首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcopenia is highly prevalent in fragility fracture patients and is associated with delayed healing. In this study, we investigated the effect of low-magnitude high-frequency vibration (LMHFV) on osteoporotic fracture with sarcopenia and the potential role of myostatin. Osteoporotic fractures created in sarcopenic SAMP8, non-sarcopenic SAMR1 were randomized to control or LMHFV (SAMP8, SAMR1, SAMP8-V, or SAMR1-V) groups. Healing and myostatin expression were evaluated at 2, 4, and 6 weeks post-fracture. In vitro, conditioned-media were collected from myofibers isolated from aged and young SAMP8 or C2C12 myoblasts with or without LMHFV. Osteoblastic MC3T3-E1 under osteogenic differentiation were treated with plain or conditioned-medium (±myostatin propeptide). LMHFV significantly enhanced callus formation was in non-sarcopenic SAMR1 mice; but the enhancement effect was not significant in SAMP8 mice at week 2. Myostatin expressions in callus and biceps femoris of SAMP8 group were significantly higher all groups with significant negative correlation with callus size (R2 = 0.7256; p = 0.0004). Mechanical properties (week 4) and callus remodeling (week 6) were inferior in SAMP8 versus SAMR1 and were significantly enhanced by LMHFV. Alkaline Phosphatase (ALP) and Runx2 expression of MC3T3-E1 was lower in aged myofiber compared with young, but upregulated by LMHFV or myostatin inhibition; also confirmed with C2C12. LMHFV enhanced early callus formation, microarchitecture, callus remodeling and mechanical properties of fracture healing in both SAMP8 and SAMR1; however, more effective in non-sarcopenic SAMR1 mice. Impaired fracture healing in sarcopenic SAMP8 mice is attributed by elevated myostatin expression in callus and muscle, which correlated negatively with callus formation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:277-287, 2020  相似文献   

2.
Bone marrow osteogenesis in senile osteoporotic bone is impaired and, as such, may have significant implications on the successful outcome of fracture repair. Here we utilize a well‐established murine model of senile osteoporosis, the P6 strain of senescence‐accelerated mice (SAMP6), to investigate fracture healing in aged osteoporotic bone. A femoral osteotomy was created in SAMP6 and in non‐osteoporotic age‐matched control R1 senescence‐resistant mice (SAMR1). The course of fracture healing was evaluated over a period of 42 days using quantitative µCT and histological analysis. The differentiation capabilities of bone mesenchymal progenitor cells derived from SAMP6 and SAMR1 mice was examined, and their osteogenic potential determined. Although preliminary in vitro analysis confirmed that bone marrow‐derived stem cells (BMSC) isolated from SAMP6 mice had a reduced osteogenic capacity, no significant deficit in fracture repair as determined by quantitative µCT could be detected. This was supported by histology assessment, where complete bridging of the fracture gap was evident by day 28 and was fully healed day 42 in both SAMP6 and SAMR1 mice. Further in vitro studies revealed that periosteal‐derived progenitor cells (PDPC) isolated from SAMP6 mice had an osteogenic potential comparable to that observed in SAMR1 mice. In conclusion, fracture healing in SAMP6 mice is not detrimentally affected by impairment of BMSC osteogenesis, suggesting that bone marrow‐mediated repair processes are dispensable for normal bone healing in this senile osteoporotic fracture model. Furthermore, the influence of PDPC in the repair process may partly explain the absence of any detectable deficits in fracture repair in SAMP6 mice. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:798–804, 2010  相似文献   

3.
Background: The influence of mechanical stability on fracture healing has previously been studied in adult mice, but is poorly understood in aged animals. Therefore, we herein studied the effect of stabilization on the healing process of femur fractures in aged mice. Methods: Twenty-four 18-month-old CD-1 mice were stabilized after midshaft fracture of the femur with an intramedullary screw. In another 24 18-month-old mice, the femur fractures were left unstabilized. Bone healing was studied by radiological, biomechanical, histomorphometric, and protein expression analyses. Results: After 2 and 5 weeks of healing, the callus of nonstabilized fractures compared to stabilized fractures was significantly larger, containing a significantly smaller amount of osseous tissue and a higher amount of cartilaginous tissue. This was associated with a significantly lower biomechanical stiffness during the early phase of healing. However, during the late phase of fracture healing both nonstabilized and stabilized fractures showed a biomechanical stiffness of ~40%. Of interest, Western blot analyses of callus tissue demonstrated that the expression of proteins related to angiogenesis, bone formation and remodeling, i.e. VEGF, CYR61, BMP-2, BMP-4, Col-2, Col-10, RANKL, OPG, did not differ between nonstabilized and stabilized fractures. Conclusion: Nonstabilized fractures in aged mice show delayed healing and remodeling. This is not caused by an altered protein expression in the callus but rather by the excessive interfragmentary movements.  相似文献   

