首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autosomal recessive retinitis pigmentosa (arRP) is the commonest form of RP worldwide. To date 22 loci have been implicated in the pathogenesis of this disease; however none of these loci independently account for a significant proportion of recessive RP. Linkage studies of arRP in consanguineous families have been mainly based on homozygosity mapping, but this strategy cannot be applied in the case of non-consanguineous families. Therefore, we implemented a systematic approach for identifying the disease locus in three non-consanguineous Chinese families with arRP. Initially, linkage analysis using SNPs/microsatellite markers or mutation screening of known arRP genes excluded all loci/genes except RP25 on chromosome 6. Subsequently a whole genome scan for the three families using the 10K GeneChip Mapping Array was performed, in order to identify the possible disease locus. To the best of our knowledge this is the first report on the utilisation of the 10K GeneChip to study linkage in non-consanguineous Chinese arRP. This analysis indicates that the studied families are probably linked to the RP25 locus, a well defined arRP locus in other populations. The identification of another ethnic group linked to RP25 is highly suggestive that this represents a major locus for arRP.  相似文献   

2.
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal dystrophies, characterised by rod photoreceptor cell degeneration with autosomal recessive RP (arRP) as the commonest form worldwide. To date, a total of 26 loci have been reported for arRP, each having a prevalence of 1–5%, except for the RP25 locus which was identified as the genetic cause of 14% of arRP cases in Spain. In order to validate the original linkage of RP25 , we undertook a total genome scan using the 10K GeneChip mapping array on three of the previously linked families. The data obtained supported the initial findings of linkage. Additionally, linkage analysis in 18 newly ascertained arRP families was performed using microsatellite markers spanning the chromosome 6p12.1-q15 interval. Five out of the 18 families showed suggestive evidence of linkage to RP25 , hence supporting the high prevalence of this locus in the Spanish population. Furthermore, the finding of a crossover in one of these families is likely to have refined the disease interval from the original 16 cM to only a 2.67 cM region between D6S257 and D6S1557 .  相似文献   

3.
In one consanguineous family with retinitis pigmentosa (RP), a condition characterized by progressive visual loss due to retinal degeneration, homozygosity mapping, and candidate gene sequencing suggested a novel locus. Exome sequencing identified a homozygous frameshifting mutation, c.601delG, p.Lys203Argfs*28, in RP1L1 encoding RP 1‐like1, a photoreceptor‐specific protein. A screen of a further 285 unrelated individuals with autosomal recessive RP identified an additional proband, homozygous for a missense variant, c.1637G>C, p.Ser546Thr, in RP1L1. A distinct retinal disorder, occult macular dystrophy (OCMD) solely affects the central retinal cone photoreceptors and has previously been reported to be associated with variants in the same gene. The association between mutations in RP1L1 and the disorder OCMD was explored by screening a cohort of 28 unrelated individuals with the condition; 10 were found to harbor rare (minor allele frequency ≤0.5% in the 1,000 genomes dataset) heterozygous RP1L1 missense variants. Analysis of family members revealed many unaffected relatives harboring the same variant. Linkage analysis excluded the possibility of a recessive mode of inheritance, and sequencing of RP1, a photoreceptor protein that interacts with RP1L1, excluded a digenic mechanism involving this gene. These findings imply an important and diverse role for RP1L1 in human retinal physiology and disease.  相似文献   

4.
Mutations in PRPF31 are responsible for autosomal dominant retinitis pigmentosa (adRP, RP11 form) and affected families show nonpenetrance. Differential expression of the wildtype PRPF31 allele is responsible for this phenomenon: coinheritance of a mutation and a higher expressing wildtype allele provide protection against development of disease. It has been suggested that a major modulating factor lies in close proximity to the wildtype PRPF31 gene on Chromosome 19, implying that a cis‐acting factor directly alters PRPF31 expression. Variable expression of CNOT3 is one determinant of PRPF31 expression. This study explored the relationship between CNOT3 (a trans‐acting factor) and its paradoxical cis‐acting nature in relation to RP11. Linkage analysis on Chromosome 19 was performed in mutation‐carrying families, and the inheritance of the wildtype PRPF31 allele in symptomatic–asymptomatic sibships was assessed—confirming that differential inheritance of wildtype chromosome 19q13 determines the clinical phenotype (P < 2.6 × 10?7). A theoretical model was constructed that explains the apparent conflict between the linkage data and the recent demonstration that a trans‐acting factor (CNOT3) is a major nonpenetrance factor: we propose that this apparently cis‐acting effect arises due to the intimate linkage of CNOT3 and PRPF31 on Chromosome 19q13—a novel mechanism that we have termed “linked trans‐acting epistasis.”  相似文献   

