首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The staphylococcal multiresistance plasmids are key contributors to the alarming rise in bacterial multidrug resistance. A conserved replication initiator, RepA, encoded on these plasmids is essential for their propagation. RepA proteins consist of flexibly linked N-terminal (NTD) and C-terminal (CTD) domains. Despite their essential role in replication, the molecular basis for RepA function is unknown. Here we describe a complete structural and functional dissection of RepA proteins. Unexpectedly, both the RepA NTD and CTD show similarity to the corresponding domains of the bacterial primosome protein, DnaD. Although the RepA and DnaD NTD both contain winged helix-turn-helices, the DnaD NTD self-assembles into large scaffolds whereas the tetrameric RepA NTD binds DNA iterons using a newly described DNA binding mode. Strikingly, structural and atomic force microscopy data reveal that the NTD tetramer mediates DNA bridging, suggesting a molecular mechanism for origin handcuffing. Finally, data show that the RepA CTD interacts with the host DnaG primase, which binds the replicative helicase. Thus, these combined data reveal the molecular mechanism by which RepA mediates the specific replicon assembly of staphylococcal multiresistant plasmids.The emergence of multidrug-resistant bacteria is a mounting global health crisis. In particular, multidrug-resistant Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and is resistant to most antibiotics commonly used for patient treatment (1). Hospital intensive care units in many countries, including the United States, now report methicillin-resistant S. aureus infection rates exceeding 50% (2, 3). Antibiotic resistance in contemporary infectious S. aureus strains, such as in hospitals, is often encoded by plasmids that can be transmitted between strains via horizontal DNA transfer mechanisms. These plasmids are typically classified as small (<5 kb) multicopy plasmids, which usually encode only a single resistance gene; medium-sized (8–40 kb) multirestance plasmids that confer resistance to multiple antibiotics, disinfectants, and/or heavy metals; and large (>40 kb) conjugative multiresistance plasmids that additionally encode a conjugative DNA transfer mechanism (46). Importantly, sequence analyses have shown that most staphylococcal conjugative and nonconjugative multiresistance plasmids encode a highly conserved replication initiation protein, denoted RepA_N (515). RepA_N proteins are also encoded by plasmids from other Gram-positive bacteria as well as by some phage, underscoring their ubiquitous nature (10). These RepA proteins are essential for replication of multiresistance plasmids, and hence plasmid carriage and dissemination, yet the mechanisms by which these proteins function in replication are currently unknown.The DNA replication cycle can be divided into three stages: initiation, elongation, and termination. Replication initiation proteins (RepA) mediate the crucial first step of initiation. Bacterial chromosome replication is initiated by the chromosomal replication initiator protein, DnaA, which binds the origin and recruits the replication components known as the primosome (16). In Gram-negative bacteria the primosome includes DnaG primase, the replicative helicase (DnaB), and DnaC (17). Replication initiation in Gram-positive bacteria involves DnaG primase and helicase (DnaC) and the proteins DnaD, DnaI, and DnaB (1822). DnaD binds first to DnaA at the origin. This is followed by binding of DnaI/DnaB and DnaG, which together recruit the replicative helicase (23, 24). Instead of DnaA, plasmids encode and use their own specific replication initiator binding protein. Structures are only available for RepA proteins (F, R6K, and pPS10 Rep) harbored in Gram-negative bacteria. These proteins contain winged helix-turn-helix (winged HTH) domains and bind iteron DNA as monomers to, in some still unclear manner, drive replicon assembly (2527).Replication mechanisms used by plasmids harbored in Gram-positive bacteria are less well understood and are distinct from their Gram-negative counterparts. Indeed, most plasmid RepA proteins in Gram-negative and Gram-positive bacteria show no sequence homology and seem to be unrelated. The multiresistance RepA proteins are arguably among the most abundant of plasmid Rep proteins, yet how they function is not known. Data suggest that these proteins are composed of three main regions: an N-terminal domain (NTD) consisting of ∼120 aa, a long and variable linker region (∼30–50 residues), and a C-terminal domain (CTD) of ∼120 residues (2831). The NTD and CTD are both essential for replication. The NTD exhibits the highest level of sequence conservation, which has resulted in the designation of plasmids that encode these proteins as the RepA_N replicon family (10). Although not as well conserved as the NTD, RepA CTD regions show homology between plasmids found in genus-specific clusters, suggesting that this domain may perform a host-specific role (2832). Although the function of the RepA CTD remains enigmatic, recent studies have indicated that the NTD mediates DNA binding and interacts with iterons that reside within the plasmid origin (30). The essential roles played by RepA proteins in multiresistance plasmid retention marks them as attractive targets for the development of specific chemotherapeutics. However, the successful design of such compounds necessitates structural and mechanistic insight. Here, we describe a detailed dissection of the RepA proteins from the multiresistance plasmids pSK41 and pTZ2126. The combined data reveal the molecular underpinnings of a minimalist replication assembly mediated by multiresistance RepA proteins.  相似文献   

9.
Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually develops after training. They convey reward signals to spatially segregated synaptic domains of the mushroom body (MB), a potential site for convergence. Furthermore, we identified a single type of dopamine neuron that conveys the reward signal to restricted subdomains of the mushroom body lobes and induces long-term memory. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct dopamine neurons.Memory of a momentous event persists for a long time. Whereas some forms of long-term memory (LTM) require repetitive training (13), a highly relevant stimulus such as food or poison is sufficient to induce LTM in a single training session (47). Recent studies have revealed aspects of the molecular and cellular mechanisms of LTM formation induced by repetitive training (811), but how a single training induces a stable LTM is poorly understood (12).Appetitive olfactory learning in fruit flies is suited to address the question, as a presentation of a sugar reward paired with odor induces robust short-term memory (STM) and LTM (6, 7). Odor is represented by a sparse ensemble of the 2,000 intrinsic neurons, the Kenyon cells (13). A current working model suggests that concomitant reward signals from sugar ingestion cause associative plasticity in Kenyon cells that might underlie memory formation (1420). A single activation session of a specific cluster of dopamine neurons (PAM neurons) by sugar ingestion can induce appetitive memory that is stable over 24 h (19), underscoring the importance of sugar reward to the fly.The mushroom body (MB) is composed of the three different cell types, α/β, α′/β′, and γ, which have distinct roles in different phases of appetitive memories (11, 2125). Similar to midbrain dopamine neurons in mammals (26, 27), the structure and function of PAM cluster neurons are heterogeneous, and distinct dopamine neurons intersect unique segments of the MB lobes (19, 2834). Further circuit dissection is thus crucial to identify candidate synapses that undergo associative modulation.By activating distinct subsets of PAM neurons for reward signaling, we found that short- and long-term memories are independently formed by two complementary subsets of PAM cluster dopamine neurons. Conditioning flies with nutritious and nonnutritious sugars revealed that the two subsets could represent different reinforcing properties: sweet taste and nutritional value of sugar. Constant appetitive memory retention after a single training session thus comprises two memory components triggered by distinct reward signals.  相似文献   

10.
Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.Pathogen-containing vacuoles (PVs) provide a safe haven to many intracellular bacterial and protozoan pathogens (1). Within the vacuolar enclosure of PVs, these pathogens can accumulate nutrients required for microbial growth. Moreover, life within the vacuolar niche shields microbes from cytoplasmic immune sensors that, once activated, can trigger proinflammatory and cell-autonomous immune responses (1). Accordingly, many intracellular pathogens such as the bacterium Chlamydia trachomatis and the protozoan Toxoplasma gondii have successfully adapted to a vacuolar lifestyle.For the host to successfully combat infections with PV-resident microbes, the innate immune system must target PVs and its inhabitants for destruction. Critical mediators of host-directed attacks on PVs are two families of IFNγ-inducible GTPases: immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) (2). Members of both GTPase families play roles in host-mediated lysis of PVs, a process resulting in the release of microbes into the host cell cytoplasm, subsequent killing of PV-expelled microbes, and host cell death (38). Additionally, GBPs help deliver cytosolic subunits of the antimicrobial NADPH oxidase NOX2 for assembly on phagosomal membranes, orchestrate the capture of PV-resident microbes inside degradative autophagolysosomes, and promote the activation of canonical and noncanonical inflammasome pathways (5, 812). As a critical first step underlying most if not all of these known GBP-controlled cell-autonomous immune responses, GBPs must locate to their intracellular microbial targets.GBPs belong to the dynamin superfamily of large GTPases (13). Similar to other members of the dynamin superfamiliy, GBPs can assemble as oligomers in a nucleotide-dependent fashion (13). Binding of GTP results in dimer formation; subsequent GTP hydrolysis prompts conformational changes that enable GBPs to assemble as tetramers (14, 15). Mutations in the G domain that reduce nucleotide binding affinities and hydrolytic activity block GBP oligomerization, constrain the localization of GBPs to the cytoplasm, and prevent GBPs from binding to PV membranes (9, 1518). These observations support a model in which GBP monomers are diffusely distributed in the cytoplasm and GBP oligomers associate with membranes. However, these observations fail to account for the specificity with which oligomeric GBPs agglomerate on PV membranes.PVs formed by C. trachomatis and T. gondii recruit not only GBPs but also