首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Tumour suppressor genes (TSGs) were frequently inactivated through promoter hypermethylation in gastric carcinoma as well as pre-malignant gastric lesions, suggesting that promoter hypermethylation can be used as a marker to define novel TSGs and also biomarkers for early detection of gastric cancer. In an effort to search for such genes aberrantly methylated in gastric cancer development, fibulin 1 (FBLN1) was found as a candidate TSG epigenetically downregulated in gastric cancer. FBLN1 expression was downregulated in all of gastric cancer cell lines used (100%, 7 out of 7) and the primary gastric carcinoma tissues (84%, 86 out of 102) and significantly restored after pharmacological demethylation. Hypermethylation of the FBLN1 promoter was frequently (71%, 5 out of 7) detected in gastric cancer cell lines and primary gastric carcinoma tissues. Ectopic expression of FBLN1 led to the growth inhibition of gastric cancer cells through the induction of apoptosis. In summary, FBLN1 was identified as a novel candidate TSG epigenetically downregulated in gastric cancer.  相似文献   

8.
9.
10.
We previously demonstrated using restriction landmark genomic scanning-based 2-dimensional genome electrophoresis method decreased results of 16 primary hepatocellular carcinomas (HCCs) revealed reduction of intensity of 60 NotI-landmark spots, and increase in five spots that were frequently observed in HCCs. Most frequently decreased spot (14/16 HCCs) was identified to it corresponds to a gene encoding SSI-1, a JAK-binding protein (SSI-1/SOCS-1/JAB) that regulated the JAK/STAT signal transduction pathway. This signaling pathway is important for relaying signals from various cytokines outside the cell to the inside. Expression level of SOCS-1 messenger RNA was markedly suppressed in 50% of HCCs (4/8). Loss of heterozygosity at the SSI-1 gene, was found in all cases with aberrant expression. Methylation analysis of the CpG-rich regions of SSI-1 gene revealed hypermethylation of these regions. In an additional series of methylation analysis using 30 HCCs, 16 (53%) showed hypermethylation of the gene. These results indicate that the SSI-1 gene is silenced in a substantial portion of HCC though the combined mechanisms of methylation of either 5' or exon CpG rich regions and by a chromosomal loss of the remaining allele.  相似文献   

11.
12.
13.
14.
Tumors are influenced by a microenvironment rich in inflammatory cytokines, growth factors and chemokines, which may promote tumor growth. Interleukin‐6 (IL‐6) is a multifunctional cytokine and known as a regulator of immune and inflammation responses. IL‐6 has also been reported to be associated with tumor progression and chemoresistance in different types of cancers. In our study, we demonstrated that IL‐6 enriches the properties of lung cancer stem‐like cells in A549 lung cancer cells cultured in spheroid medium. IL‐6 also promotes sphere formation and stem‐like properties of A549 cells by enhancing cell proliferation. Methylation‐specific polymerase chain reaction (PCR) was performed and revealed that IL‐6 increased methylation of p53 and p21 in A549 cancer cells. Western blot analysis and quantitative real‐time PCR demonstrated that IL‐6 increased the expression of DNA methyltransferase 1 (DNMT1) in A549 cells cultured in spheroid medium, but not the expression of DNMT3a or DNMT3b. Knockdown of DNMT1 eliminated IL‐6‐mediated hypermethylation of cell cycle regulators and enrichment of lung cancer stem‐like properties. In conclusion, our study, for the first time, shows that the IL‐6/JAK2/STAT3 pathway upregulates DNMT1 and enhances cancer initiation and lung cancer stem cell (CSC) proliferation by downregulation of p53 and p21 resulting from DNA hypermethylation. Upon blockage of the IL‐6/JAK2/STAT3 pathway and inhibition of DNMT1, the proliferation of lung CSCs was reduced and their formation of spheres and ability to initiate tumor growth were decreased. These data suggest that targeting of the IL‐6/JAK2/STAT3 signaling pathway and DNMT1 may become important strategies for treating lung cancer.  相似文献   

15.
The suppressors of cytokine signaling (SOCS) are critically involved in the regulation of cellular proliferation, survival, and apoptosis via cytokine-induced JAK/STAT signaling. SOCS-1 silencing by aberrant DNA methylation contributes to oncogenesis in various B-cell neoplasias and carcinomas. Recently, we showed an alternative loss of SOCS-1 function due to deleterious SOCS-1 mutations in a major subset of primary mediastinal B-cell lymphoma (PMBL) and in the PMBL line MedB-1, and a biallelic SOCS-1 deletion in PMBL line Karpas1106P. For both cell lines our previous data demonstrated retarded JAK2 degradation and sustained phospho-JAK2 action leading to enhanced DNA binding of phospho-STAT5. Here, we analysed SOCS-1 in laser-microdissected Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We detected SOCS-1 mutations in HRS cells of eight of 19 cHL samples and in three of five Hodgkin lymphoma (HL)-derived cell lines by sequencing analysis. Moreover, we found a significant association between mutated SOCS-1 of isolated HRS cells and nuclear phospho-STAT5 accumulation in HRS cells of cHL tumor tissue (P < 0.01). Collectively, these findings support the concept that PMBL and cHL share many overlapping features, and that defective tumor suppressor gene SOCS-1 triggers an oncogenic pathway operative in both lymphomas.  相似文献   

