were detected using MTT, wound healing, and transwell assays. Western blotting and qRT-PCR were used to measure expression of target genes. IL-1β greatly promoted the release of CCL-2 from HeLa cells. Activation of NF-κB and phosphorylated NF-κB (p65) nuclear translocation were accelerated by IL-1β. TPCA-1, a blocker of NF-κB, significantly inhibited the release of CCL-2 from HeLa cells. TPCA-1 markedly reversed the promotional effect of IL-1β on viability of HeLa cells. IL-1β increased the cell migration, proliferation, and invasion of HeLa cells through targeting the NF-κB/CCL-2 pathway. IL-1β/NF-κB/CCL-2 might be a promising treatment target for cervical cancer treatment and prevention.  相似文献   

9.
Atherosclerotic plaques express high levels of small proline-rich repeat protein (SPRR3), a previously characterized component of the cornified cell envelope of stratified epithelia, where it is believed to play a role in cellular adaptation to biomechanical stress. We investigated the physiological signals and underlying mechanism(s) that regulate atheroma-enriched SPRR3 expression in vascular smooth muscle cells (VSMCs). We showed that SPRR3 is expressed by VSMCs in both human and mouse atheromas. In cultured arterial VSMCs, mechanical cyclic strain, but neither shear stress nor lipid loading induced SPRR3 expression. Furthermore, this upregulation of SPRR3 expression was dependent on VSMC adherence to type I collagen. To link the mechanoregulation of SPRR3 to specific collagen/integrin interactions, we used blocking antibodies against either integrin α1 or α2 subunits and VSMCs from mice that lack specific collagen receptors. Our results showed a dependence on the α1β1 integrin for SPRR3 expression induced by cyclic strain. Furthermore, we showed that integrin α1 but not α2 subunits were expressed on VSMCs within mouse lesions but not in normal arteries. Therefore, we identified the enrichment of the mechanical strain-regulated protein SPRR3 in VSMCs of both human and mouse atherosclerotic lesions whose expression is dependent on the collagen-binding integrin α1β1 on VSMCs. These data suggest that SPRR3 may play a role in VSMC adaptation to local biomechanical stress within the plaque microenvironment.  相似文献   

10.
Epithelial cancer of the ovary spreads by implantation of tumor cells onto the mesothelial cells that line the peritoneal cavity. The aim of this study was to identify the cell–matrix interactions that mediate ovarian carcinoma cell migration toward components of the mesothelial cell-associated extracellular matrix. The human ovarian carcinoma cell lines NIH:OVCAR5 and SKOV3 were analyzed by flow cytometry for the expression of cell surface receptors. The ability of those receptors to mediate ovarian carcinoma cell migration toward fibronectin, type IV collagen, and laminin was determined. A monoclonal antibody against the β1 integrin subunit abrogated the migration of both cell lines toward the extracellular matrix proteins. Blocking antibodies against alpha integrin subunits suggest that ovarian carcinoma cell migration toward fibronectin is primarily mediated by the ∝5β1 integrin, type IV collagen by the ∝2β1 integrin, and laminin by the ∝6β1 integrin. These results suggest that ovarian carcinoma cell migration is regulated by multiple β1 integrin–matrix interactions. Significant reduction of cell migration was observed with a monoclonal antibody against CD44 that blocks the hyaluronan-binding site of CD44, but not with an antibody that binds at an alternate site on CD44. Intact hyaluronan and/or hyaluronan oligomers also inhibited cell migration, suggesting that the CD44–hyaluronan interaction provides an integrin-independent mechanism of control for ovarian carcinoma cell migration. These results suggest that ovarian carcinoma cell migration is regulated by both integrin-dependent mechanisms, involving the interaction of β1 integrins with extracellular matrix proteins, and an integrin-independent mechanism that involves the interaction of CD44 and hyaluronan.  相似文献   

11.
The β1D integrin is a recently characterized isoform of the β1 subunit that is specifically expressed in heart and skeletal muscle. In this study we have assessed the function of the β1D integrin splice variant in mice by generating, for the first time, Cre-mediated exon-specific knockout and knockin strains for this splice variant. We show that removal of the exon for β1D leads to a mildly disturbed heart phenotype, whereas replacement of β1A by β1D results in embryonic lethality with a plethora of developmental defects, in part caused by the abnormal migration of neuroepithelial cells. Our data demonstrate that the splice variants A and D are not functionally equivalent. We propose that β1D is less efficient than β1A in mediating the signaling that regulates cell motility and responses of the cells to mechanical stress.  相似文献   