members of the IRG family of IFNγ-inducible GTPase (4, 19). The IRG protein family can be divided into two subgroups: IRGM and GKS proteins (20). Whereas GKS proteins feature the canonical glycine–lysine–serine (GKS) P-loop sequence, IRGM proteins have a substitution of a lysine for a methionine in their P-loop sequence (20). IRGM and GKS proteins also differ in their subcellular localization: IRGM proteins associate with endomembranes, whereas monomeric GDP-bound GKS proteins predominantly reside within the host cell cytoplasm (4, 17, 21, 22). Once GKS proteins transition into a GTP-bound active state, they can bind to PV membranes (21). IRGM proteins inhibit this activation step and thereby guard IRGM-decorated membranes against GKS protein targeting (17, 21). Because PV membranes surrounding either C. trachomatis or T. gondii are largely devoid of IRGM proteins, they are the preferred GKS binding substrate following a “missing-self” principle of immune targeting (17, 23). In IRGM-deficient cells, however, GKS proteins enter the active state prematurely, form protein aggregates, mislocalize, and thus fail to bind to PVs (17, 21). Although these previous observations help explain how IRGM proteins promote the delivery of GKS proteins to PVs, IRGM proteins also control the subcellular localization of GBPs through an uncharacterized mechanism (6, 17, 2426).Here, we report a previously unidentified host-directed ubiquitination pathway involved in innate immunity. We demonstrate that Chlamydia- and Toxoplasma-containing vacuoles become ubiquitin-decorated upon IFNγ priming of their host cells. IFNγ-dependent association of ubiquitin with PVs requires IFNγ-inducible IRG proteins and the E3 ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). Experimental removal of the IFNγ-inducible ubiquitination pathway dramatically diminishes the p62-dependent delivery of GBPs to PVs and thereby renders host cells more susceptible to infections. Thus, our observations imply that ubiquitin serves as a host-induced pattern that marks intracellular structures as immune targets for members of the GBP family of host defense proteins.  相似文献   

11.
Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.Plasmids serve as extrachromosomal DNA platforms for the reassortment, mobilization, and maintenance of antibiotic resistance genes in bacteria, enabling host cells to colonize environments flooded with antimicrobials and to take advantage of resources freed by the extinction of nonresistant competitors. Fueled by these selective forces and aided by their itinerant nature, plasmids disseminate resistance genes worldwide shortly after new antibiotics are developed, which is a major clinical concern (13). However, in antibiotic-free environments, such genes are dispensable. There, the cost that plasmid carriage imposes on cells constitutes a disadvantage in the face of competition from other cells and, because plasmids depend on their hosts to survive, also a threat to their own existence.Many plasmids keep low copy numbers (CNs) to minimize the problem above, because it reduces burdens to host cells. However, this also decreases their chances to fix in descendant cells, a new survival challenge (4). To counteract this, plasmids have evolved stability functions. Partition systems pull replicated plasmid copies to opposite poles in host cells, facilitating their inheritance by daughter cells (5). Plasmids also bear postsegregational killing (PSK) systems, which encode a stable toxin and a labile antitoxin (TA) pair that eliminates plasmid-free cells produced by occasional replication or partition failures. Regular production of the labile antitoxin protects plasmid-containing cells from the toxin. However, antitoxin replenishment is not possible in cells losing the plasmid, and this triggers their elimination (5).TA pairs are common in plasmids disseminating antibiotic resistance in bacterial pathogens worldwide (2, 610). The link of these systems to PSK and the exiguous list of alternatives in the pipeline have led some to propose that chemicals activating these TA pairs may constitute a powerful antibiotic approach against these organisms (5, 1113). However, the appropriateness of these TA pairs as therapeutic targets requires unequivocal understanding of their function in plasmids. Although PSK systems encode TA pairs, not all TA pairs might function as PSK systems, as suggested by their abundance in bacterial chromosomes, where PSK seems unnecessary (1416). Moreover, the observation that many plasmids bear several TA pairs (610) raises the intriguing question of why they would need more than one PSK system, particularly when they increase the metabolic burden that plasmids impose on host cells (17). Because PSK functions are not infallible, their gathering may provide a mechanism for reciprocal failure compensation, minimizing the number of cells that escape killing upon plasmid loss (5). Alternatively, some TA pairs may stabilize plasmids by mechanisms different from PSK, and their grouping might not necessarily reflect functional redundancy (18).This may be the case in plasmid R1, which encodes TA