首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster   总被引:3,自引:0,他引:3  
In seasonal species, photoperiod organizes various physiological processes, including reproduction. Recent data indicate that the expression of type 2 iodothyronine deiodinase (Dio2) is modulated by photoperiod in the mediobasal hypothalamus of some seasonal species. Dio2 is believed to control the local synthesis of bioactive T(3) to regulate gonadal response. Here we used in situ hybridization to study Dio2 expression in the hypothalamus of a photoperiodic rodent, the Syrian hamster. Dio2 was highly expressed in reproductively active hamsters in long day, whereas it was dramatically reduced in sexually inhibited hamsters maintained in short day. This contrasted with the laboratory rat, a nonphotoperiodic species, in which no evidence for Dio2 photoperiodic modulation was seen. We also demonstrate that photoperiodic variations of Dio2 expression in hamsters are independent from secondary changes in gonadal steroids. Studies in pinealectomized hamsters showed that the photoperiodic variation of Dio2 expression is melatonin dependent, and injections of long day hamsters with melatonin for only 7 d were sufficient to inhibit Dio2 expression to that of short day levels. Finally, because in some seasonal species thyroid hormones are involved in photorefractoriness, we examined Dio2 expression in short day-refractory hamsters and found that Dio2 mRNA levels remained low despite full reproductive recrudescence. Altogether, these results demonstrate that in the Syrian hamster Dio2 is photoperiodically modulated via a melatonin-dependent process. Furthermore, refractoriness to photoperiod in hamsters appears to occur independently of Dio2. These results raise new perspectives for understanding how thyroid hormones are involved in the control of photoperiodic neuroendocrine processes.  相似文献   

2.
In seasonal species, photoperiod (i.e. daylength) tightly regulates reproduction to ensure that birth occurs at the most favorable time of year. In mammals, a distinct photoneuroendocrine circuit controls this process via the pineal hormone melatonin. This hormone is responsible for the seasonal regulation of reproduction, but the anatomical substrate and the cellular mechanism through which melatonin modulates sexual activity is far from understood. The Syrian hamster is widely used to explore the photoneuroendocrine system, because it is a seasonal model in which sexual activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Recent evidences indicate that the products of the KiSS-1 gene, kisspeptins, and their specific receptor GPR54, represent potent stimulators of the sexual axis. We have shown that melatonin impacts on KiSS-1 expression to control reproduction in the Syrian hamster. In this species, KiSS-1 is expressed in the antero-ventral-periventricular and arcuate nuclei of the hypothalamus at significantly higher levels in hamsters kept in LD as compared to SD. In the arcuate nucleus, the downregulation of KiSS-1 expression in SD appears to be mediated by melatonin and not by secondary changes in gonadal hormones. Remarkably, a chronic administration of kisspeptin restores testicular activity in SD hamsters, despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that the photoperiod, via melatonin, modulates KiSS-1 neurons to drive the reproductive axis.  相似文献   

3.
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. To further understand its physiological roles in mammalian reproduction, we identified its precursor cDNA and endogenous mature peptides in the Siberian hamster brain. The Siberian hamster GnIH precursor cDNA encoded two RFamide-related peptide (RFRP) sequences. SPAPANKVPHSAANLPLRF-NH(2) (Siberian hamster RFRP-1) and TLSRVPSLPQRF-NH(2) (Siberian hamster RFRP-3) were confirmed as mature endogenous peptides by mass spectrometry from brain samples purified by immunoaffinity chromatography. GnIH mRNA expression was higher in long days (LD) compared with short days (SD). GnIH mRNA was also highly expressed in SD plus pinealectomized animals, whereas expression was suppressed by melatonin, a nocturnal pineal hormone, administration. GnIH-immunoreactive (-ir) neurons were localized to the dorsomedial region of the hypothalamus, and GnIH-ir fibers projected to hypothalamic and limbic structures. The density of GnIH-ir perikarya and fibers were higher in LD and SD plus pinealectomized hamsters than in LD plus melatonin or SD animals. The percentage of GnRH neurons receiving close appositions from GnIH-ir fiber terminals was also higher in LD than SD, and GnIH receptor was expressed in GnRH-ir neurons. Finally, central administration of hamster RFRP-1 or RFRP-3 inhibited LH release 5 and 30 min after administration in LD. In sharp contrast, both peptides stimulated LH release 30 min after administration in SD. These results suggest that GnIH peptides fine tune LH levels via its receptor expressed in GnRH-ir neurons in an opposing fashion across the seasons in Siberian hamsters.  相似文献   