4.
We used the SAMP6 osteoporotic mouse to examine the link between marrow osteogenic potential and in vivo cortical bone formation. SAMP6 marrow supported less in vitro osteogenesis than marrow from SAMR1 controls; SAMP6 mice had a corresponding deficit in endocortical mineralizing surface. This marrow/endocortical defect did not affect the periosteum, where SAMP6 mice had normal to enhanced bone formation. INTRODUCTION: With aging, there may be a reduction in the number or proliferative capacity of bone marrow osteoprogenitors that may contribute to age-related decreases in bone formation. To examine the link between the ability of the marrow to support osteogenesis and age-related changes in bone formation, we measured in vitro and in vivo indices of osteogenesis in a model of osteoporosis, the senescence-accelerated mouse SAMP6. MATERIALS AND METHODS: Femora and tibias from SAMP6 and SAMR1 (control) mice were harvested at 2, 4, 6, and 12 months of age (168 bones total). Bone marrow cells were cultured under osteogenic conditions and stained for alkaline phosphatase (ALP) and alizarin red. Dynamic indices of bone formation were assessed histologically from calcein labels. RESULTS: ALP+ and alizarin red-positive areas were significantly less in cultures from SAMP6 bones versus SAMR1 (p < 0.05), indicating less osteogenic potential. For example, SAMP6 tibial cultures had 21% less ALP+ area and 36% less alizarin red-positive area than SAMR1. Marrow from tibias had 2-fold greater osteogenesis than femoral marrow (p < 0.001). SAMP6 mice had a deficit in endocortical mineralizing surface across all age groups (p < 0.05), but no deficit in mineral apposition rate. Last, despite the marrow and endocortical deficits, SAMP6 mice had normal or slightly increased periosteal bone formation, consistent with their larger bone size. CONCLUSION: SAMP6 bone marrow supports less in vitro osteogenesis than SAMR1, consistent with a lower concentration of marrow osteoprogenitors in SAMP6. SAMP6 mice have less endocortical mineralizing surface than SAMR1 at all ages but no detectable deficit in mineral apposition rate, which suggests a reduction in osteoblast number but normal function. Periosteal bone formation is unimpaired in SAMP6 mice, indicating that the marrow/endocortical defect does not affect the periosteal surface.  相似文献   

5.
To examine the link between bone material properties and skeletal fragility, we analyzed the mechanical, histological, biochemical, and spectroscopic properties of bones from a murine model of skeletal fragility (SAMP6). Intact bones from SAMP6 mice are weak and brittle compared with SAMR1 controls, a defect attributed to reduced strength of the bone matrix. The matrix weakness is attributed primarily to poorer organization of collagen fibers and reduced collagen content. INTRODUCTION: The contribution of age-related changes in tissue material properties to skeletal fragility is poorly understood. We previously reported that bones from SAMP6 mice are weak and brittle versus age-matched controls. Our present objectives were to use the SAMP6 mouse to assess bone material properties in a model of skeletal fragility and to relate defects in the mechanical properties of bone to the properties of demineralized bone and to the structure and organization of collagen and mineral. MATERIALS AND METHODS: Femora from 4- and 12-month-old SAMR1 (control) and SAMP6 mice were analyzed using bending and torsional mechanical testing of intact bones, tensile testing of demineralized bone, quantitative histology (including collagen fiber orientation), collagen cross-links biochemistry, and Raman spectroscopic analysis of mineral and collagen. RESULTS: Intact bones from SAMP6 mice have normal elastic properties but inferior failure properties, with 60% lower fracture energy versus SAMR1 controls. The strength defect in SAMP6 bones was associated with a 23% reduction in demineralized bone strength, which in turn was associated with poorer collagen fiber organization, lower collagen content, and higher hydroxylysine levels. However, SAMP6 have normal levels of collagen cross-links and normal apatite mineral structure. CONCLUSIONS: Bones from SAMP6 osteoporotic mice are weak and brittle because of a defect in the strength of the bone matrix. This defect is attributed primarily to poorer organization of collagen fibers and reduced collagen content. These findings highlight the role of the collagen component of the bone matrix in influencing skeletal fragility.  相似文献   