pairs hok-sok (host killing-suppressor of killing) and kis(pemI)-kid(pemK) (1923). Inconsistent with PSK, we had noticed that activation of toxin Kid occurred in cells that still contained R1, and that this happened when CNs were insufficient to ensure plasmid transmission to descendant cells. We also found that Kid cleaved mRNA at UUACU sites, which appeared well suited to trigger a response that prevented plasmid loss and increased R1 CNs without killing cells, as suggested by our results. In view of all this, we argued that Kid and Kis functioned as a rescue system for plasmid R1, and not as a PSK system (24). This proposal cannot be supported by results elsewhere, suggesting that Kid may cleave mRNA at simpler UAH sites (with H being A, C, or U) (25, 26), a view that has prevailed in the literature (14, 16, 2729). Moreover, other observations indicate that our past experiments may have been inappropriate to conclude that Kid does not kill Escherichia coli cells (30, 31). Importantly, Kid, Kis, and other elements that we found essential for R1 rescue are conserved in plasmids conferring resistance to extended-spectrum β-lactamases, a worrying threat to human health (1, 610, 32). Therapeutic options to fight pathogens carrying these plasmids are limited, and activation of Kid may be perceived as a good antibiotic alternative. Because the potential involvement of this toxin in plasmid rescue advises against such approach, we aimed to ascertain here the mode of action; the effects on cells; and, ultimately, the function of Kid (and Kis) in R1.  相似文献   

12.
We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K+ channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K+ channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.Voltage-gated K+ channels are highly conserved among bilaterian metazoans and play a central role in the regulation of excitation in neurons and muscle. Understanding the functional evolution of these channels may therefore provide important insights into how neuromuscular excitation evolved within the Metazoa. Three major gene families, Shaker, KCNQ, and Ether-a-go-go (EAG) encode all voltage-gated K+ channels in bilaterians (1, 2). In this study, we examine the functional evolution and origins of the Shaker and KCNQ gene families. Shaker family channels can be definitively identified by a unique subunit structure that includes both a voltage-gated K+ channel core and a family-specific cytoplasmic domain within the N terminus known as the T1 domain. T1 mediates assembly of Shaker family subunits into functional tetrameric channels (3, 4). KCNQ channels are also tetrameric but lack a T1 domain and use a distinct coiled-coil assembly domain in the C terminus (5, 6). KCNQ channels can be identified by the presence of this family-specific assembly motif and high amino acid conservation within the K+ channel core. Both channel families are found in cnidarians (1, 7) and thus predate the divergence of cnidarians and bilaterians, but their ultimate evolutionary origins have not yet been defined.Shaker family K+ channels serve diverse roles in the regulation of neuronal firing and can be divided into four gene subfamilies based on function and sequence homology: Shaker, Shab, Shal, and Shaw (8, 9). The T1 assembly domain is only compatible between subunits from the same gene subfamily (4, 10) and thus serves to keep the subfamilies functionally segregated. Shaker subfamily channels activate rapidly near action potential threshold and range from rapidly inactivating to noninactivating. Multiple roles for Shaker channels in neurons and muscles have been described, but their most unique and fundamental role may be that of axonal action potential repolarization. Shaker channels are clustered to the axon initial segment and nodes of Ranvier in vertebrate neurons (1113) and underlie the delayed rectifier in squid giant axons (14). The Shaker subfamily is diverse in cnidarians (15, 16), and the starlet sea anemone Nematostella vectensis has functional orthologs of most identified Shaker current types observed in bilaterians (16).The Shab and Shal gene subfamilies encode somatodendritic delayed rectifiers and A currents, respectively (1720). Shab channels are important for maintaining sustained firing (21, 22), whereas the Kv4-based A current modulates spike threshold and frequency (17). Shab and Shal channels are present in cnidarians, but cnidarian Shab channels have not been functionally characterized, and the only cnidarian Shal channels expressed to date display atypical voltage dependence and kinetics compared with bilaterian channels (23). Shaw channels are rapid, high-threshold channels specialized for sustaining fast firing in vertebrates (24, 25) but have a low activation threshold and may contribute to resting potential in Drosophila (19, 26, 27). A Caenorhabditis elegans Shaw has slow kinetics but a high activation threshold (28), and a single expressed cnidarian Shaw channel has the opposite: a low activation threshold but relatively fast kinetics (29). Thus, the ancestral properties and function of Shaw channels is not yet understood. Further