5.
Retinitis pigmentosa (RP) is an hereditary degenerative disease of the retina and a major cause of visual impairment, prevalence estimates ranging from 1 in 3000 to 1 in 7000. The condition may segregate as an autosomal dominant, autosomal recessive or an X-linked recessive trait and it may also occur on a sporadic basis in up to 50% of cases. In the autosomal dominant form, close linkage to the DNA marker C17 (D3S47) was recently established in a large family of Irish origin displaying early-onset disease (McWilliam et al. 1989), multipoint analysis indicating the gene for rhodopsin as a likely candidate (Farrar et al. 1990). In that gene, a C----A transversion in codon 23, resulting in a proline----histidine substitution has now been identified in 17 of 148 unrelated ADRP patients in the United States (Dryja et al. 1990). This mutation is absent however in the original Irish pedigree (it is also absent in 21 other dominant Irish pedigrees, representing approximately 70% of the estimated ADRP population) indicating that another mutation, either in rhodopsin itself, or in a gene very closely linked to rhodopsin is responsible for the disease in that family. Analysis of other dominant pedigrees using the C17 and/or rhodopsin probes has indicated either tight linkage (Bhattacharya, Personal Communication), looser linkage, possibly indicative of a second locus on 3q (Olsson et al. 1990) or no linkage (Farrar et al. 1990, Blanton et al. 1990, Inglehearn et al. 1990). Extensive genetic heterogeneity thus exists in the autosomal dominant form of this disease, and in the light of these new observations, earlier tentative evidence for linkage of ADRP to the Rhesus locus on chromosome 1 will be re-evaluated. A locus for type II Usher syndrome (classical RP combined with congenital pedial deafness, and normal vestibular function) has now been established on the long arm of chromosome 1 (Kimberling et al. 1990). Type I Usher families, in which hearing loss is more profound and vestibular function absent, do not segregate with the same chromosome 1q markers, indicating the existence of another, as yet unlocated gene. In the X-linked form of the disease, two genes, XLRP2 and XLRP3, have been located on the proximal short arm of the X chromosome using a combination of physical and linkage mapping techniques, and there is some evidence to suggest a possible third locus more distally located.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The retinitis pigmentosa 2 (RP2) gene is one of the causative genes for X‐linked inherited retinal disorder. We characterized the clinical/genetic features of four patients with RP2‐associated retinal disorder (RP2‐RD) from four Japanese families in a nationwide cohort. A systematic review of RP2‐RD in the Japanese population was also performed. All four patients were clinically diagnosed with retinitis pigmentosa (RP). The mean age at examination was 36.5 (10–47) years, and the mean visual acuity in the right/left eye was 1.40 (0.52–2.0)/1.10 (0.52–1.7) in the logarithm of the minimum angle of resolution unit, respectively. Three patients showed extensive retinal atrophy with macular involvement, and one had central retinal atrophy. Four RP2 variants were identified, including two novel missense (p.Ser6Phe, p.Leu189Pro) and two previously reported truncating variants (p.Arg120Ter, p.Glu269CysfsTer3). The phenotypes of two patients with truncating variants were more severe than the phenotypes of two patients with missense variants. A systematic review revealed additional 11 variants, including three missense and eight deleterious (null) variants, and a statistically significant association between phenotype severity and genotype severity was revealed. The clinical and genetic spectrum of RP2‐RD was illustrated in the Japanese population, identifying the characteristic features of a severe form of RP with early macular involvement.  相似文献   