6.
Expression of bone resorption genes in osteoarthritis and in osteoporosis   总被引:6,自引:0,他引:6  
Cathepsin K and MMP-9 are considered to be the most abundant proteases in osteoclasts. TRAP is a marker for osteoclasts, and there is increasing evidence of its proteolytic role in bone resorption. RANKL is a recently discovered regulator of osteoclast maturation and activity and induces expression of many genes. This study compared cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin gene expression in the proximal femur of patients with osteoarthritis with that of patients with femoral neck fracture. Fifty-six patients undergoing arthroplasty because of osteoarthritis or femoral neck fracture were included in the study. Total mRNA was extracted from the bone samples obtained from the intertrochanteric region of the proximal femur. Real-time RT-PCR was used to quantify CTSK (cathepsin K), MMP-9 (matrix metalloproteinase 9), ACP5 (TRAP), TNFSF11 (RANKL), TNFRSF11B (OPG), and BGLAP (osteocalcin) mRNAs. The levels of mRNAs coding for MMP-9 and osteocalcin indicated higher expression in the osteoarthritic group (P = 0.011, P = 0.001, respectively), whereas RANKL expression and the ratio RANKL/OPG were both significantly lower in the osteoarthritic group than in the fracture group. Expression of cathepsin K, MMP-9, and TRAP relative to RANKL was significantly higher in the osteoarthritic group. Ratios of all three proteolytic enzymes relative to formation marker osteocalcin were higher in the fracture group. Gene expression of cathepsin K, MMP-9, TRAP, RANKL, OPG, and osteocalcin and the association between their mRNA levels pointed to higher bone resorption and bone formation in osteoarthritis, differences in balance between them, and differences in regulation of bone resorption in osteoarthritic and osteoporotic bone.  相似文献   

7.
骨质疏松性骨折实验模型的设计与建立   总被引:17,自引:1,他引:16  
目的:建立较理想的骨质疏松性骨折实验模型,方法:SD大鼠60只,8月龄,雌性,手术方法:切除双侧卵巢;术后3个月,手术造成股骨中段骨折,进行骨圆针髓腔内固定。模型建立前后双能X线骨密度仪(DEXA),组织学、放射学等动态观察。结果:卵巢切除3个月后DEXA检测结果与术前比较:全身骨密度明显降低(P<0.02);子宫内膜组织萎缩变薄,内膜内腺体消失或萎缩,变性呈空泡状;软骨内成骨与膜内成骨共同参与了骨质疏松性骨折的修复,且以软骨内成骨为主,与一般骨折愈合方式相似,模型动物骨折愈合过程中,软骨内成骨延缓,骨性骨痂改建(骨吸收>骨形成)加速,骨痂内胶原纤维疏松,排列紊乱,与主应力方向不一致,放射学观察模型动物骨折位置,类型统一,内固定后骨折断端稳定。结论:本实验建立的骨质疏松性骨折动物模型模型其方法,易于复制,可应用于骨质疏松林骨折的相关研究。  相似文献   

8.
With aging, the skeleton may have diminished responsiveness to mechanical stimulation. The senescence-accelerated mouse SAMP6 has many features of senile osteoporosis and is thus a useful model to examine how the osteoporotic skeleton responds to mechanical loading. We performed in vivo tibial bending on 4-month-old SAMP6 (osteoporotic) and SAMR1 (control) mice. Loading was applied daily (60 cycles/day, 5 days/week) for 2 weeks at peak force levels that produced estimated endocortical strains of 1,000 and 2,000 με. In a separate group of mice, sham bending was applied. Comparisons were made between right (loaded) and left (nonloaded) tibiae. Tibial bone marrow cells were cultured under osteogenic conditions and stained for alkaline phosphatase (ALP) and alizarin red (ALIZ) at 14 and 28 days, respectively. Tibiae were then embedded in plastic and sectioned, and endocortical bone formation was assessed based on calcein labels. Tibial bending did not alter the osteogenic potential of the marrow as there were no significant differences in ALP or ALIZ staining between loaded and nonloaded bones. Tibial bending activated the formation of endocortical bone in both SAMP6 and SAMR1 mice, whereas sham bending did not elicit an endocortical response. Both groups of mice exhibited bending strain-dependent increases in bone formation rate. We found little evidence of diminished responsiveness to loading in the SAMP6 skeleton. In conclusion, the ability of the SAMP6 mouse to respond normally to an anabolic mechanical stimulus distinguishes it from chronologically aged animals. This finding highlights a limitation of the SAMP6 mouse as a model of senile osteoporosis. Presented in part at the 2004 meeting of the American Society of Bone and Mineral Research and the 2005 meeting of the Orthopaedic Research Society.  相似文献   