functional characterization of cnidarian Shab, Shal, and Shaw channels would provide a better understanding of the evolutionary status of the Shaker family in early parahoxozoans.KCNQ family channels underlie the M current in vertebrate neurons (30) that regulates subthreshold excitability (31). The M current provides a fundamental mechanism for regulation of firing threshold through the Gq G-protein pathway because KCNQ channels require phosphatidylinositol 4,5-bisphosphate (PIP2) for activation (32, 33). PIP2 hydrolysis and subsequent KCNQ channel closure initiated by Gq-coupled receptors produces slow excitatory postsynaptic potentials, during which the probability of firing is greatly increased (32, 33). The key functional adaptations of KCNQ channels for this physiological role that can be observed in vitro are (i) a requirement for PIP2 to couple voltage-sensor activation to pore opening (34, 35), and (ii) a hyperpolarized voltage–activation curve that allows channels to open below typical action potential thresholds. Both key features are found in vertebrate (30, 34, 3638), Drosophila (39), and C. elegans (40) KCNQ channels, suggesting they may have been present in KCNQ channels in a bilaterian ancestor. Evolution of the M current likely represented a major advance in the ability to modulate the activity of neuronal circuits, but it is not yet clear when PIP2-dependent KCNQ channels first evolved.Here, we examine the origins and functional evolution of the Shaker and KCNQ gene families. If we assume the evolution of neuronal signaling provided a major selective pressure for the functional diversification of voltage-gated K+ channels, then we can hypothesize that the appearance of these gene families might accompany the emergence of the first nervous systems or a major event in nervous system evolution. Recent phylogenies that place the divergence of ctenophores near the root of the metazoan tree suggest that the first nervous systems, or at least the capacity to make neurons, may have been present in a basal metazoan ancestor (4143) (Fig. S1). One hypothesis then is that much of the diversity of metazoan voltage-gated channels should be shared between ctenophores and parahoxozoans [cnidarians, bilaterians, and placozoans (44)]. However, genome analysis indicates that many “typical” neuronal genes are missing in ctenophores and the sponges lack a nervous system, leading to the suggestion that extant nervous systems may have evolved independently in ctenophores and parahoxozoans (42, 45). Thus, a second hypothesis is that important steps in voltage-gated K+ channel evolution might have occurred separately in ctenophores and parahoxozoans. We tested these hypotheses by carefully examining the phylogenetic distribution and functional evolution of Shaker and KCNQ family K+ channels. Our results support a model in which major innovations in neuromuscular excitability occurred specifically within the parahoxozoan lineage.  相似文献   

13.
14.
15.
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.Although forgetting commonly has a negative connotation, it is a functional process that shapes memory and cognition (14). Recent studies, including work in relatively simple invertebrate models, have started to reveal basic biological mechanisms underlying forgetting (515). In Drosophila, single-session Pavlovian conditioning by pairing an odor (conditioned stimulus, CS) with electric shock (unconditioned stimulus, US) induces aversive memories that are short-lasting (16). The memory performance of fruit flies is observed to drop to a negligible level within 24 h, decaying rapidly early after training and slowing down thereafter (17). Memory decay or forgetting requires the activation of the small G protein Rac, a signaling protein involved in actin remodeling, in the mushroom body (MB) intrinsic neurons (6). These so-called Kenyon cells (KCs) are the neurons that integrate CS–US information (18, 19) and support aversive memory formation and retrieval (2022). In addition to Rac, forgetting also requires the DAMB dopamine receptor (7), which has highly enriched expression in the MB (23). Evidence suggests that the dopamine-mediated forgetting signal is conveyed to the MB by dopamine neurons (DANs) in the protocerebral posterior lateral 1 (PPL1) cluster (7, 24). Therefore, forgetting of olfactory aversive memory in Drosophila depends on a particular set of intracellular molecular pathways within KCs, involving Rac, DAMB, and possibly others (25), and also receives modulation from extrinsic neurons. Although important cellular evidence supporting the hypothesis that memory traces are erased under these circumstances is still lacking, these findings lend support to the notion that forgetting is an active, biologically regulated process (17, 26).Although existing studies point to the MB circuit as essential for forgetting, several questions remain to be answered. First, whereas the molecular pathways for learning and forgetting of olfactory aversive memory are distinct and separable (6, 7), the neural circuits seem to overlap. Rac-mediated forgetting has been localized to a large population