4.
Leptin may play a role in appetite regulation and metabolism, but its reproductive role is less clear. In photoperiodic Siberian hamsters, seasonal changes in fatness, leptin gene expression, and metabolism occur synchronously with activation or suppression of reproduction, analogous to puberty. Here, we test the hypothesis that seasonal changes in leptin secretion mediate the photoperiodic regulation of reproduction. Mature male and ovariectomized estrogen-treated female Siberian hamsters were kept in long (LD; 16 h of light, 8 h of darkness) or short days (SD; 8 h of light, 16 h of darkness) for 8 weeks, and recombinant murine leptin (15 microg/day) was infused for 2 weeks via osmotic minipumps. SD hamsters exhibited significant weight and fat losses, reduced serum leptin and food intake, and suppressed pituitary LH concentration. Leptin did not suppress food intake over the 2-week treatment on either photoperiod, but significantly reduced fat reserves in SD hamsters. Leptin had no significant effect on pituitary LH concentrations in either sex or photoperiod or on testicular size and testosterone concentrations in males. These results suggest hamsters are more responsive to leptin on SD than on LD and that effects on food intake and fat loss can be dissociated in this species. Our data suggest that leptin does not mediate photoperiodic reproductive changes.  相似文献   

5.
In seasonal mammals, a distinct photoneuroendocrine circuit that involves the pineal hormone melatonin tightly synchronizes reproduction with seasons. In the Syrian hamster, a seasonal model in which sexual activity is inhibited by short days, we have previously shown that the potent GnRH stimulator, kisspeptin, is crucial to convey melatonin's message; however, the precise mechanisms through which melatonin affects kisspeptin remain unclear. Interestingly, rfrp gene expression in the neurons of the dorsomedial hypothalamic nucleus, a brain region in which melatonin receptors are present in the Syrian hamster, is strongly down-regulated by melatonin in short days. Because a large body of evidence now indicates that RFamide-related peptide (RFRP)-3, the product of the rfrp gene, is an inhibitor of gonadotropin secretion in various mammalian species, we sought to investigate its effect on the gonadotrophic axis in the Syrian hamster. We show that acute central injection of RFRP-3 induces c-Fos expression in GnRH neurons and increases LH, FSH, and testosterone secretion. Moreover, chronic central administration of RFRP-3 restores testicular activity and Kiss1 levels in the arcuate nucleus of hamsters despite persisting photoinhibitory conditions. By contrast RFRP-3 does not have a hypophysiotrophic effect. Overall, these findings demonstrate that, in the male Syrian hamster, RFRP-3 exerts a stimulatory effect on the reproductive axis, most likely via hypothalamic targets. This places RFRP-3 in a decisive position between the melatonergic message and Kiss1 seasonal regulation. Additionally, our data suggest for the first time that the function of this peptide depends on the species and the physiological status of the animal model.  相似文献   