9.
目的通过构建小鼠骨质疏松骨折模型,研究ERK5在骨质疏松性骨折愈合过程中的作用。方法将108只6周龄雌性昆明小鼠随机分成4组,通过手术切除小鼠双侧卵巢及小鼠股骨离断分别构建骨质疏松(OVX)和骨折模型(Fracture),然后给实验组小鼠每日腹腔注射ERK5特异性阻断剂XMD8-92,于1 w、2 w、4 w后分别处死一定数量的小鼠,取术侧股骨标本,行X线片检查、股骨骨痂Micro-CT、HE染色及免疫组织化学染色检查,观察骨折端骨小梁生长情况,骨痂内成骨相关蛋白及ERK5表达情况。结果给予实验小鼠注射XMD8-92后第2周及第4周,Fracture组小鼠骨痂生长较快,骨小梁数目较多,厚度较大,成骨相关蛋白ALP、Runx2的表达相对较多(P0.05),而Fracture+XMD8-92组小鼠骨痂生长则相对缓慢,骨小梁稀少且绯薄,结构相对较乱,碱性磷酸酶(alkaline phosphatase,ALP)、Runx2表达较少(P0.05);且OVX+Fracture+XMD8-92组小鼠与OVX+Fracture组小鼠相比,骨小梁生成更少且紊乱,骨痂生长明显延迟,ALP、Runx2表达量显著减少(P0.05)。结论 ERK5影响骨折端骨痂形成的速度和质量,在促进骨质疏松性骨折愈合过程中起着十分重要的生理作用。  相似文献   

10.
This study examined the impact of an interleukin‐6 (IL‐6) knockout on fracture healing in terms of histological and biomechanical responses. Following IACUC approval, tibial fractures were produced in 4‐ to 6‐week‐old IL‐6 knockouts (n = 35) and wild‐type mice (n = 36) and harvested along with contralateral limbs at 2 and 6 weeks postsurgery. Histology quantified stage of healing, lymphocyte infiltration, TRAP+ cells, and osteocalcin deposition. Bend testing established maximum load and stiffness. Based on normality assessments, Mann–Whitney U or independent t‐tests were used for data analysis using a p‐value threshold of 0.05. Stage of healing, lymphocyte infiltration, and osteocalcin deposition were similar for all time points (p ≥ 0.243). TRAP+ cell counts were reduced approximately 10‐fold in the knockout at 2 weeks (p = 0.015) but were similar at 6 weeks (p = 0.689). Force‐to‐failure in knockouts was approximately 40% that of wild‐type mice at 2 weeks (p = 0.040) but similar at 6 weeks (p = 0.735). Knockout bone was about 25% less stiff at 2 weeks but approximately 60% stiffer at 6 weeks (p ≥ 0.110). The absence of IL‐6 during early fracture healing significantly reduced osteoclastogenesis and impaired callus strength. By 6 weeks, most histological and biomechanical parameters were similar to fractures in wild‐type bone. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1437–1442, 2011  相似文献   

11.
12.
The majority of fractures, especially in elderly and osteoporotic patients, occurs in metaphyseal bone. However, only a few experimental models exist to study metaphyseal bone healing in mice. Currently used mouse models of metaphyseal fracture healing are either based on drill hole defects, lacking adequate biomechanical stimulation at the site of fracture and therefore endochondral ossification in the fracture callus, or are introduced into the distal part of the mouse femur stabilized by a locking plate, which is challenging due to the small specimen size. Therefore, the aim of the current study was to develop a new mouse model to study metaphyseal fracture healing of the proximal femur. We chose a combination between an open osteotomy and a closed intramedullary stabilization. A 24 G needle was inserted into the femur in a closed manner, then an osteotomy was made with a 0.4-mm Gigli wire saw between the third and the lesser trochanter of the femur using an open approach. Fractured femurs were analyzed using microcomputed tomography and histology at days 14 and 21 after surgery. No animals were lost due to surgery or anesthesia. All animals displayed normal limb loading and a physiological gait pattern within the first three days after fracture. We found robust endochondral ossification during the fracture healing process with high expression of late chondrocyte and early osteogenic markers at day 14 (d14). By day 21 (d21), all fractures had a bony bridging score of 3 or more, indicating successful healing. Callus volume significantly decreased from d14 to d21, whereas high numbers of osteoclasts appeared at the fracture callus until d21, indicating that callus remodeling had already started at d21. In conclusion, we successfully developed a novel mouse model to study endochondral fracture healing of the proximal femur. This model might be useful for future studies using transgenic animals to unravel molecular mechanisms of osteoporotic metaphyseal fracture healing.  相似文献   