of KCs (6), including the γ-subset, which is also critical for initial memory formation (21, 27). The site of action of DAMB for forgetting has yet to be established; however, the subgroups of PPL1-DANs implicated in forgetting are the same as those that signal aversive reinforcement and are required for learning (2830). It leaves open the question of whether the brain circuitry underlying forgetting and learning is dissociable, or whether forgetting and learning share the same circuit but are driven by distinct activity patterns and molecular machinery (26). Second, shock reinforcement elicits multiple memory traces through at least three dopamine pathways to different subdomains in the MB lobes (28, 29). Functional imaging studies have also revealed Ca2+-based memory traces in different KC populations (31). It is poorly understood how forgetting of these memory traces differs, and it remains unknown whether there are multiple regulatory neural pathways. Notably, when PPL1-DANs are inactivated, forgetting still occurs, albeit at a lower rate (7). This incomplete block suggests the existence of an additional pathway(s) that conveys forgetting signals to the MB. Third, other than memory decay over time, forgetting is also observed through interference (32, 33), when new learning or reversal learning is introduced after training (6, 34, 35). Time-based and interference-based forgetting shares a similar dependence on Rac and DAMB (6, 7). However, it is not known whether distinct circuits underlie forgetting in these different contexts.In the current study, we focus on the diverse set of MB extrinsic neurons (MBENs) that interconnect the MB lobes with other brain regions, which include 34 MB output neurons (MBONs) of 21 types and ∼130 dopaminergic neurons of 20 types in the PPL1 and protocerebral anterior medial (PAM) clusters (36, 37). These neurons have been intensively studied in olfactory memory formation, consolidation, and retrieval in recent years (e.g., 24, 2830, 3848); however, their roles in forgetting have not been characterized except for the aforementioned PPL1-DANs. In a functional screen, we unexpectedly found that several Gal4 driver lines of MBENs showed significantly better 3-h memory retention when the Gal4-expressing cells were inactivated. The screen has thus led us to identify two types of MBENs that are not involved in initial learning but play important and additive roles in mediating memory decay. Furthermore, neither of these MBEN types is required for reversal learning, supporting the notion that there is a diversity of neural circuits that drive different forms of forgetting.  相似文献   

16.
The number and location of flagella, bacterial organelles of locomotion, are species specific and appear in regular patterns that represent one of the earliest taxonomic criteria in microbiology. However, the mechanisms that reproducibly establish these patterns during each round of cell division are poorly understood. FlhG (previously YlxH) is a major determinant for a variety of flagellation patterns. Here, we show that FlhG is a structural homolog of the ATPase MinD, which serves in cell-division site determination. Like MinD, FlhG forms homodimers that are dependent on ATP and lipids. It interacts with a complex of the flagellar C-ring proteins FliM and FliY (also FliN) in the Gram-positive, peritrichous-flagellated Bacillus subtilis and the Gram-negative, polar-flagellated Shewanella putrefaciens. FlhG interacts with FliM/FliY in a nucleotide-independent manner and activates FliM/FliY to assemble with the C-ring protein FliG in vitro. FlhG-driven assembly of the FliM/FliY/FliG complex is strongly enhanced by ATP and lipids. The protein shows a highly dynamic subcellular distribution between cytoplasm and flagellar basal bodies, suggesting that FlhG effects flagellar location and number during assembly of the C-ring. We describe the molecular evolution of a MinD-like ATPase into a flagellation pattern effector and suggest that the underappreciated structural diversity of the C-ring proteins might contribute to the formation of different flagellation patterns.Most bacteria move by flagella. The flagellar architecture is conserved and can be divided into the cytoplasmic C-ring, the basal body, the rod, and the exterior hook and filament structures (1). Bacterial species differ in the number and arrangement of their flagella (flagellation pattern) (2). However, the mechanisms that allow bacteria to establish their specific flagellation patterns reproducibly during each cell division are poorly understood. The protein FlhG (also known as “YlxH,” “MinD2,” “FleN,” or “MotR”) is essential for the correct flagellation pattern of polar- (35), lophotrichous- (6), amphitrichous- (7), and peritrichous-flagellated bacteria (8, 9). Deletion of flhG in polar-flagellated bacteria leads to hyperflagellation and impaired motility (35). In the amphitrichous-flagellated Campylobacter jejuni, ∼40% of the cells of a ΔflhG strain exhibited more than one flagellum at one pole and were impaired in motility (7). The peritrichous-flagellated bacterium Bacillus subtilis exhibits ∼26 flagellar