7.
Here, we report early treatment outcomes of gene therapy for early onset retinitis pigmentosa (RP) (Leber congenital amaurosis) associated with biallelic RPE65 mutation in a 30-year-old female patient. Initially, her visual acuity (VA) was 20/200, and her visual field (VF) was severely constricted to the center in the left eye. Her electroretinography showed nearly extinct signals. Full-field stimulus threshold test (FST) revealed diminished dark-adapted light sensitivity. Voretigene neparvovec-rzyl (VN) is the first in vivo viral gene therapy agent to be approved. At 3 months after subretinal injection of VN in the left eye, VA, VF, and FST showed sustained improvement. She did not exhibit any signs of adverse effects from the treatment. Gene therapy for RP proved to be an effective and safe treatment in an advanced case of RPE65-associatied early onset RP.  相似文献   

8.
Genotype-phenotype correlations highlighted the function of ABCA4 in retinitis pigmentosa (RP),cone-rod dystrophy (CRD) and Stargardt/Fundus Flavimaculatus disease (STGD/FFM). Initial screening of ABCA4 variants showed a correlation between the type of mutation and the severity of the disease. In the present study we have undertaken mutational and haplotype analysis of ABCA4 in three mixed pedigrees segregating different retinal dystrophies. In family I, we have shown cosegregation of different ABCA4 alleles with CRD (homozygosity for L1940P) and three subtypes of STGD/FFM. The first, a mild form, consisting on fundus flavimaculatus-like distribution of flecks, but good visual acuity and absence of dark choroid, was found to cosegregate with alleles R1097C and F553L; the second, a conventional Stargardt phenotype was associated to alleles L1940P/R1097C and the third, displaying severely reduced visual acuity and dark choroid (named FFM), was associated to L1940P/F553L. In family II, segregating STGD and RP phenotypes, while the involvement of ABCA4 in STGD seems clear this is not the case for RP. Finally, in family III, also segregating STGD and RP, ABCA4 fails to explain either phenotype. Our data highlight the wide allelic heterogeneity involving this gene and support the genetic variability (beyond ABCA4) of mixed STGD/RP pedigrees.  相似文献   

9.
Mutations in Eyes shut homolog (EYS) are one of the most common causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive blinding disorder. The exact function of the EYS protein and the pathogenic mechanisms underlying EYS‐associated RP are still poorly understood, which hampers the interpretation of the causality of many EYS variants discovered to date. We collected all reported EYS variants present in 377 arRP index cases published before June 2017, and uploaded them in the Leiden Open Variation Database ( www.LOVD.nl/EYS ). We also describe 36 additional index cases, carrying 26 novel variants. Of the 297 unique EYS variants identified, almost half (n = 130) are predicted to result in premature truncation of the EYS protein. Classification of all variants using the American College of Medical Genetics and Genomics guidelines revealed that the predicted pathogenicity of these variants cover the complete spectrum ranging from likely benign to pathogenic, although especially missense variants largely fall in the category of uncertain significance. Besides the identification of likely benign alleles previously reported as being probably pathogenic, our comprehensive analysis underscores the need of functional assays to assess the causality of EYS variants, in order to improve molecular diagnostics and counseling of patients with EYS‐associated RP.  相似文献   

10.
Baum L  Chan WM  Yeung KY  Lam DS  Kwok AK  Pang CP 《Human mutation》2001,17(5):436-436
Heterozygous truncating mutations in the RP1 gene cause approximately 7% of autosomal dominant retinitis pigmentosa (RP) cases. To examine the role of RP1 mutations in RP, we screened 101 unrelated Chinese RP patients (unselected for mode of inheritance) and 190 elderly normal control subjects for sequence changes in the coding exons for the 2156 amino acid RP1 protein. One patient had a mutation, thus RP1 mutations cause about 0.0% to 5.4% (95% confidence interval) of all RP among Chinese. The mutation was R677X, the most common found in Americans. Five other known sequence changes were found. In addition, nine novel sequence alterations were identified: 746G>A (R249H), 1437G>T (M479I), 2116G>C (G706R), 3024G>A (Q1008Q), 3188G>A (Q1063R), 5797C>T (R1933X), 6423A>G (I2141M), and the variants 6542C>T and 6676T>A, both in the 3' untranslated region. One control subject and three members of a non-RP family were heterozygous for R1933X, which is therefore likely to be a non-disease-causing variant. The most C-terminal truncation previously reported was due to Tyr1053 (1-bp del) and occurred in RP patients. Thus the presence of a normal level of at least part of RP1 between amino acids 1052 and 1933 appears necessary to prevent RP. Hum Mutat 17:436, 2001.  相似文献   