6.
Many non-tropical rodent species rely on photoperiod as the primary cue to co-ordinate seasonally appropriate changes in physiology and behavior. Among these seasonal changes, several rodent species (e.g. deer mice, prairie voles, Siberian hamsters) adjust immune function in response to changes in ambient day lengths. The goals of the present study were to examine the effects of photoperiod on immune function of Syrian hamsters (Mesocricetus auratus), and to determine the role of melatonin in mediating photoperiodic changes in immunity. In Experiment 1, male Syrian hamsters were housed in long (LD 14:10) or short days (LD 10:14) for 10 wk. In Experiment 2, hamsters were housed in long days and half of the animals were given 10 consecutive days of i.p. melatonin injections (15 microg) in the early evening, while the remaining animals received injections of the vehicle alone. After the respective experimental manipulations, animals were injected with the antigen, keyhole limpet hemocyanin (KLH), blood samples were obtained and anti-KLH IgG antibody production was assessed. In Experiment 1, short-day hamsters underwent gonadal regression and reduced serum testosterone as well as displayed increased humoral immune function compared with long-day animals. In Experiment 2, short-term melatonin treatment did not affect gonadal mass, testosterone or humoral immune function. These results confirm previous findings of photoperiodic changes in immunity in rodents and suggest that changes in humoral immunity are not due to short-term changes in melatonin.  相似文献   

7.
In anticipation of seasonal climate changes, Siberian hamsters display a strategy for survival that entails profound physiological adaptations driven by photoperiod. These include weight loss, reproductive quiescence, and pelage growth with shortening photoperiod and vice versa with lengthening photoperiod. This study reports gene expression changes in the hypothalamus of Siberian hamsters switched from short days (SD) to long days (LD), and also in photorefractory hamsters. Siberian hamsters were maintained in either LD or SD for 14 wk, conditions that generate physiological states of obesity under LD and leanness under SD. After 14 wk, SD lighting was switched to LD and gene expression investigated after 0, 2, 4, and 6 wk by in situ hybridization. Genes encoding nuclear receptors (RXR/RAR), retinoid binding proteins (CRBP1 and CRABP2), and histamine H3 receptor were photoperiodically regulated with significantly lower expression in SD, whereas VGF mRNA expression was significantly higher in SD, in the dorsomedial posterior arcuate nucleus. After a SD-to-LD switch, gene expression changes of CRABP2, RAR, H3R, and VGF occurred relatively rapidly toward LD control levels, ahead of body weight recovery and testicular recrudescence, whereas CRBP1 responded less robustly and rxrgamma did not respond at the mRNA level. In this brain nucleus in photorefractory animals, the CRABP2, RAR, H3R, and VGF mRNA returned toward LD levels, whereas CRBP1 and rxrgamma remained at the reduced SD level. Thus, genes described here are related to photoperiodic programming of the neuroendocrine hypothalamus through expression responses within a subdivision of the arcuate nucleus.  相似文献   

8.
9.
Winter imposes physiological challenges on individuals including increased thermoregulatory demands, risk of infection, and decreased food availability. To survive these challenges, animals living outside the tropics must appropriately distribute their energetic costs across the year, including reproduction and immune function. Individuals of many species use the annual cycle of changing day lengths (photoperiod), which is encoded by the nightly duration of melatonin secretion, to adjust physiology. Siberian hamsters exposed to short days (SD) (long nights/prolonged endogenous melatonin secretion) enhance some aspects of immune function, but curtail other energetically expensive immune functions including the febrile response. The purpose of this study was twofold. First, we determined whether sustained melatonin treatment would inhibit the development of the SD phenotype in female hamsters as it does in males. Second, we examined whether the SD attenuation of fever would be blocked by continuous exposure to exogenous melatonin. Hamsters were implanted with melatonin or empty capsules, housed in either long days (LD) or SD for 8-9 weeks, and then challenged with lipopolysaccharide; body temperature and locomotor activity were recorded. Unlike hamsters with empty capsules, hamsters with melatonin implants did not respond to SD and maintained a LD phenotype including summer-like spleen, uterine and body masses, and pelage characteristics. Further, sustained melatonin treatment blocked the SD attenuation of febrile responses and prolonged the behavioral components of the sickness response. These results suggest that the daily fluctuations in endogenous melatonin may be masked by continuous exposure to exogenous melatonin, thus inhibiting functional photoperiodic responses to SD.  相似文献   

