首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic protein-2 (BMP-2) is a multi-functional growth factor belonging to the transforming growth factor β superfamily that has a broad range of activities that affect many different cell types. BMP-2 induces odontoblastic differentiation of human dental pulp cells (DPCs), but the underlying mechanism remains unclear. In this study, we investigated the potential role of the JNK mitogen-activated protein kinases (MAPK) pathway in BMP-2-induced odontoblastic differentiation of DPCs. The levels of phosphorylated and unphosphorylated JNK MAPK were quantified by Western blot analysis following treatment with BMP-2 and the JNK inhibitor SP600125. The role of JNK MAPK in the BMP-2-induced odontoblastic differentiation of DPCs was determined by measuring alkaline phosphatase (ALP) activity and by examining the expression of odontoblastic markers using quantitative real-time polymerase chain reaction analysis. The effect of JNK MAPK silencing on odontoblastic differentiation was also investigated. BMP-2 upregulated the phosphorylation of JNK in DPCs in a dose- and time-dependent manner. Early markers of odontoblastic differentiation, including ALP activity, osteopontin and dentin matrix protein-1, were not inhibited by the JNK inhibitor. However, the JNK inhibitor, SP600125, significantly inhibited late-stage differentiation of odontoblasts, including the gene expression of osteocalcin, dentin sialophosphoprotein and bone sialoprotein, and also reduced the formation of mineralized nodules in BMP-2-treated DPCs. Consistent with this observation, silencing of JNK MAPK also decreased late-stage odontoblastic differentiation. Taken together, these findings suggest that JNK activity is required for late-stage odontoblastic differentiation induced by BMP-2.  相似文献   

2.
3.
Smith E  Yang J  McGann L  Sebald W  Uludag H 《Biomaterials》2005,26(35):7329-7338
The purpose of this study was to design thermoreversible biomaterials for enhanced adhesion of bone morphogenetic protein-2 (BMP-2)-responsive cells. Peptides containing the arginine-glycine-aspartic acid (RGD) sequence were conjugated to N-isopropylacrylamide (NiPAM) polymers via amine-reactive N-acryloxysuccinimide (NASI) groups. In monolayer cultures, the adhesion of BMP-2-responsive C2C12 cells to RGD-grafted NiPAM/NASI surfaces was significantly higher than adhesion on ungrafted NiPAM/NASI surfaces. Although the morphology of cells adhered to RGD-grafted NiPAM/NASI surfaces was comparable to cells adhered on tissue culture polystyrene (TCPS), long-term cell growth was limited on the NiPAM/NASI surfaces, even for RGD-grafted surfaces. Treatment of C2C12 cells with recombinant BMP-2 induced dose-dependent osteoblastic differentiation as assessed by alkaline phosphatase (ALP) activity. In the absence of BMP-2, cells cultured on NiPAM/NASI polymers (either grafted with RGD peptide or not) expressed significantly higher levels of ALP activity than the cells cultured on TCPS, indicating that the polymer surfaces induced some osteoblastic activity in C2C12 cells without the need for BMP-2. We conclude that NiPAM-based thermoreversible biomaterials, despite their limited ability to support cell growth, allowed an enhanced expression of the chosen osteogenic marker (ALP) by C2C12 cells in vitro.  相似文献   

4.
Dental follicle stem cells are a group of cells possessing osteogenic, adipogenetic and neurogenic differentiations, but the specific mechanism underlying the multilineage differentiation remains still unclear. Great attention has been paid to bone morphogenetic protein-9 (BMP-9) due to its potent osteogenic activity. In the present study, rat dental follicle stem cells were isolated and purified, and cells of passage 3 underwent adenovirus mediated BMP-9 gene transfection to prepare dental follicle stem cells with stable BMP-9 expression. Detection of alkaline phosphatase (ALP) and calcium deposition showed dental follicle stem cells transfected with BMP-9 gene could significantly promote the osteogenesis. In addition, SB203580 and PD98059 were employed to block the p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK1/2), respectively. Detection of ALP and calcium deposition revealed the BMP-9 induced osteogenic differentiation of dental follicle stem cells depended on MAPK signaling pathway.  相似文献   

