首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Nanotoxicology》2013,7(3):365-372
Abstract

Endotoxin is often used to activate NF-κB in vitro when assessing NLRP3 inflammasome activation by various exogenous particles including nanoparticles. However, the endogenous source of this signal 1 is unknown. High-mobility group box 1 (HMGB1) is known to play a critical role in acute lung injury, however the potential contribution of the alarmin HMGB1 to NLRP3 Inflammasome activation has not been determined in response to nanoparticles in vivo. In this study, the ability of multi-walled carbon nanotubes (MWCNT) to cause release of HMGB1 in vitro and in vivo, as well as the potential of HMGB1 to function as signal 1 in vitro and in vivo, was determined. HMGB1 activity in vivo was assessed by administration of HMGB1 neutralization antibodies following MWCNT exposure. Caspase-1?/? mice were utilized to elucidate the dependence of HMGB1 secretion on NLRP3 inflammasome activity. MWCNT exposure increased extracellular HMGB1 levels in primary alveolar macrophages from C57Bl/6 mice and C10 mouse epithelial cell culture supernatants, and in C57Bl/6 mouse lung lavage fluid. MWCNT-induced HMGB1 secretion was dependent upon caspase-1. HMGB1 increased MWCNT-induced IL-1β release from macrophages in vitro, and neutralization of extracellular HMGB1 reduced MWCNT-induced IL-1β secretion in vivo. HMGB1 neutralization was accompanied with overall decreased inflammation. In summary, this study suggests extracellular HMGB1 participates in NLRP3 inflammasome activity and regulates IL-1β associated sterile inflammation induced by MWCNT.  相似文献   

2.
The current study tests the hypothesis that multi-walled carbon nanotubes (MWCNT) with different surface chemistries exhibit different bioactivity profiles in vivo. In addition, the study examined the potential contribution of the NLRP3 inflammasome in MWCNT-induced lung pathology. Unmodified (BMWCNT) and MWCNT that were surface functionalised with -COOH (FMWCNT), were instilled into C57BL/6 mice. The mice were then examined for biomarkers of inflammation and injury, as well as examined histologically for development of pulmonary disease as a function of dose and time. Biomarkers for pulmonary inflammation included cytokines, mediators and the presence of inflammatory cells (IL-1β, IL-18, IL-33, cathepsin B and neutrophils) and markers of injury (albumin and lactate dehydrogenase). The results show that surface modification by the addition of the -COOH group to the MWCNT, significantly reduced the bioactivity and pathogenicity. The results of this study also suggest that in vivo pathogenicity of the BMWCNT and FMWCNT correlates with activation of the NLRP3 inflammasome in the lung.  相似文献   

3.
The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to a type of nano-sized carbon nanotube (multi-walled nanotubes: MWCNT) on allergic airway inflammation in vivo and their cellular mechanisms in vitro. In vivo, ICR mice were divided into 4 experimental groups. Vehicle, MWCNT (50 μg/animal), ovalbumin (OVA), and OVA + MWCNT were repeatedly administered intratracheally. Bronchoalveolar lavage (BAL) cellularity, lung histology, levels of cytokines related to allergic inflammation in lung homogenates/BAL fluids (BALFs), and serum immunoglobulin levels were studied. Also, we evaluated the impact of MWCNT (0.1-1 μg/ml) on the phenotype and function of bone marrow-derived dendritic cells (DC) in vitro. MWCNT aggravated allergen-induced airway inflammation characterized by the infiltration of eosinophils, neutrophils, and mononuclear cells in the lung, and an increase in the number of goblet cells in the bronchial epithelium. MWCNT with allergen amplified lung protein levels of Th cytokines and chemokines compared with allergen alone. MWCNT exhibited adjuvant activity for allergen-specific IgG1 and IgE. MWCNT significantly increased allergen (OVA)-specific syngeneic T-cell proliferation, particularly at a lower concentration in vitro. Taken together, MWCNT can exacerbate murine allergic airway inflammation, at least partly, via the promotion of a Th-dominant milieu. In addition, the exacerbation may be partly through the inappropriate activation of antigen-presenting cells including DC.  相似文献   