11.
Semaphorins are a large family of transmembrane proteins. The gene for SEMA4A encodes a transmembrane protein comprising 760 amino acids. To investigate its association with human retinal degeneration, mutation screening of the SEMA4A gene was carried out on 190 unrelated patients suffering from a variety of eye diseases. We report the first observation of the involvement of SEMA4A gene mutations causing retinitis pigmentosa (RP) and cone rod dystrophy (CRD). We screened the DNA of 135 patients with RP, 25 patients with CRD, and 30 with LCA using SSCP and direct DNA sequencing for mutations in the SEMA4A gene. Two mutations, p.D345H and p.F350C, were observed only in affected patients; they were not observed in any of the normal members or the 100 control subjects. Both mutations identified occur in the conserved semaphorin domain. Multiple sequence alignments using Clustal analysis showed that R713Q is a conserved substitution and D345H is a semi‐conserved substitution. We conclude that these mutations are a cause of various retinal degenerations.  相似文献   

12.
X-linked forms of retinitis pigmentosa (RP) (XLRP) account for 10 to 20% of families with RP and are mainly accounted for by mutations in the RP2 or RP GTPase regulator (RPGR) genes. We report the screening of these genes in a cohort of 127 French family comprising: 1) 93 familial cases of RP suggesting X-linked inheritance, including 48 out of 93 families with expression in females but no male to male transmission; 2) seven male sibships of RP; 3) 25 sporadic male cases of RP; and 4) two cone dystrophies (COD). A total of 5 out of the 93 RP families excluded linkage to the RP2 and RP3 loci and were removed form the cohort. A total of 14 RP2 mutations, 12 of which are novel, were identified in 14 out of 88 familial cases of RP and 1 out of 25 sporadic male case (4%). In 13 out of 14 of the familial cases, no expression of the disease was noted in females, while in 1 out of 14 families one woman developed RP in the third decade. A total of 42 RPGR mutations, 26 of which were novel, were identified in 80 families, including: 69 out of 88 familial cases (78.4%); 2 out of 7 male sibship (28.6%); 8 out of 25 sporadic male cases (32.0%); and 1 out of 2 COD. No expression of the disease was noted in females in 41 out of 69 familial cases (59.4%), while at least one severely affected woman was recognized in 28 out of 69 families (40.6%). The frequency of RP2 and RPGR mutations in familial cases of RP suggestive of X-linked transmission are in accordance to that reported elsewhere (RP2: 15.9% vs. 6-20%; RPGR: 78.4% vs. 55-90%). Interestingly, about 30% of male sporadic cases and 30% of male sibships of RP carried RP2 or RPGR mutations, confirming the pertinence of the genetic screening of XLRP genes in male patients affected with RP commencing in the first decade and leading to profound visual impairment before the age of 30 years.  相似文献   

13.
With advances in gene-based therapies for heritable retinal diseases, primary eye care clinicians should be informed on ocular genetics topics. This cross-sectional survey evaluated knowledge, attitudes, and concerns regarding genetic testing and gene therapy for retinal diseases among optometrists in Australia and New Zealand. Survey data included practitioner background, attitudes and practices towards genetic testing for monogenic inherited retinal disease (IRDs) and age-related macular degeneration, and knowledge of ocular genetics and gene therapy. Responses were received from 516 optometrists between 1 April and 31 December 2022. Key perceived barriers to accessing genetic testing were lack of clarity on referral pathways (81%), cost (65%), and lack of treatment options if a genetic cause is identified (50%). Almost all respondents (98%) believed that ophthalmologists should initiate genetic testing for IRDs and fewer understood the role of genetic counsellors and clinical geneticists. This study found that optometrists in Australia and New Zealand have a high level of interest in ocular genetics topics. However, knowledge gaps include referral pathways and awareness of genetic testing and gene therapy outcomes. Addressing perceived barriers to access and promoting sharing of knowledge between interdisciplinary networks can set the foundation for genetic education agendas in primary eye care.  相似文献   