5.
Bone cells contacting nickel (Ni)-containing implant materials may be affected by Ni species via disturbed signaling pathways involved in bone cell development. Here we analyze effects of the Ni-containing steel 316L and major metal constituents thereof on bone morphogenetic protein-2 (BMP-2)-induced alkaline phosphatase (ALP) of MC3T3-E1 cells. While cells grew normally on 316L, cellular Ni content increased 10-fold vs. control within 4 days. With respect to the major components of 316L, Ni2+ (3-50 microM) was most inhibitory to BMP-2-induced ALP, whereas even 50 microM Fe3+, Cr3+, Mo5+, or Mn2+ had no such effect. In line with this, BMP-2-induced ALP was significantly reduced in cells on 316L. This effect was not prevented by the metal ion chelator diethylenetriaminepentaacetic acid (DTPA). Instead, DTPA abolished the stimulatory effect of BMP-2 on ALP, pointing to chelatable metal ions involved. Zn2+, as one possible candidate, antagonized the Ni2+ inhibition of BMP-2-induced ALP in both MC3T3-E1 and human bone marrow stromal cells. Results show that cells contacting 316L steel are exposed to increased concentrations of Ni which suffice to impair BMP-2-induced ALP activity. Zn2+, as a competitor of this inhibition, may help to restore normal osteoblastic function and bone development under these conditions.  相似文献   

6.
Regenerative procedures using barrier membrane technology are presently well established in periodontal/endodontic surgery. The objective of this study was to compare the subsequent effects of the released platelet-derived growth factor (PDGF) and growth/differentiation factor 5 (GDF-5) from collagen membranes (CMs) on bone regeneration in vitro and in vivo. In vitro studies were conducted using MC3T3-E1 mouse preosteoblasts cultured with or without factors. Cell viability, cell proliferation, alkaline phosphatase (ALP) activity and bone marker gene expression were then measured. In vivo studies were conducted by placing CMs with low or high dose PDGF or GDF-5 in rat mandibular defects. At 4 weeks after surgery new bone formation was measured using μCT and histological analysis. The results of in vitro studies showed that CM/GDF-5 significantly increased ALP and cell proliferation activities without cytotoxicity in MC3T3-E1 cells when compared to CM/PDGF or CM alone. Gene expression analysis revealed that Runx2 and Osteocalcin were significantly increased in CM/GDF-5 compared to CM/PDGF or control. Quantitative and qualitative μCT and histological analysis for new bone formation revealed that although CM/PDGF significantly enhanced bone regeneration compared to CM alone or control, CM/GDF-5 significantly accelerated bone regeneration to an even greater extent than CM/PDGF. The results also showed that GDF-5 induced new bone formation in a dose-dependent manner. These results suggest that this strategy, using a CM carrying GDF-5, might lead to an improvement in the current clinical treatment of bone defects for periodontal and implant therapy.  相似文献   

7.
Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.  相似文献   

8.
9.
Basmanav FB  Kose GT  Hasirci V 《Biomaterials》2008,29(31):4195-4204
Aim of the study was to design a 3D tissue-engineering scaffold capable of sequentially delivering two bone morphogenetic proteins (BMP). The novel delivery system consisted of microspheres of polyelectrolyte complexes of poly(4-vinyl pyridine) (P(4)VN) and alginic acid loaded with the growth factors BMP-2 and BMP-7 which themselves were loaded into the scaffolds constructed of PLGA. Microspheres carrying the growth factors were prepared using polyelectrolyte solutions with different concentrations (4-10%) to control the growth factor release rate. Release kinetics was studied using albumin as the model drug and the populations that release their contents very early and very late in the release study were selected to carry BMP-2 and BMP-7, respectively. Foam porosity changed when the microspheres were loaded. Bone marrow derived stem cells (BMSC) from rats were seeded into these foams. Alkaline phosphatase (ALP) activities were found to be lowest and cell proliferation was highest at all time points with foams carrying both the microsphere populations, regardless of BMP presence. With the present doses used neither BMP-2 nor BMP-7 delivery had any direct effect on proliferation, however, they enhanced osteogenic differentiation. Co-administration of BMP enhanced osteogenic differentiation to a higher degree than with their single administration.  相似文献   