4.
Functionalization of multi-walled carbon nanotubes (MWCNT) is known to affect the biological response (e.g. toxicity, inflammation) in vitro and in vivo. However, the reasons for these changes in vivo are not well described. This study examined the degree of MWCNT functionalization with regard to in vivo mouse lung distribution, particle retention, and resulting pathology. A commercially available MWCNT (source MWCNT) was functionalized (f-MWCNT) by systematically varying the degree of carboxylation on the particle’s surface. Following a pilot study using seven variants, two f-MWCNT variants were chosen and for lung pathology and particle distribution using oropharyngeal aspiration administration of MWCNT in Balb/c mice. Particle distribution in the lung was examined at 7 and 28?days post-instillation by bright-field microscopy, CytoViva hyperspectral dark-field imaging, and Stimulated Raman Scattering (SRS) microscopy. Examination of the lung tissue by bright-field microscopy showed some acute inflammation for all MWCNT that was highest with source MWCNT. Hyperspectral imaging and SRS were employed to assess the changes in particle deposition and retention. Highly functionalized MWCNT had a higher lung burden and were more disperse. They also appeared to be associated more with epithelial cells compared to the source and less functionalized MWCNT that were mostly interacting with alveolar macrophages (AM). These results showing a slightly reduced pathology despite the extended deposition have implications for the engineering of safer MWCNT and may establish a practical use as a targeted delivery system.  相似文献   

5.
Objectives: Inhalation of crystalline silica (cSiO2) remains a significant occupational hazard and may lead to the development of silicosis. When cSiO2 particles are phagocytized by alveolar macrophages, they cause disruption of the lysosomal membrane which results in cell death. There are currently no pharmaceutical treatments directed at this mechanism of disease; however, many existing pharmaceuticals, such as hydroxychloroquine (HCQ), become sequestered in the lysosome through an ion-trapping mechanism. The objective of this research was to determine whether HCQ can prevent cSiO2-induced toxicity by blocking LMP in alveolar macrophages.

Materials and methods: This study assessed the ability of in vitro treatment with HCQ to block toxicity and lysosomal membrane permeability in cSiO2-exposed mouse bone-marrow derived macrophages. Additionally, C57Bl/6 mice were treated with HCQ by oral gavage before cSiO2 exposure, and the ability of HCQ to prevent lung injury and inflammation was assessed.

Results: In vitro studies demonstrated that HCQ attenuated activation of the NLRP3 inflammasome and blocked LMP. Mice treated with HCQ in vivo showed a modest trend towards decreased cSiO2-induced toxicity. Ex vivo culture of alveolar macrophages collected from cSiO2-treated mice showed significantly less NLRP3 inflammasome activation after in vivo exposure to HCQ.

Conclusions: Our findings suggest that hydroxychloroquine blocks LMP and can significantly decrease cSiO2-induced toxicity in vitro. HCQ may be a promising treatment for prevention of cSiO2-induced lung damage.  相似文献   

6.
Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ~50–60% BNNTs, and ~40–50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0–100?µg/ml and C57BL/6?J male mice were treated with 40?µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1β and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation.  相似文献   

7.
Exposure to certain engineered nanomaterials has been associated with pathological changes in animal models raising concerns about potential human health effects. MWCNT have been reported to activate the NLRP3 inflammasome in vitro, correlating with lung inflammation and pathology, in vivo. In this study, we investigated the role of IL-1 signalling in pulmonary inflammatory responses in WT and IL-1R-/- mice after exposure to MWCNT. The results suggest that MWCNT were effective in inducing acute pulmonary inflammation. Additionally, WT mice demonstrated significant increased airway resistance 24 h post exposure to MWCNT, which was also blocked in the IL-1R-/- mice. In contrast, by 28 days post exposure to MWCNT, the inflammatory response that was initially absent in IL-1R-/- mice was elevated in comparison to the WT mice. These data suggest that IL-1R signalling plays a crucial role in the regulation of MWCNT-induced pulmonary inflammation.  相似文献   

8.
《Nanotoxicology》2013,7(6):719-728
Abstract

Certain types of carbon nanotubes (CNT) can evoke inflammation, fibrosis and mesothelioma in vivo, raising concerns about their potential health effects. It has been recently postulated that NLRP3 inflammasome activation is important in the CNT-induced toxicity. However, more comprehensive studies of the protein secretion induced by CNT can provide new information about their possible pathogenic mechanisms. Here, we studied protein secretion from human macrophages with a proteomic approach in an unbiased way. Human monocyte-derived macrophages (MDM) were exposed to tangled or rigid, long multi-walled CNT (MWCNT) or crocidolite asbestos for 6?h. The growth media was concentrated and secreted proteins were analyzed using 2D-DIGE and DeCyder software. Subsequently, significantly up- or down-regulated protein spots were in-gel digested and identified with an LC-MS/MS approach. Bioinformatics analysis was performed to reveal the different patterns of protein secretion induced by these materials. The results show that both long rigid MWCNT and asbestos elicited ample and highly similar protein secretion. In contrast, exposure to long tangled MWCNT induced weaker protein secretion with a more distinct profile. Secretion of lysosomal proteins followed the exposure to all materials, suggesting lysosomal damage. However, only long rigid MWCNT was associated with apoptosis. This analysis suggests that the CNT toxicity in human MDM is mediated via vigorous secretion of inflammation-related proteins and apoptosis. This study provides new insights into the mechanisms of toxicity of high aspect ratio nanomaterials and indicates that not all types of CNT are as hazardous as asbestos fibers.  相似文献   