13.
Osteoporotic fractures commonly occur in the elderly. Although current therapies are aimed at the prevention and treatment of osteoporotic fractures, studies examing the fracture healing process in osteoporotic bone are limited. We produced an osteoporotic rat model by ovariectomy (ovx) and maintained a low calcium diet (LCD) in order to evaluate the influence of osteoporosis on fracture healing. Callus formation and strength was monitored over a 3 week period by histological and biomechanical assessment. Data collected simultaneously on a group of rats undergoing sham surgery (sx) were used for comparison. A 40% reduction in fracture callus cross-sectional area and a 23% reduction in bone mineral density in the healing femur of the ovx rats was observed on day 21 following fracture as compared with the sx group (p < 0.01). Biomechanical data from the healing femur of the ovx rats revealed a fivefold decrease in the energy required to break the fracture callus, a threefold decrease in peak failure load, a twofold decrease in stiffness and a threefold decrease in stress as compared with the sx group (p < 0.01, respectively). Histomorphological analysis revealed a delay in fracture callus healing with poor development of mature bone in the ovx rats. This study provides physical evidence of altered fracture healing in osteoporotic bone, which may have important implications in evaluating the effects of new treatments for osteoporosis on fracture healing.  相似文献   

14.
Low‐magnitude high‐frequency vibration (LMHFV) (35 Hz, 0.3 g) accelerates fracture healing by enhancing callus formation and mineralization for both normal and osteoporotic rats in our previous studies. 1 We hypothesized that LMHFV enhances fracture healing through bone remodeling. Ibandronate was used to suppress LMHFV‐stimulated bone remodeling and changes in remodeling were investigated to verify our hypothesis. Closed femoral fractures were created in 80 osteoporotic female Sprague–Dawley rats. The rats were randomly assigned into control (CG), LMHFV (VG) (20 min/day, 5 days/week), ibandronate (BG) (7 µg/kg/week), or LMHFV + ibandronate (VBG) for a treatment duration of 2, 4, 6, or 8 weeks. Blood was taken and the femora were harvested for histological and radiological analyses. VG had the fastest drop in callus area (CA) and width (CW), and bone volume to tissue volume ratio (BV/TV); whereas, a plateaued trend in BG and VBG was observed. The fastest callus reduction, highest mineral apposition rate at week 6, and increased serum concentration of osteocalcin and TRAP5b in VG suggested enhanced remodeling. LMHFV partially reversed the inhibition of bone remodeling by ibandronate suggested LMHFV had an opposite effect on bone remodeling to ibandronate. In conclusion, LMHFV accelerated fracture healing by enhancing bone remodeling and the administration of ibandronate can impair this enhancement. LMHFV has great potential in improving fracture outcome clinically. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:746–752, 2011  相似文献   

15.

Summary

Spinal cord injury (SCI) results in impaired fracture healing in mice while leading to significant bone loss. Poor fracture healing following SCI is consistent with significant bone loss.

Introduction

SCI leads to significant bone loss in sublesional limbs, but there is few data concerning the relationship between fracture healing and bone loss following SCI. This study was undertaken to investigate the effect of SCI on fracture healing using a mouse femur fracture model.

Methods

One hundred twenty male C57BL/6J mice were randomly divided into SCI and control groups (n?=?60, respectively). A femoral shaft fracture was generated and fixed with intramedullary pins 3?weeks after SCI. Fracture healing was evaluated by micro-computed tomography (micro-CT) for callus formation and mineralization and neovascularization, and bone mineral density (BMD) was measured by DXA at 1, 2, and 4?weeks after fracture. Serum vascular endothelial growth factor (VEGF), osteocalcin, and alkaline phosphatase (ALP) were assessed using ELISA at each time point. Biomechanical testing was performed at 2 and 4?weeks.