basal bodies arranged symmetrically around midcell in a gridlike pattern (8). Furthermore, flagella are discouraged at the cell pole. Deletion of flhG does not result in swimming or swarming defects, although multiple flagella appear in tufts from constrained loci on the cell, and flagellar basal bodies often are aggregated (8). FlhG acts in concert with the signal recognition particle (SRP)-GTPase FlhF (1014) that recruits the flagellar protein FliF to the cell pole in the polar-flagellated Vibrio cholerae (15). FlhG is predicted to belong to the MinD/ParA ATPase family (6, 16) whose characterized members act in orchestrated spatiotemporal processes (e.g., cell-division site determination and plasmid/chromosome partitioning (summarized in ref. 17). Together with MinC, MinD constitutes the conserved center of the Min system which regulates bacterial cell division by restricting cytokinetic Z-ring assembly to midcell (reviewed in ref. 18). MinD forms ATP-dependent homodimers (19) that interact with the inner membrane through a C-terminal amphipathic helix (membrane-targeting sequence, MTS) (20, 21). By this mechanism, MinD recruits MinC to the membrane where MinC inhibits polymerization of FtsZ into the Z-ring (22). Interestingly, Campylobacter jejuni does not contain a Min system, and FlhG is involved in flagellation pattern control and regulation of cell division (7). In contrast to MinD, the molecular framework in which the putative MinD-like ATPase FlhG controls flagellation is unknown. Also, it is enigmatic how conserved homologs of FlhG can control different flagellation patterns in different species. Here, we investigated the mechanism and function of FlhG in the Gram-positive, peritrichous-flagellated B. subtilis (Bs) and the Gram-negative, polar-flagellated Shewanella putrefaciens (Sp).  相似文献   

17.
18.
Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.Because it is one of the most important staple food crops cultivated worldwide, improvement of grain yield is a major focus of rice-breeding programs (1). Grain size is one of the determining factors of grain yield (2, 3). A number of quantitative trait loci (QTLs) controlling rice grain size have been identified in recent years (411). However, functional mechanisms of these genes remain largely unknown. Because QTLs usually have important functions in determining grain size, many of them have been widely selected in breeding processes or existed in modern elite varieties, and a certain QTL could be only applicable in certain varieties (12). Thus, exploration of new grain size-associated genes and elucidation of their functional mechanisms have great significance for further improvement of rice yield (12).Seed size, as well as other organ size, is controlled by various plant hormones, such as auxin, brassinosteroid, and cytokinin (10, 13, 14). A number of studies have demonstrated that auxin plays a vital role in organ size determination by affecting cell division, cell expansion, and differentiation (1517). Auxin exists predominantly as indole-3-acetic acid (IAA) in plants, and genetic studies of its biosynthetic genes in Arabidopsis have demonstrated that IAA regulates many aspects of plant growth and development, including stem elongation, lateral branching, vascular development, and tropic growth responses (18, 19). Combined with biochemical studies, the tryptophan (Trp)-dependent IAA biosynthesis pathway has been clearly established involving the YUCCA family flavin monooxgenases (20). Importantly, the two-step pathway is highly conserved throughout the plant kingdom (21). Until very recently, the Trp-independent auxin biosynthetic pathway was elucidated as contributing to early embryogenesis in Arabidopsis (22). Primary auxin signaling is a rapid process initiated from the hormone perception by receptor TIR1, an F-box protein, followed by degradation of the negative regulator AUX/IAA proteins, and further release the downstream auxin response factors (ARFs) (2326). However, how the ARFs work in plants remains elusive. Auxin transport, generally referring to the cell-to-cell transportation of the hormone directed basipetally from shoots to roots in vascular tissues, plays a critical role in auxin response (18). The transport involves a number of membrane-associated proteins, such as PINs (protein inhibitor of nNOS), AUX1 (AUXIN TRANSPORTER PROTEIN 1), and ABCBs (ATP-BINDING CASSETTE, SUB-FAMILY B PROTEINS) as efflux or influx carriers (2730). Disruption of auxin transport induced by either gene mutations or chemical inhibitor treatment will lead to diverse development defects, such as decreased lateral organ initiation and defective tropic growth responses (27, 3134).In this study, we identify a rice mutant, named big grain1-D (Bg1-D) because it is a dominant mutant having extralarge grain size. BG1 encodes a novel plasma membrane-associated protein, and is specifically induced by auxin treatment. We show that BG1 is a new positive regulator of auxin response involved in auxin transport, and demonstrate that manipulation of BG1 expression can greatly improve grain size and plant productivity.  相似文献   

19.