14.
Analysis of exon ORF15 of the RPGR gene has revealed a novel mutation in a South African family with X-linked retinitis pigmentosa (XLRP), which has implications for the rest of the family in terms of pre-symptomatic testing. The ability to test for this mutation will be beneficial for the accurate determination of carrier status in female relatives who may have been unaware of their risk before this study was performed. This work also highlights the need to be aware of the ramifications of mutation testing in what may appear to be small families. This is the first report of an RPGR ORF15 mutation in a South African family of mixed ancestry.  相似文献   

15.
X‐linked Retinitis Pigmentosa (XLRP) shows a huge genetic heterogeneity with almost five distinct loci on the X chromosome. So far, only two XLRP genes have been identified, RPGR (or RP3) and RP2, being mutated in approximately 70% and 10% of the XLRP patients. Clinically there is no clearly significative difference between RP3 and RP2 phenotypes. In the attempt to assess the degree of involvement of the RP2 gene, we performed a complete mutation analysis in a cohort of patients and we identified five novel mutations in five different XLRP families. These mutations include three missense mutations, a splice site mutation, and a single base insertion, which, because of frameshift, anticipates a stop codon. Four mutations fall in RP2 exon 2 and one in exon 3. Evidence that such mutations are different from the 21 RP2 mutations described thus far suggests that a high mutation rate occurs at the RP2 locus, and that most mutations arise independently, without a founder effect. Our mutation analysis confirms the percentage of RP2 mutations detected so far in populations of different ethnic origin. In addition to novel mutations, we report here that a deeper sequence analysis of the RP2 product predicts, in addition to cofactor C homology domain, further putative functional domains, and that some novel mutations identify RP2 amino acid residues which are evolutionary conserved, hence possibly crucial to the RP2 function. Hum Mutat 18:109–119, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

16.
The ABCA4 gene has been involved in several forms of inherited macular dystrophy. In order to further characterize the complex genotype-phenotype relationships involving this gene, we have performed a mutation analysis of ABCA4 in 14 Spanish patients comprising eight STGD (Stargardt), four FFM (fundus flavimaculatus), and two CRD (Cone-rod dystrophy) patients. SSCP (single-strand conformation polymorphism) analysis and DNA sequencing of the coding and 5' upstream regions of this gene allowed the identification of 16 putatively pathogenic alterations, nine of which are novel. Most of these were missense changes, and no patient was found to carry two null alleles. Overall, the new data agree with a working model relating the different pathogenic phenotypes to the severity of the mutations. When considering the information presented here together with that of previous reports, a picture of the geographic distribution of three particular mutations emerges. The R212C change has been found in French, Italian, Dutch, German, and Spanish but not in British patients. In the Spanish collection, R212C was found in a CRD patient, indicating that it may be a rather severe change. In contrast, c.2588G>C, a very common mild allele in the Dutch population, is rarely found in Southern Europe. Interestingly, the c.2588G>C mutation has been found in a double mutant allele together with the missense R1055W. Finally, the newly described L1940P was found in two unrelated Spanish patients, and may be a moderate to severe allele.  相似文献   

17.
Usher syndrome (USH) is a group of autosomal recessive sensory disorders characterized by progressive retinitis pigmentosa (RP) and sensorineural hearing impairment. Usher syndrome type 1 (USH1), with additional vestibular dysfunction, represents the most severe form and shows extensive allelic and non-allelic heterogeneity. At least six USH1 loci exist (USH1A-F), and four of the underlying genes have been identified. Recently, a novel gene, cadherin 23 (CDH23), was shown to be mutated in USH1D. We performed mutation screening by single strand conformation polymorphism (SSCP) analysis and direct sequencing on 33 USH1 patients previously excluded for USH1B and USH1C. On eight disease alleles of four patients, four different mutations were identified, three of them novel (c.6933delT, c.5712G-->A, and IVS45-9G-->A). Exon trapping experiments were performed with two mutations. In the case of a c.5712G-->A transition of the last base of exon 42, that is an apparently synonymous mutation, skipping of exon 42 was observed. By the mutation IVS45-9G-->A, a novel splice acceptor site was created and the insertion of 7 intronic bp was observed. Two mutations, IVS45-9G-->A and the previously described IVS51+5G-->A, were each found in more than one patient. Haplotype analysis by SNPs within CDH23 suggests common ancestors for each of the mutations. Among the total of 52 USH1 cases studied by us, CDH23 mutations account for about 10% of all disease alleles. Our results further suggest that in patients with a typical USH1D phenotype, a significant portion of CDH23 mutations leads to premature termination of translation or loss of numerous amino acid residues, with a high frequency of changes causing aberrant splicing of CDH23 mRNA.  相似文献   