9.
The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts.  相似文献   

10.
Aberrant activation of Nod-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in a variety of inflammatory diseases. Targeting NLRP3 inflammasome represents a promising therapy to cure such diseases. We and others recently demonstrated that acetylation of NLRP3 promotes the inflammasome activity and also suggested lysine acetyltransferases inhibitors could be a kind of promising agents for treating NLRP3 associated disorders. In this study, by searching for kinds of lysine acetyltransferases inhibitors, we showed that SI-2 hydrochloride (SI-2), a specific inhibitor of lysine acetyltransferase KAT13B (lysine acetyltransferases 13B), specifically blocks NLRP3 inflammasome activation both in mice in vivo and in human cells ex vivo. Intriguingly, SI-2 does not affect the acetylation of NLRP3. Instead, it disrupts the interaction between NLRP3 and adaptor apoptosis-associated speck-like protein containing CARD (ASC), then blocks the formation of ASC speck. Thus, our study identified a specific inhibitor for NLRP3 inflammasome and suggested SI-2 as a potential inhibitory agent for the therapy of NLRP3-driven diseases.  相似文献   

11.
The pulmonary route has been used with success for the treatment of both lung (asthma) and systemic diseases (diabetes). The fate of an inhaled drug (absorption and deposition) within human lungs has great importance, particularly in drug development and quality control. This article focuses on the various methods that are now applied for aerosol fate investigation. Several assessment methods, ranging from in vitro assays (impaction and optical systems) to in vivo experiments (imaging and pharmacological methods), are described. In vitro assays measure particle size distribution and emitted drug dose, which could be predictive of lung deposition pattern in vivo. However, in vivo methods provide direct information about the concentration and the location of inhaled drug within lung. Advantages and limitations of the different techniques are identified. In addition to these experimental techniques, mathematical deposition models, elaborated in more realistic conditions and designed to predict the fate of inhaled particles, are also illustrated.  相似文献   

12.
《Nanotoxicology》2013,7(3):326-340
Abstract

Nanomaterials are increasingly used in various food applications. In particular, nanoparticulate amorphous SiO2 is already contained, e.g., in spices. Since intestinal dendritic cells (DC) could be critical targets for ingested particles, we compared the in vitro effects of amorphous silica nanoparticles with fine crystalline silica, and micron-sized with nano-sized TiO2 particles on DC. TiO2- and SiO2-nanoparticles, as well as crystalline silica led to an upregulation of MHC-II, CD80, and CD86 on DC. Furthermore, these particles activated the inflammasome, leading to significant IL-1β-secretion in wild-type (WT) but not Caspase-1- or NLRP3-deficient mice. Silica nanoparticles and crystalline silica induced apoptosis, while TiO2 nanoparticles led to enhanced production of reactive oxygen species (ROS). Since amorphous silica and TiO2 nanoparticles had strong effects on the activation-status of DC, we suggest that nanoparticles, used as food additives, should be intensively studied in vitro and in vivo, to ensure their safety for the consumer.  相似文献   

13.
Intestinal barrier dysfunction is a trigger for sepsis progression. NLRP3 inflammasome and RhoA contribute to sepsis and intestinal inflammation. The current study aimed to explore the effects of Astragaloside IV (AS-IV), a bioactive compound from Astragalus membranaceus, on sepsis-caused intestinal barrier dysfunction and whether NLRP3 inflammasome and RhoA are involved. Septic mice modeled by cecal ligation and puncture (CLP) operation were administered with 3 mg/kg AS-IV intravenously. AS-IV decreased mortality, cytokines release, I-FABP secretion, intestinal histological score and barrier permeability, and increased tight junction (TJ) expression in intestine in CLP model. Also, in Caco-2 cells subjected to lipopolysaccharide (LPS), 200 μg/mL AS-IV co-incubation reduced cytokines levels and enhanced in vitro gut barrier function without cytotoxicity. Subsequently, NLRP3 inflammasome and RhoA were highly activated both in intestinal tissue in vivo and in Caco-2 cells in vitro, both of which were significantly suppressed by AS-IV treatment. In addition, the benefits of AS-IV on Caco-2 monolayer barrier were largely counteracted by RhoA agonist CN03 and NLRP3 gene overexpression, respectively. Furthermore, LPS-induced NLRP3 inflammasome activation was abrogated by RhoA inhibitor C3 exoenzyme. However, NLRP3 knockdown by siRNA hardly affected RhoA activation in Caco-2 cells. These data suggest that AS-IV protects intestinal epithelium from sepsis-induced barrier dysfunction via inhibiting RhoA/NLRP3 inflammasome signal pathway.  相似文献   