10.
11.
Mechanical load–induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load–induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load–induced and TGM2-induced ALP activity. In summary, mechanical load–induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.  相似文献   

12.
13.
Biglycan (BGN) has been reported to promote bone morphogenetic protein-4 (BMP-4) stimulated osteoblastic differentiation. However, the underlying mechanism has yet to be fully elucidated. The glycosaminoglycan (GAG) chains of BGN have?a variety of?biological functions. In the present study, we explored the potential role of the GAG chains of BGN in promoting BMP-4-induced osteoblast differentiation. BGN knockout (KO) murine calvarial cells were transfected with adenovirus overexpressing wild-type BGN (Adv-BGN), adenovirus expressing GAG-mutant BGN (Adv-BGNm) and adenovirus without BGN (Adv-Emp). Transfected cells were treated with or without BMP-4. Subsequently, BMP-4 signaling and function were assessed by evaluating the expression of the osteoblast differentiation-related proteins, Smad1/5/8 phosphorylation and alkaline phosphatase (ALP) activity. Furthermore, the binding specificity of the transfected cells to BMP-4 was also investigated using immunofluorescence staining. Our study demonstrated that a mutant BGN lacking GAG chains decreased BGN-assisted BMP-4 signaling and osteoblast differentiation and that the expression of this mutant BGN in biglycan knockout (BGN?KO) calvarial osteoblasts could not rescue its differentiation deficiency as efficiently as wild-type (WT) BGN. These results strongly suggest that the GAG chains of BGN promote BGN-assisted BMP-4 function.  相似文献   

14.
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BMP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaffolds were prepared from chitosan and from chitosan–PEO by wet spinning. Chitosan of 4% concentration in 2% acetic acid (CHI4–HAc2) and chitosan (4%) and PEO (2%) in 5% acetic acid (CHI4–PEO2–HAc5) yielded scaffolds with smooth and rough fiber surfaces, respectively. These scaffolds were seeded with rat bone marrow mesenchymal stem cells (MSCs). When there were no nanoparticles the initial differentiation rate was higher on (CHI4–HAc2) scaffolds but by three weeks both the scaffolds had similar alkaline phosphatase (ALP) levels. The cell numbers were also comparable by the end of the third week. Incorporation of nanoparticles into the scaffolds was achieved by two different methods: incorporation within the scaffold fibers (NP–IN) and on the fibers (NP–ON). It was shown that incorporation on the CHI4–HAc2 fibers (NP–ON) prevented the burst release observed with the free nanoparticles, but this did not influence the total amount released in 25 days. However NP–IN for the same fibers revealed a much slower rate of release; ca. 70% released at the end of incubation period. The effect of single, simultaneous and sequential delivery of BMP-2 and BMP-7 from the CHI4–HAc2 scaffolds was studied in vitro using samples prepared with both incorporation methods. The effect of delivered agents was higher with the NP–ON samples. Delivery of BMP-2 alone suppressed cell proliferation while providing higher ALP activity compared to BMP-7. Simultaneous delivery was not particularly effective on cell numbers and ALP activity. The sequential delivery of BMP-2 and BMP-7, on the other hand, led to the highest ALP activity per cell (while suppressing proliferation) indicating the synergistic effect of using both growth factors holds promise for the production of tissue engineered bone.  相似文献   