12.
In cultured human osteosarcoma (OS) cells, we recently demonstrated that insulin-like growth factors (IGF-1)-induced MG-63 and 143B human OS cells proliferation were consistent with increasing ClC-3 expression, and ClC-3 was up-regulated in cells with high metastatic potency. Blockade of ClC-3 greatly suppressed the phosphorylation activation of Akt/GSK3β. We also found that blockade of ClC-3 effectively down-regulated the expression of cyclin D1 and cyclin E, and caused activation of p27KIP and p21CIP. The synthesized effects on these proteins which play a major role in cell cycle regulation bring about G0/G1 cell cycle arrest in MG-63 cells, and finally abrogate the cell proliferation. Besides, ClC-3 deletion attenuates OS cell migration via down-regulation the expression of MMP-2 and MMP-9. Such information suggests that ClC-3 might be a potential target for anti-OS.  相似文献   

13.

Introduction

FK506-binding protein 5 (FKBP5) is reported to act as a scaffolding protein for Akt to promote the dephosphorylation of AKT Ser473 and suppress pancreatic cancer growth. However, other studies have shown that FKBP5 promotes tumor growth and chemoresistance through regulating NF-κB signaling in other cancers. In this study, we attempted to investigate the role and mechanism of action of FKBP5 in the regulation of proliferation and apoptosis of glioma cells.

Material and methods

The glioma U251 cell line was used as the model. Cell proliferation was detected by MTT assay. Cell apoptosis was detected by annexin-V staining. Protein expression was detected by Western blot analysis.

Results

FKBP5 overexpression inhibited the proliferation of U251 cells significantly (p < 0.05), and promoted the apoptosis of U251 cells significantly (p < 0.05). In addition, FKBP5 overexpression inhibited the phosphorylation of Akt at Ser743, decreased the level of Bcl-2, increased the level of Bax, and enhanced the cleavage of caspase-9 and caspase-3 (p < 0.05 compared to control). In contrast, FKBP5 knockdown enhanced the proliferation of U251 cells, increased the phosphorylation of Akt significantly (p < 0.05), increased the expression of Bcl-2 and decreased the expression of Bax, and decreased the cleavage of caspase-9 and caspase-3 significantly (p < 0.05).

Conclusions

FKBP5 plays the role of a tumor suppressor in glioma by inhibiting the activation of Akt and stimulating the intrinsic mitochondrial apoptotic pathway, and could be used as a new target for gene therapy of glioma.  相似文献   

14.
Our previous study has demonstrated cyclosporin A (CsA) promotes the migration and invasiveness of human first-trimester trophoblast cells in vitro. Here, we further investigated the effect of CsA on the early implantation in vitro of mouse embryo. Female C57 mice were superovulated and mated, and then two-cell embryos were harvested from the oviducts and sequentially cultured in vitro in G1 and G2 media with 0, 0.1, 1.0 or 10 μM of CsA. Blastocyte formation, blastocyte cell number and apoptosis, embryo hatching were assessed in 4-6 dpc. The adhesion and stretching growth of hatched embryos in laminin coated dishes were evaluated from 5 dpc to 8 dpc, and the expressions of implantation serine proteinase 1 (ISP1), integrin (itg) β3 and matrix metalloproteinase (MMP)-9 were determined by real time PCR and immunofluorescence, respectively. We showed there was no significant difference in blastocyst formation rates, hatching rates, number of whole embryonic cells, apoptotic cells, and distribution of inner cell masses (ICMs) and trophoblasts (TB) between the CsA- and control-treated groups. Expression of ISP1 mRNA was unaffected on 5 dpc. After hatching, adhesion rate of 7 dpc significantly increased in 0.1 and 1.0 μM of CsA treatment, and embryo area of 8 dpc stretch growing on laminin were increased in 1.0 μM of CsA. The mRNA and protein expression of itgβ3 and MMP-9 on 7 dpc blastocyst were up-regulated. In conclusion, CsA in low dosage up-regulates itgβ3 and MMP-9 expression, and enhances embryonic adhesion and invasion, which is beneficial to the embryo implantation.  相似文献   