14.
15.
Functionalized multi-walled carbon nanotube (fMWCNT) development has been intensified to improve their surface activity for numerous applications, and potentially reduce toxic effects. Although MWCNT exposures are associated with lung tumorigenesis in vivo, adverse responses associated with exposure to different fMWCNTs in human lung epithelium are presently unknown. This study hypothesized that different plasma-coating functional groups determine MWCNT neoplastic transformation potential. Using our established model, human primary small airway epithelial cells (pSAECs) were continuously exposed for 8 and 12?weeks at 0.06?μg/cm2 to three-month aged as-prepared-(pMWCNT), carboxylated-(MW-COOH), and aminated-MWCNTs (MW-NHx). Ultrafine carbon black (UFCB) and crocidolite asbestos (ASB) served as particle controls. fMWCNTs were characterized during storage, and exposed cells were assessed for several established cancer cell hallmarks. Characterization analyses conducted at 0 and 2 months of aging detected a loss of surface functional groups over time due to atmospheric oxidation, with MW-NHx possessing less oxygen and greater lung surfactant binding affinity. Following 8?weeks of exposure, all fMWCNT-exposed cells exhibited significant increased proliferation compared to controls at 7 d post-treatment, while UFCB- and ASB-exposed cells did not differ significantly from controls. UFCB, pMWCNT, and MW-COOH exposure stimulated significant transient invasion behavior. Conversely, aged MW-NHx-exposed cells displayed moderate increases in soft agar colony formation and morphological transformation potential, while UFCB cells showed a minimal effect compared to all other treatments. In summary, surface properties of aged fMWCNTs can impact cell transformation events in vitro following continuous, occupationally relevant exposures.  相似文献   

16.
ObjectiveSmoking is known to have detrimental effects on cardiovascular system. However, the potential molecular basis of smoking-induced atherosclerosis remains unclear. NLRP3 inflammasome is implicated in perpetuation of inflammatory response in atherosclerosis. Therefore, we aimed to explore the cytotoxic effects of cigarette smoke condensate (CSC) on the activation of NLRP3 inflammasome in vitro and in vivo.MethodsFor in vitro study, the pro-atherogenic effects of CSC were evaluated in THP-1 monocytes with different dose concentrations (0.1, 1, 5, 10 and 20 µg/ml) for varied time periods (6, 12, 24 and 48 h). For in vivo study, 30 male C57BL/6J mice were employed. 6 mice were sacrificed for baseline investigations. 24 mice were randomly divided into four groups: Group-I:Control mice, Group-II:CSC model, Group-III:High‐fat diet(HFD) model, and Group-IV:HFD + CSC model for 14 weeks (n = 6/group). The group-II and IV mice were injected with 720 µg CSC/20 g body weight intraperitoneally (6 days/week).ResultsIn vitro, higher dosage of CSC (20 µg/ml) was toxic to cells as significant decline in cell viability and proliferation was observed. Furthermore, the mRNA expression of NLRP3 inflammasome and its pro-cytokine levels were significantly augmented on CSC exposure in a dose-dependent manner but impeded in time-dependent manner. In vivo, CSC and HFD independently augmented the expression of NLRP3 inflammasome (~4–10 fold-change) along with pro-cytokine levels in Group-II and III vs Group-I mice whereas, HFD + CSC treatment demonstrated synergistic effects in Group-IV.ConclusionOur data suggest that CSC activates NLRP3 inflammasome in vitro and in vivo and collectively with HFD has synergistic effects in vivo that may promote atherosclerosis.  相似文献   