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.Large bacterial populations are present in the oceans, playing important roles in primary production and the biogeochemical cycling of matter. These bacterial communities are highly diverse (14) yet form stable and reproducible bacterial assemblages under similar environmental conditions (57).These bacteria are present together with high abundances of viruses (phages) that have the potential to infect and kill them (811). Although studied only rarely in marine organisms (1216), this coexistence is likely to be the result of millions of years of coevolution between these antagonistic interacting partners, as has been well documented for other systems (1720). From the perspective of the bacteria, survival entails the selection of cells that are resistant to infection, preventing viral production and enabling the continuation of the cell lineage. Resistance mechanisms include passively acquired spontaneous mutations in cell surface molecules that prevent phage entry into the cell and other mechanisms that actively terminate phage infection intracellularly, such as restriction–modification systems and acquired resistance by CRISPR-Cas systems (21, 22). Mutations in the phage can also occur that circumvent these host defenses and enable the phage to infect the recently emerged resistant bacterium (23).Acquisition of resistance by bacteria is often associated with a fitness cost. This cost is frequently, but not always, manifested as a reduction in growth rate (2427). Recently, an additional type of cost of resistance was identified, that of enhanced infection whereby resistance to one phage leads to greater susceptibility to other phages (14, 15, 28).Over the years, a number of models have been developed to explain coexistence in terms of the above coevolutionary processes and their costs (16, 2932). In the arms race model, repeated cycles of host mutation and virus countermutation occur, leading to increasing breadths of host resistance and viral infectivity. However, experimental evidence generally indicates that such directional arms race dynamics do not continue indefinitely (25, 33, 34). Therefore, models of negative density-dependent fluctuations due to selective trade-offs, such as kill-the-winner, are often invoked (20, 33, 35, 36). In these models, fluctuations are generally considered to occur between rapidly growing competition specialists that are susceptible to infection and more slowly growing resistant strains that are considered defense specialists. Such negative density-dependent fluctuations are also likely to occur between strains that have differences in viral susceptibility ranges, such as those that would result from enhanced infection (30).The above coevolutionary processes are considered to be among the major mechanisms that have led to and maintain diversity within bacterial communities (32, 35, 3739). These processes also influence genetic microdiversity within populations of closely related bacteria. This is especially the case for cell surface-related genes that are often localized to genomic islands (14, 40, 41), regions of high gene content, and gene sequence variability among members of a population. As such, populations in nature display an enormous degree of microdiversity in phage susceptibility regions, potentially leading to an assortment of subpopulations with different ranges of susceptibility to coexisting phages (4, 14, 30, 40).Prochlorococcus is a unicellular cyanobacterium that is the numerically dominant photosynthetic organism in vast oligotrophic expanses of the open oceans, where it contributes significantly to primary production (42, 43). Prochlorococcus consists of a number of distinct ecotypes (4446) that form stable and reproducible population structures (7). These populations coexist in the oceans with tailed double-stranded DNA phage populations that infect them (4749).Previously, we found that resistance to phage infection occurs frequently in two high-light–adapted Prochlorococcus ecotypes through spontaneous mutations in cell surface-related genes (14). These genes are primarily localized to genomic island 4 (ISL4) that displays a high degree of genetic diversity in environmental populations (14, 40). Although about a third of Prochlorococcus-resistant strains had no detectable associated cost, the others came with a cost manifested as either a slower growth rate or enhanced infection by other phages (14). In nature, Prochlorococcus seems to be growing close to its intrinsic maximal growth rate (5052). This raises the question as to the fate of emergent resistant Prochlorococcus lineages in the environment, especially when resistance is accompanied with a high growth rate fitness cost.To begin addressing this question, we investigated the phenotype of Prochlorococcus strains with time after the acquisition of resistance. We found that resistant strains evolved toward an improved growth rate and a reduced resistance range. Whole-genome sequencing and PCR screening of many of these strains revealed that these phenotypic changes were largely due to additional, compensatory mutations, leading to increased genetic diversity. These findings suggest that the oceans are populated with rapidly growing Prochlorococcus cells with varying degrees of resistance and provide an explanation for how a multitude of presumably resistant Prochlorococcus cells are growing close to their maximal known growth rate in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号