10.
Melatonin-based photoperiod time-measurement and circannual rhythm generation are long-term time-keeping systems used to regulate seasonal cycles in physiology and behaviour in a wide range of mammals including man. We summarise recent evidence that temporal, melatonin-controlled expression of clock genes in specific calendar cells may provide a molecular mechanism for long-term timing. The agranular secretory cells of the pars tuberalis (PT) of the pituitary gland provide a model cell-type because they express a high density of melatonin (mt1) receptors and are implicated in photoperiod/circannual regulation of prolactin secretion and the associated seasonal biological responses. Studies of seasonal breeding hamsters and sheep indicate that circadian clock gene expression in the PT is modulated by photoperiod via the melatonin signal. In the Syrian and Siberian hamster PT, the high amplitude Per1 rhythm associated with dawn is suppressed under short photoperiods, an effect that is mimicked by melatonin treatment. More extensive studies in sheep show that many clock genes (e.g. Bmal1, Clock, Per1, Per2, Cry1 and Cry2) are expressed in the PT, and their expression oscillates through the 24-h light/darkness cycle in a temporal sequence distinct from that in the hypothalamic suprachiasmatic nucleus (central circadian pacemaker). Activation of Per1 occurs in the early light phase (dawn), while activation of Cry1 occurs in the dark phase (dusk), thus photoperiod-induced changes in the relative phase of Per and Cry gene expression acting through PER/CRY protein/protein interaction provide a potential mechanism for decoding the melatonin signal and generating a long-term photoperiodic response. The current challenge is to identify other calendar cells in the central nervous system regulating long-term cycles in reproduction, body weight and other seasonal characteristics and to establish whether clock genes provide a conserved molecular mechanism for long-term timekeeping.  相似文献   

11.
The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin inhibit gonadotropin secretion via feedback from the gonads, but a neuropeptide inhibitor of gonadotropin secretion was, until recently, unknown in vertebrates. In 2000, we identified a novel hypothalamic dodecapeptide that inhibits gonadotropin release in cultured quail pituitaries and termed it gonadotropin-inhibitory hormone (GnIH). To elucidate the mode of action of GnIH, we then identified a novel G protein-coupled receptor for GnIH in quail. The GnIH receptor possesses seven transmembrane domains and specifically binds to GnIH. The GnIH receptor is expressed in the pituitary and several brain regions including the hypothalamus. These results indicate that GnIH acts directly on the pituitary via GnIH receptor to inhibit gonadotropin release. GnIH may also act on the hypothalamus to inhibit GnRH release. To demonstrate the functional significance of GnIH and its potential role as a key regulatory neuropeptide in avian reproduction, we investigated GnIH actions on gonadal development and maintenance in quail. Chronic treatment with GnIH inhibited gonadal development and maintenance by decreasing gonadotropin synthesis and release. GnIH was also found in the hypothalamus of other avian species including sparrows and chickens and also inhibited gonadotropin synthesis and release. The pineal hormone melatonin may be a key factor controlling GnIH neural function, since quail GnIH neurons express melatonin receptor and melatonin treatment stimulates the expression of GnIH mRNA and mature GnIH peptide. Thus, GnIH is capable of transducing photoperiodic information via changes in the melatonin signal, thereby influencing the reproductive axis. It is concluded that GnIH, a newly discovered hypothalamic neuropeptide, is a key factor controlling avian reproduction. The discovery of avian GnIH opens a new research field in reproductive neuroendocrinology.  相似文献   