15.
Bone morphogenetic protein-2 (BMP-2) has been widely used as an effective growth factor in bone tissue engineering. However, large amounts of BMP-2 are required to induce new bone and the resulting side effects limit its clinical application. Sulfated polysaccharides, such as native heparin, and heparan sulfate have been found to modulate BMP-2 bioactivity and play pivotal roles in bone metabolism. Whereas the direct role of chitosan modified with sulfate group in BMP-2 signaling has not been reported till now. In the present study, several sulfated chitosans with different positions were synthesized by regioselective reactions firstly. Using C2C12 myoblast cells as in vitro models, the enhanced bioactivity of BMP-2 was attributed primarily to the stimulation from 6-O-sulfated chitosan (6SCS), while 2-N-sulfate was subsidiary group with less activation. Low dose of 2-N, 6-O-sulfated chitosan (26SCS) showed significant enhancement on the alkaline phosphatase (ALP) activity and the mineralization formation induced by BMP-2, as well as the expression of ALP and osteocalcin mRNA. Moreover, increased chain-length and further sulfation on 26SCS also resulted in a higher ALP activity. Dose-dependent effects on BMP-2 bioactivity were observed in both sulfated chitosan and heparin. Compared with native heparin, 26SCS showed much stronger simultaneous effects on the BMP-2 bioactivity at low dose. Stimulated secreted Noggin protein failed to block the function of BMP-2 in the presence of 26SCS. The BMP-2 ligand bound to its receptor was enhanced by low dose of 26SCS, whereas weakened by the increasing amounts of 26SCS. Furthermore, simultaneous administration of BMP-2 and 26SCS in vivo dose-dependently induced larger amounts of ectopic bone formation compared with BMP-2 alone. These findings clearly indicate that 26SCS is a more potent enhancer for BMP-2 bioactivity to induce osteoblastic differentiation in vitro and in vivo by promoting BMP-2 signaling pathway, suggesting that 26SCS could be used as the synergistic factor of BMP-2 for bone regeneration.  相似文献   

16.
In this study, calcium silicate (CS) and CS/β-tricalcium phosphate (CS/β-TCP) composites were investigated on their mechanism of osteogenic proliferation and differentiation through regulating osteogenic-related gene and proteins. Osteoblast-like cells were cultured in the extracts of these CS-based bioceramics and pure β-TCP, respectively. The main ionic content in extracts was analyzed by inductively coupled plasma-atomic emission spectroscopy. The cell viability, mineralization, and differentiation were evaluated by MTT assay, Alizarin Red-S staining and alkaline phosphatase (ALP) activity assay. The expressions of BMP-2, transforming growth factor-β (TGF-β), Runx2, ALP, and osteocalcin (OCN) at both gene and protein level were detected by real-time polymerase chain reaction analysis and Western blot. The result showed that the extracts of CS-based bioceramics promoted cells proliferation, differentiation, and mineralization when compared with pure β-TCP. Accordingly, pure CS and CS/β-TCP composites stimulated osteoblast-like cells to express BMP-2/TGF-β gene and proteins, and further regulate the expression of Runx2 gene and protein, and ultimately affect the ALP activity and OCN deposition. This study suggested that the CS-based bioceramics could not only promote the expression of osteogenic-related genes but also enhance the genes to encode the corresponding proteins, which could finally control osteoblast-like cells proliferation and differentiation.  相似文献   