Results

BMD in SCI mice was significantly lower compared to control mice at each time point, with callus volume and all vessel parameters reduced as measured by micro-CT. Ultimate stress of the femora was significantly lower in SCI mice than in control mice at 2 and 4?weeks after fracture, whereas Young's modulus between the SCI and control mice turned to be significantly different at 4?weeks. Serum VEGF was lower in SCI mice than in the control group at 2 and 4?weeks, whereas serum osteocalcin and ALP were lower in SCI mice than in control ones at each time point.

Conclusion

Significant bone loss and fracture healing impairment was noted in SCI mice. Decreased angiogenesis is consistent with the changes of microarchitecture and biomechanical properties during fracture healing.  相似文献   

16.
目的 通过脊髓损伤小鼠和对照组小鼠骨折愈合的对比研究来了解神经因素在骨折愈合中的作用.方法 将120只脊髓损伤小鼠(SCI)和对照组小鼠(CON)做成单侧股骨骨折模型.在术后2、4和8w,每个时间点,20只(SCI:10只,CON:10只)通过硅酮橡胶(microfil)灌注后micro-CT检查骨痂微血管,血清检测VEGF了解骨愈合过程中的血管形成的情况,检测骨钙素、碱性磷酸酶了解骨折愈合情况,同时另外20只进行骨密度,骨痂微结构分析,生物力学检测.结果 脊髓损伤小鼠骨折愈合中中血管形成情况,骨密度,骨痂微结构和生物力学都明显弱于对照组,血清VEGF、骨钙素、碱性磷酸酶也明显弱于对照组.结论 脊髓损伤明显抑制了骨折愈合,减少骨折处局部骨痂量,神经因素在骨折愈合过程中扮演着重要角色.  相似文献   

17.
Serological parameters of bone and fibrous tissue turnover were demonstrated to monitor the course of fracture healing. The aim of this study was to evaluate the correlation between the serological parameter levels during fracture healing and callus development in a standardised ovine model of fracture healing. Two years old female sheep received a standardised 3 mm tibial bone defect stabilised by an external fixator. The serological levels of the C-terminal propeptide of procollagen type I (PICP), bone specific alkaline phosphatase (bALP), total alkaline phosphatase (tALP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), calcium, phosphate and the N-terminal peptide of procollagen type III (PIIINP) were observed over a 9-week healing period. The course of fracture healing was monitored radiographically, and the callus composition was evaluated histologically at 2, 3, 6 and 9 weeks post-surgery. The serological results were compared with an untreated control group. Additionally, the maximum values during healing were compared with juvenile values to gauge the level of the serological response. The histological and radiographical results demonstrated callus formation without complications. All serological parameters showed broad inter-individual variations, and the response to the standardised fracture scenario was strongly individual. Maximum values during fracture healing did not reach the juvenile levels. The fractured as well as the control animals showed significant changes in the parameter levels. No correlations were observed between the histological course of healing and the course of bone formation markers whilst the TRAP level was reduced during bony callus formation. The PIIINP level increased when the amount of soft callus tissue decreased during healing. The observed bone formation markers were not suitable as general markers to detect the course of fracture healing, whilst PIIINP was able to reflect soft callus degradation.  相似文献   

18.
19.
20.
Urokinase plasminogen activator (uPA) regulates a proteolytic cascade of extracellular matrix degradation that functions in tissue development and tissue repair. The development and remodeling of the skeletal extracellular matrix during wound healing suggests that uPA might regulate bone development and repair. To determine whether uPA functions regulate bone development and repair, we examined the basal skeletal phenotype and endochondral bone fracture repair in uPA-deficient mice. The skeletal phenotype of uPA knockout mice was compared with that of control mice under basal conditions by dual-energy X-ray absorptiometry and micro-CT analysis, and during femur fracture repair by micro-CT and histological examination of the fracture callus. No effects of uPA gene deficiency were observed in the basal skeletal phenotype of the whole body or the femur. However, uPA gene deficiency resulted in increased fracture callus cartilage abundance during femur fracture repair at 14 days healing. The increase in cartilage corresponded to reduced tartrate-resistant acid phosphatase (TRAP) staining for osteoclasts in the uPA knockout fracture callus at this time, consistent with impaired osteoclast-mediated remodeling of the fracture cartilage. CD31 staining was reduced in the knockout fracture tissues at this time, suggesting that angiogenesis was also reduced. Osteoclasts also colocalized with CD31 expression in the endothelial cells of the fracture tissues during callus remodeling. These results indicate that uPA promotes remodeling of the fracture cartilage by osteoclasts that are associated with angiogenesis and suggest that uPA promotes angiogenesis and remodeling of the fracture cartilage at this time of bone fracture repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号