12.
This study reports novel events related to photoperiodic programming of the neuroendocrine hypothalamus. To investigate photoperiod-responsive genes, Siberian hamsters were maintained in long or short photoperiods that generate physiological states of obesity or leanness. Microarray expression analysis first identified CRBP1 as a photoperiod-responsive gene, and then further studies using in situ hybridization and immunocytochemistry revealed that expression levels of several related retinoid-signaling genes were modulated in response to photoperiod changes. Genes of the retinoid-signaling pathway, encoding nuclear receptors (RXR/RAR) and retinoid binding proteins (CRBP1 and CRABP2) are photoperiodically regulated in the dorsal tuberomamillary nucleus (DTM): Their expression is significantly lower in short photoperiods and parallels body weight decreases. Studies in pinealectomized hamsters confirm that the pineal melatonin rhythm is necessary for these seasonal changes, and studies in testosterone-treated hamsters reveal that these changes in gene expression are not the secondary consequence of photoperiod-induced changes in steroid levels. Comparative studies using Syrian hamsters, which show divergent seasonal body weight responses to Siberian hamsters when exposed to short photoperiods, showed a distinct pattern of changes in retinoid gene expression in the DTM in response to a change in photoperiod. We infer that the DTM may be an important integrating center for photoperiodic control of seasonal physiology and suggest that the changes in retinoid X receptor gamma expression may be associated with seasonal changes in body weight and energy metabolism.  相似文献   

13.
14.
The mammalian Per1 gene is expressed in the suprachiasmatic nucleus of the hypothalamus, where it is thought to play a critical role in the generation of circadian rhythms. Per1 mRNA also is expressed in other tissues. Its expression in the pars tuberalis (PT) of the pituitary is noteworthy because, like the suprachiasmatic nucleus, it is a known site of action of melatonin. The duration of the nocturnal melatonin signal encodes photoperiodic time, and many species use this to coordinate physiological adaptations with the yearly climatic cycle. This study reveals how the duration of photoperiodic time, conveyed through melatonin, is decoded as amplitude of Per1 and ICER (inducible cAMP early repressor) gene expression in the PT. Syrian hamsters display a robust and transient peak of Per1 and ICER gene expression 3 h after lights-on (Zeitgeber time 3) in the PT, under both long (16 h light/8 h dark) and short (8 h light/16 h dark) photoperiods. However, the amplitude of these peaks is greatly attenuated under a short photoperiod. The data show how amplitude of these genes may be important to the long-term measurement of photoperiodic time intervals.  相似文献   

15.
The impact of photoperiodic manipulations and testosterone treatments on the adipocyte alpha 2-adrenergic (alpha 2-AR), beta-adrenergic (beta-AR), and A1-adenosine (A1-R) responsiveness, was explored in male Syrian hamsters (Mesocricetus auratus). Moreover, binding studies were performed with appropriate alpha 2-AR, beta-AR, and A1-R radioligands to study receptor changes. Animals were kept for 12 weeks in long day photoperiod (LD: 16 h light (L)-8 h dark (D)), in short day photoperiod (SD: 6L-18D), or in short photoperiod with testosterone treatments (1 mg/animal/day sc) 10 days before sacrifice (SD+T). The antilipolytic effect of the full alpha 2-AR agonist UK14304 and the specific binding of the alpha 2-AR radioligands [3H] RX821002 (antagonist) and [3H]UK14304 were significantly reduced in SD hamsters compared with LD hamsters. The alpha 2-site number and alpha 2-AR responsiveness were completely restored in SD+T hamsters. Whatever the experimental conditions the adipocyte beta-AR receptivity (lipolytic response of isoproterenol and [125I]cyanopindolol binding), and the A1-R receptivity (antilipolytic response initiated by (-)phenylisopropyladenosine and [3H]dipropyl-8-cyclopentylxanthine and [3H]phenylisopropyladenosine binding) remained unchanged. Moreover, the kidney and brain alpha 2-AR densities identified with [3H]RX821002 were not significantly different in LD, SD or SD+T hamsters. These results were obtained without any modification of animal weight, white adipose tissue weight, or white fat cell size. We conclude that, in the Syrian hamster, the expression of the adipocyte alpha 2-AR is under the control of the photoperiod by a testosterone-dependent mechanism probably mediated through the hypothalamic-pituitary axis, without any alteration of the animal fat stores.  相似文献   