18.
Because retinitis pigmentosa (RP) has been shown to cause degenerative changes in the entire visual pathway, there is an urgent need to perform longitudinal assessments of RP-induced degeneration and identify imaging protocols to detect this degeneration as early as possible. In this study, we assessed a transgenic rat model of RP by using complementary noninvasive magnetic resonance imaging techniques, namely, proton magnetic resonance spectroscopy (1H-MRS), to investigate the metabolic changes in RP. Our study demonstrated decreased concentrations and ratios to creatine (Cr) of N-acetylaspartate (NAA), glutamate (Glu), γ-aminobutyric acid (GABA), and taurine (Tau), whereas myo-inositol (Ins) and choline (Cho) were increased in the visual cortex of Royal College of Surgeons (RCS) rats compared with control rats (p < 0.05). Furthermore, with the progression of RP, the concentrations of NAA, Glu, GABA, and Tau, and the ratios of GABA/Cr and Tau/Cr significantly decreased over time, whereas the concentrations of Ins and Cho and the ratio of Ins/Cr significantly increased over time (p < 0.05). In addition, in RCS rats, NAA/Cr decreased significantly from 3 to 4 months postnatal (p < 0.001), and Cho/Cr increased significantly from 4 to 5 months postnatal (p = 0.005). Meanwhile, the 1H-MRS indicators in 5-month postnatal RCS rats could be confirmed by immunohistochemical staining. In conclusion, with the progression of RP, the metabolic alterations in the visual cortex indicated progressive reprogramming with the decrease of neurons and axons, accompanied by the proliferation of gliocytes.  相似文献   

19.
Characterizing the pathogenicity of DNA sequence variants of unknown significance (VUS) is a major bottleneck in human genetics, and is increasingly important in determining which patients with inherited retinal diseases could benefit from gene therapy. A library of 210 rhodopsin (RHO) variants from literature and in‐house genetic diagnostic testing were created to efficiently detect pathogenic RHO variants that fail to express on the cell surface. This study, while focused on RHO, demonstrates a streamlined, generalizable method for detecting pathogenic VUS. A relatively simple next‐generation sequencing‐based readout was developed so that a flow cytometry‐based assay could be performed simultaneously on all variants in a pooled format, without the need for barcodes or viral transduction. The resulting dataset characterized the surface expression of every RHO library variant with a high degree of reproducibility (r2 = 0.92–0.95), recategorizing 37 variants. For example, three retinitis pigmentosa pedigrees were solved by identifying VUS which showed low expression levels (p.G18D, p.G101V, and p.P180T). Results were validated across multiple assays and correlated with clinical disease severity. This study presents a parallelized, higher‐throughput cell‐based assay for the functional characterization of VUS in RHO, and can be applied more broadly to other inherited retinal disease genes and other disorders.  相似文献   

20.
Ovotesticular disorders of sex development (OT-DSD) are characterized by ovarian follicles and seminiferous tubules in the same individual, with a wide range of atypical genitalia. We report on two sibs with atypical genitalia and SRY-negative 46,XX DSD, OT-DSD was confirmed only in the boy, while the girl had bilateral ovaries. Chromosome microarray analysis (CMA) showed a 737-kb duplication at Xq27.1 including the entire SOX3 gene in both sibs, which was confirmed by quantitative real time PCR. Also, X chromosome inactivation assay showed random inactivation in both sibs. Whole exome sequencing revealed no pathogenic or likely pathogenic variant. CMA of the parents showed normal results for both, suggesting that germline mosaicism could be the reason of recurrence of this duplication in the siblings. Our results support a pathogenic role of SOX3 overexpression in 46,XX subjects leading to variable DSD phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号