16.
While chromosomal instability is a common feature of human solid tumours, no abnormalities in genes involved in the mitotic checkpoint have been identified. However, recently, Chfr (checkpoint with forkhead associated and ring finger), a mitotic stress checkpoint gene, has been reported to be inactivated due to promoter hypermethylation in several types of human malignancy. To clarify whether Chfr promoter hypermethylation is involved in gastric carcinogenesis, we investigated the promoter methylation status of the Chfr gene in gastric cancer cell lines and primary gastric cancers. Non-neoplastic gastric epithelia from cancer-bearing and noncancer-bearing stomachs were also examined for Chfr promoter hypermethylation to study its cancer specificity. Two of 10 gastric cancer cell lines (20%) showed Chfr promoter hypermethylation with resultant loss of expression, which could be restored by 5-aza-2' deoxycytidine treatment. Chfr promoter hypermethylation was present in 35% (25 of 71) of primary tumours and occurred at similar frequencies in early and advanced stages. As for non-neoplastic gastric epithelia, 1% (one of 91) from noncancer-bearing and 5% (four of 71) from cancer-bearing stomachs exhibited Chfr promoter hypermethylation. Thus, Chfr promoter hypermethylation is mostly cancer specific and frequently leads to chromosome instability in gastric cancer.  相似文献   

17.
目的 研究地西他滨(DAC)对人急性髓系白血病细胞株HL-60体外生长及自然杀伤(NK)细胞活化性受体配体(NKG2DL)表达的调节作用,并探讨JAK-STAT3-SOCS信号通路相关的分子机制.方法 CCK-8法检测DAC对HL-60细胞增殖活性的影响,Annexin-V/PI双标法检测细胞凋亡,流式细胞术检测HL-60细胞表面NKG2DL分子MICA/B、ULBP的表达,羧基荧光素双乙酸盐(CFSE)法检测NK细胞的杀伤活性,蛋白印迹法分析细胞内JAK-STAT3通路中STAT3、STAT3上游激酶JAK1、JAK2及STAT3活性负调控因子细胞因子信号抑制物(SOCS)-1、SOCS-3的蛋白表达水平,甲基化敏感性高分辨率熔解曲线分析(MS-HRM)检测DAC处理后SOCS-1、SOCS-3基因甲基化程度.结果 DAC可抑制HL-60细胞活性:0.2、0.5和1.0 μmol/L DAC处理48 h,HL-60细胞活性较对照组分别下降(25±11)%、(39±8)%和(50±7)%(P<0.01);48 h时,细胞凋亡发生率分别为(24.77±7.50)%、(27.10±4.48)%和(30.53±3.93)%,均较对照组细胞的(3.11±0.50)%增加(P<0.01).DAC可诱导HL-60细胞表面MICA/B、ULBP-1及ULBP-3分子的表达增高,增强HL-60细胞对NK细胞的杀伤敏感性.DAC处理后HL-60细胞内STAT3、JAK1、JAK2及p-STAT3、p-JAK1、p-JAK2表达下降,SOCS-1和SOCS-3蛋白表达增高.DAC可抑制SOCS-3基因甲基化.结论 DAC抑制人急性髓系白血病细胞株HL-60增殖,上调HL-60细胞对NKG2DL的表达,增强NK细胞对其的杀伤活性,其机制可能与细胞内JAK-STAT3-SOCS信号通路的活性调控有关.  相似文献   

18.
19.
20.
We investigated the mechanisms of action and antitumor effects of OPB-31121, a novel STAT3 inhibitor, in gastric cancer cells. OPB-31121 downregulated JAK2 and gp130 expression and inhibited JAK2 phosphorylation which leads to inhibition of STAT3 phosphorylation. OPB-31121 inhibited constitutively activated and IL-6-induced JAK/STAT signaling pathway. OPB-31121 decreased cell proliferation in both gastric cancer cells and in a xenograft model, induced the apoptosis of gastric cancer cells, inhibited the expression of antiapoptotic proteins, and showed synergism with 5-fluorouracil and cisplatin. Taken together, our study suggests that STAT3 inhibition with OPB-31121 can be tested in patients with gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号