16.
17.
18.
The action of melatonin (MEL) in mediating photoperiodic history (PPH) effects among male Syrian hamsters was investigated. In Exp. 1, pineal intact males in LD 14:10 received daily injections of MEL (15 micrograms) or ethanol:saline vehicle (SAL) 1 h before lights off for 8 wk to generate two groups experiencing identical photoperiods but distinctly different MEL histories. Following the cessation of injections, males were transferred to either LD 12:12 or LD 8:16 for 8 wk to evaluate whether their reproductive response to the new photoperiod would be more influenced by prior PPH or prior MEL history; MEL history was the significant variable. LD 12:12 caused gradual recrudescence in hamsters that were gonadally regressed following MEL injections. In contrast, LD 12:12 caused gonadal regression in hamsters that had large testes following SAL injections. Exp. 2 evaluated whether PPH influences might be mediated by aftereffects on the period (tau) of the circadian pacemaker regulating many behavioral and physiological rhythms. Pineal intact hamsters were exposed to long or short T cycles consisting of an 8 h photoperiod, repeated every 24.67 h (long T) or 23.33 h (short T) to mimic the aftereffects generated by short or long photoperiods. After 5 wk in these T-cycle conditions, all males were transferred to LD 12:12 for 11 wk. The reproductive response to LD 12:12 was modestly influenced by T-cycle history, even though each T-cycle generated different patterns of entrainment to LD 12:12. These findings support the hypothesis that the response of the reproductive system of male hamsters to an intermediate-duration photoperiod depends upon the duration of nocturnal melatonin secretion associated with hamsters' previous PPH.  相似文献   

19.
The preovulatory LH surge is triggered when the circadian pacemaker, the bilateral suprachiasmatic nucleus (SCN), stimulates the GnRH system in the presence of high estrogen concentrations (positive feedback). Importantly, during the remainder of the estrous cycle, estradiol inhibits LH release via negative feedback. We have recently documented the presence of a novel mammalian RFamide-related peptide (RFRP), a putative gonadotropin-inhibitory hormone (GnIH), that presumably acts upstream of GnRH to modulate the negative feedback effects of estrogen. The present series of studies used female Syrian hamsters to examine the possibility that, in addition to driving the LH surge positively, the SCN concomitantly coordinates the removal of steroid-mediated RFRP inhibition of the gonadotropic axis to permit the surge. We found that the SCN forms close appositions with RFRP cells, suggesting the possibility for direct temporal control of RFRP activity. During the time of the LH surge, immediate-early gene expression is reduced in RFRP cells, and this temporal regulation is estrogen dependent. To determine whether projections from the SCN regulate the timed reduction in activation of the RFRP system, we exploited the phenomenon of splitting. In split animals in which the SCN are active in antiphase, activation of the RFRP system is asymmetrical. Importantly, this asymmetry is opposite to the state of the GnRH system. Together, these findings point to novel circadian control of the RFRP system and potential participation in the circuitry controlling ovulatory function.  相似文献   

20.
To investigate the photoperiodic entrainment of peripheral rhythms in ruminants, we studied the expression of clock genes in the liver in the highly seasonal Soay sheep. Animals were kept under long (LD 16:8) or short photoperiod (LD 8:16). Daily rhythms in locomotor activity were recorded, and blood concentrations of melatonin and cortisol were measured by RIA. Per2, Bmal1, and Cry1 gene expression was determined by Northern blot analyses using ovine RNA probes in liver collected every 4h for 24h. Liver Per2 and Bmal1, but not Cry1, expression was rhythmic in all treatments. Under long days, peak Per2 expression occurred at end of the night with a similar timing to Bmal1, whereas, under short days the Per2 maximum was in the early night with an inverse pattern to Bmal1. There was a photoperiodxtime interaction for only Per2 (P < 0.001). The 24-h pattern in plasma cortisol matched the observed phasing of Per2 expression, suggesting that it may act as an endocrine entraining factor. The clock gene rhythms in the peripheral tissues were different in timing compared with the ovine suprachiasmatic nucleus (SCN, central pacemaker) and pars tuberalis (melatonin target tissue), and the hepatic rhythms were of lower amplitude compared with photoperiodic rodents. Thus, there are likely to be important species differences in the way the central and peripheral clockwork encodes external photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号