15.
Background: Ischemia-reperfusion of bone occurs in a variety of clinical conditions, such as orthopedic arthroplasty, plastic gnathoplasty, spinal surgery, and amputation. Usually, cellular models of hypoxia-reoxygenation reflect in vivo models of ischemia-reperfusion. With respect to hypoxia-reoxygenation conditions, the effects of remifentanil on osteogenesis have received little attention. Therefore, we investigated the effects of remifentanil on the proliferation and differentiation of osteoblasts during hypoxic-reoxygenation.Methods: After remifentanil (0.1, 1 ng/mL) preconditioning for 2 hours, human osteoblasts were cultured under 1% oxygen tension for 24 hours. Thereafter, the cells were reoxygenated for 12 hours at 37 °C. The naloxone groups were treated with naloxone for 30 minutes before remifentanil treatment. We measured cell viability via MTT assay. Osteoblast maturation was determined by assay of bone nodular mineralization. Quantitative PCR and western blot methods were used to determine BMP-2, osteocalcin, Akt, type I collagen, osterix, TGF-β1, HIF-1α, and RUNX2 expression levels.Results: Osteoblast viability and bone nodular mineralization by osteoblasts is recovered by remifentanil preconditioning from hypoxia-reoxygenation insult. During hypoxic-reoxygenation condition, remifentanil preconditioning induced the expression of BMP-2, osteocalcin, Akt, type I collagen, osterix, TGF-β1, HIF-1α, and RUNX2 in osteoblasts.Conclusions: Under hypoxia-reoxygenation conditions, remifentanil preconditioning enhanced the cell viability and maturation of osteoblasts, and stimulated the expression of proteins associated with osteoblast proliferation and differentiation of the osteoblast. Our results suggest that remifentanil may help in the treatment of bone stress injuries.  相似文献   

16.
Appropriate staging and evaluation of residual disease is critical to improving the treatment of patients with lymphoma. The specific expression of homing receptors may determine the preferential dissemination pattern of tumoral cells. We investigated the expression of the mucosal homing receptor α4β7 on tumoral cells from peripheral lymph node in patients with newly diagnosed mantle cell lymphoma (MCL) to check whether it is associated with gastrointestinal involvement. Expression of the α4β1 integrin and the peripheral lymph node addressin CD62L were also examined. Thirteen MCL patients presenting with peripheral lymphadenopathy were studied. Expression of the mucosal homing receptor integrin α4β7 by peripheral lymph node lymphoma cells was found to be frequent (5/13) and associated with gastrointestinal involvement (5/7). In contrast, lymphoma cells from patients without gastrointestinal involvement did not express α4β7 (6/6) (P = 0.03). These data suggest that α4β7 integrin is expressed by a subset of MCLs and that its expression may predict digestive tract involvement in MCL, furnishing a basis for recognizing two distinct clinical and phenotypic forms, ie, “digestive homing (or digestive primitive)” versus “peripheral” MCL. Further studies on more patients will be needed to understand the impact of biological differences on the prognosis of these two clinical forms.  相似文献   

17.
Tubeimoside-1 (TBMS1) is considered to have anti-tumor properties. However, the role of TBMS1 on human colorectal cancer (CRC) is still unclear. Therefore, in this study, we investigated the role of TBMS1 on human CRC and explored the underlying mechanism. The cell proliferation of CRC cells was detected by MTT assay. Cell migration and invasion were assessed by Boyden chamber assay, and the involvement of molecular mechanisms was examined by western blot. In this study, we found that TBMS1 inhibited the proliferation, migration/invasion of CRC cells, and it reduced β-catenin expression in CRC cells. Furthermore, overexpression of β-catenin rescued TBMS1-induced proliferation and invasion inhibition, and knockdown of β-catenin potentiated TBMS1-induced proliferation and invasion inhibition. Taken together, our results demonstrate that TBMS1 inhibited CRC cell proliferation and invasion via suppressing the Wnt/β-catenin signaling pathway. Therefore, TBMS1 may represent a chemopreventive and/or therapeutic agent in the prevention of CRC.  相似文献   