17.
Acute lung injury (ALI) exhibits high clinical morbidity and mortality rates. Our previous study has indicated that the novel proteolysis-resistant cyclic helix B peptide (CHBP) exerts an anti-inflammatory effect in mice with AKI. In the present study, we evaluated the effect of CHBP in an in vivo sepsis-induced ALI model and in vitro using lipopolysaccharide (LPS) and ATP stimulated bone marrow-derived macrophages (BMDMs). For in vivo experiments, mice were randomly divided into three groups: 1) sham; 2) LPS; and 3) LPS + CHBP (n = 6). All relevant data were collected after 18 h. Following CHBP treatment, the lung function of the mice was significantly improved compared to the LPS group. CHBP administration inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α production at both the protein and mRNA levels. Additionally, following CHBP treatment, the population of pulmonary macrophages decreased. Simultaneously, the proportion of caspase-1-activated alveolar macrophages was also decreased after CHBP treatment. The protein levels of NLRP3 and cleaved caspase-1 were attenuated in the lung tissue following CHBP treatment. In in vitro experiments, CHBP treatment decreased NLRP3 inflammasome expression and downstream IL-1β secretion, consistent with the in vivo results. In addition, CHBP reversed nuclear factor (NF)-κB and I-κB phosphorylation with a significant dose-dependent effect. Therefore, these findings suggest the potential of CHBP as a therapeutic agent in sepsis-induced ALI owing to inhibition of the NLRP3 inflammasome via the NF-κB pathway in macrophages.  相似文献   

18.
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.  相似文献   

19.
Carbon nanotubes come in a variety of types, but one of the most common forms is multi-walled carbon nanotubes (MWCNT). This paper focuses on the dose–response and time course of pulmonary toxicity of Baytubes®, a more flexible MWCNT type with the tendency to form assemblages of nanotubes. This MWCNT has been examined in previous single and repeated exposure 13-week rat inhalation studies. Kinetic endpoints and the potential to translocate to extrapulmonary organs have been examined during postexposure periods of 3 and 6 months, respectively. The focus of both studies was to compare dosimetric endpoints and the time course of pulmonary inflammation characterized by repeated bronchoalveolar lavage and histopathology during the respective follow-up periods. To better understand the etiopathology of pulmonary inflammation and time-related lung remodeling, two metrics of retained lung dose were compared. The first used the mass metric based on the exposure concentration obtained by filter analyses and aerodynamic particle size of airborne MWCNT. The second was based on calculated volumetric lung burdens of retained MWCNT. Kinetic analyses of lung burdens support the conclusion that Baytubes®, in principal, act like poorly soluble agglomerated carbonaceous particulates. However, the difference in pulmonary toxic potency (mass-based) appears to be associated with the low-density (≈0.1–0.3 g/m3) of the MWCNT assemblages. Of note is that assemblages of MWCNT were found predominantly both in the exposure atmosphere and in digested alveolar macrophages. Isolated fibers were not observed in exposure atmospheres or biological specimens. All findings support the conclusion that the low specific density of microstructures was conducive to attaining the volumetric lung overload-related inflammatory response conditions earlier than conventional particles. Evidence of extrapulmonary translocation or toxicity was not found in any study. Thus, pulmonary overload is believed to trigger the cascade of events leading to a stasis of clearance and consequently increased MWCNT doses high enough to trigger sustained pulmonary inflammation. This mechanism served as conceptual basis for the calculation of the human equivalent concentration. Accordingly, multiple interspecies adjustments were necessary which included species-specific differences in alveolar deposition, differences in ventilation, and the time-dependent particle accumulation accounting for the known species-specific differences in particle clearance half-times in rats and humans. Based on this rationale and the NOAEL (no-observed adverse effect level) from the 13-week subchronic inhalation study on rats, an occupational exposure limit (OEL) of 0.05 mg Baytubes/m3 (time weighted average) is considered to be reasonably protective to prevent lung injury to occur in the workplace environment.  相似文献   

20.
To study the effects of nanomaterials after inhalation, a large number of in vitro lung models have been reported in literature. Although the in vitro models contribute to the reduction of animal studies, insufficient data exists to determine the predictive value of these in vitro models for the in vivo situation. The aim of this study was to determine the correlation between in vitro and in vivo data by comparing the dose metrics of silver nanoparticles in an in vitro lung model of increasing complexity to our previously published in vivo inhalation study. In vivo, the previously published study showed that the alveolar dose expressed as particle surface area is the most suitable dose metric to describe the toxicity of silver nanoparticles after inhalation. The results of the present study show that particle surface area is a suitable dose metric to describe the effects of silver nanoparticles when using a simple monolayer of lung epithelial cells. The dose metric shifted from particle surface area to particle mass when adding an increasing number of macrophages. In addition, a co-culture of endothelial cells, epithelial cells and macrophages on a Transwell® insert correlated less well to the in vivo results compared to the epithelial monolayer. We conclude that for studying the acute pulmonary toxicity of nanoparticles simple in vitro models using an epithelial monolayer better predict the in vivo response compared to complex co-culture models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号