17.
背景:Brg1是依赖ATP的染色质改变复合物的核心催化亚基,该亚基在基因的转录调控、复制、重组,骨骼肌的分化、抑制肿瘤的发生等活动中起着重要的作用。 目的:探索Brg1基因在骨形态发生蛋白2诱导成骨细胞分化过程中的调控机制。 方法:采用胶原酶消化法进行小鼠颅骨成骨细胞的原代培养;分别用0,50,200 μg/L的重组人骨形态发生蛋白2诱导原代培养的成骨细胞的分化,摸索骨形态发生蛋白2的最佳作用剂量;实时荧光定量PCR和Western blot进行骨形态发生蛋白2对Brg1的作用时间的动力学分析;实时荧光定量PCR和钙钴染色法检测敲除Brg1对骨形态发生蛋白2诱导的成骨分化的影响;构建Dlx5腺病毒重组表达载体,实时荧光定量PCR和钙钴染色法检测Brg1在骨形态发生蛋白2诱导的成骨分化过程中对Dlx5的调控作用。 结果与结论:用自行合成的重组人骨形态发生蛋白2可诱导原代培养小鼠成骨细胞分化,200 μg/L剂量有着较好的诱导分化效果;重组人骨形态发生蛋白2可诱导Brg1基因转录水平和翻译水平表达水平上调;敲除Brg1可抑制重组人骨形态发生蛋白2诱导的成骨分化;Brg1能够调控Dlx5的表达水平。说明Brg1通过调控Dlx5的表达水平调控重组人骨形态发生蛋白2诱导的小鼠成骨细胞的分化。  相似文献   

18.
We investigated the effect of sustained release of bone morphogenetic protein-2 (BMP-2) from an injectable chitosan gel on osteoblastic differentiation in vitro. We first characterized the release profile of BMP-2 from the gels, and then examined the cellular responses of preosteoblast mouse stromal cells (W-20-17) and human embryonic palatal mesenchymal (HEPM) cells to BMP-2. The release profiles of different concentrations of BMP-2 exhibited sustained releases (41% for 2 ng/mL and 48% for 20 ng/mL, respectively) from the chitosan gels over a three-week period. Both cell types cultured in the chitosan gels were viable and significantly proliferated for 3 days (p < 0.05). Chitosan gels loaded with BMP-2 enhanced ALP activity of W-20-17 by 3.6-fold, and increased calcium mineral deposition of HEPM by 2.8-fold at 14 days of incubation, compared to control groups initially containing the same amount of BMP-2. In addition, schitosan gels loaded with BMP-2 exhibited significantly greater osteocalcin synthesis of W-20-17 at seven days, and of HEPM at both 7 and 14 days compared with the control groups (p<0.05). This study suggests that the enhanced effects of BMP-2 released from chitosan gels on cell differentiation and mineralization are species and cell type dependent.  相似文献   

19.
Fat-derived stromal cells can differentiate into various skeletal tissues. Currently the mechanism that determines whether stromal cells differentiate into osteoblasts is unclear and the role of growth/differentiation factor (GDF)-5 in differentiation of fat-derived stromal cells is not fully understood. It appears that the differentiation of stromal cells is greatly enhanced by GDF-5 that plays a role in a variety of musculoskeletal processes such as joint formation, tendon maintenance, and bone formation. Our study showed that GDF-5 promotes the differentiation of rat fat-derived stromal cells into osteogenic lineages in vitro. Furthermore, these findings were confirmed by histology, biochemical assay for alkaline phosphatase activity, and analysis of gene expression. The ability to preferentially stimulate fat-derived stromal cells down the osteogenic pathway holds significance in a variety of clinical scenarios.  相似文献   

20.
Fat-derived stromal cells can differentiate into various skeletal tissues. Currently the mechanism that determines whether stromal cells differentiate into osteoblasts is unclear and the role of growth/differentiation factor (GDF)-5 in differentiation of fat-derived stromal cells is not fully understood. It appears that the differentiation of stromal cells is greatly enhanced by GDF-5 that plays a role in a variety of musculoskeletal processes such as joint formation, tendon maintenance, and bone formation. Our study showed that GDF-5 promotes the differentiation of rat fat-derived stromal cells into osteogenic lineages in vitro. Furthermore, these findings were confirmed by histology, biochemical assay for alkaline phosphatase activity, and analysis of gene expression. The ability to preferentially stimulate fat-derived stromal cells down the osteogenic pathway holds significance in a variety of clinical scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号