18.
We have investigated the expression and function of the VLA-4 heterodimer α4β1, a member of the β1 integrin subfamily, on human thymic epithelial cells (TEC) derived from cortical epithelium. The expression of the α4 integrin chain was studied in four different cloned TEC lines derived from either fetal or post-natal human thymus by both flow cytometry and immunoprecipitation techniques with anti-α4 MoAbs. All different cell lines assayed expressed significant levels of α4, as revealed by their reactivity with MoAbs specific for distinct α4epitopes. The α4 subunit expressed by TEC was associated to β1 but not to β7 chain, and displayed the characteristic 80/70 kD pattern of proteolytic cleavage. The VLA-4 integrin in these cells was constitutively active in terms of adhesiveness to both fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In addition, this heterodimer localized to punctate regions of the cell in the area of contact with the substratum, named point contacts assessed by staining with the anti-β1 activation epitope 15/7 MoAb. According to the cortical origin of the TEC lines expressing VLA-4, human thymus sections stained with different anti-α4 antibodies revealed the presence of cortical, and in smaller numbers medullary epithelial cells bearing α4 integrin. The expression of α4 in the thymus was also found in both adult and fetal rats, in which epithelial cells were also specifically stained. Altogether, our data show that VLA-4 is an additional component of the integrin repertoire of TEC, and suggest that it could have an important role in thymus epithelial cell–thymocyte interactions.  相似文献   

19.
Mutations in the α7 integrin gene cause congenital myopathy characterized by delayed developmental milestones and impaired mobility. Previous studies in dystrophic mice suggest the α7β1 integrin may be critical for muscle repair. To investigate the role that α7β1 integrin plays in muscle regeneration, cardiotoxin was used to induce damage in the tibialis anterior muscle of α7 integrin-null mice. Unlike wild-type muscle, which responded rapidly to repair damaged myofibers, α7 integrin-deficient muscle exhibited defective regeneration. Analysis of Pax7 and MyoD expression revealed a profound delay in satellite cell activation after cardiotoxin treatment in α7 integrin-null animals when compared with wild type. We have recently demonstrated that the muscle of α7 integrin-null mice exhibits reduced laminin-α2 expression. To test the hypothesis that loss of laminin contributes to the defective muscle regeneration phenotype observed in α7 integrin-null mice, mouse laminin-111 (α1, β1, γ1) protein was injected into the tibialis anterior muscle 3 days before cardiotoxin-induced injury. The injected laminin-111 protein infiltrated the entire muscle and restored myogenic repair and muscle regeneration in α7 integrin-null muscle to wild-type levels. Our data demonstrate a critical role for a laminin-rich microenvironment in muscle repair and suggest laminin- 111 protein may serve as an unexpected and novel therapeutic agent for patients with congenital myopathies.  相似文献   

20.
In this study, we demonstrate that Porphyromonas gingivalis fimbriae use molecules of β2 integrin (CD11/CD18) on mouse peritoneal macrophages as cellular receptors and also show that the β chain (CD18) may play a functional role in signalling for the fimbria-induced expression of interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) genes in the cells. Using a binding assay with 125I-labeled fimbriae, we observed that fimbrial binding to the macrophages was inhibited by treatment with CD11a, CD11b, CD11c, or CD18 antibody but not by that with CD29 antibody. Western blot assays showed that the fimbriae bound to molecules of β2 integrin (CD11/CD18) on the macrophages. Furthermore, Northern blot analyses showed that the fimbria-induced expression of IL-1β and TNF-α genes in the cells was inhibited strongly by CD18 antibody treatment and slightly by CD11a, CD11b, or CD11c antibody treatment. Interestingly, intracellular adhesion molecule 1 (ICAM-1), a ligand of CD11/CD18, inhibited fimbrial binding to the cells in a dose-dependent manner. In addition, ICAM-1 clearly inhibited the fimbria-induced expression of IL-1β and TNF-α genes in the cells. However, such inhibitory action was not observed with laminin treatment. These results suggest the importance of β2 integrin (CD11/CD18) as a cellular receptor of P. gingivalis fimbriae in the initiation stage of the pathogenic mechanism of the organism in periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号